CS388: Natural Language Processing
Lecture 23: Unsupervised Learning

Greg Durrett

Some slides adapted from Leon Gu (CMU), Taylor Berg-Kirkpatrick (CMU)



What data do we learn from?

» Supervised settings: f ellddelelelelslsieieieleleleleleleieieiaialallllelelets I ,
» Tagging: POS, NER i model

» Parsing: constituency,

. .| unlabeled . semi-
dependency, semantic parsing ata — supervised
. model

» [E, MT, QA, ...

» Semi-supervised models ] |
» Word embeddings / word clusters (helpful for nearly all tasks)
» Language models for machine translation

» Learn linguistic structure from unlabeled data and use it?



This Lecture

» Discrete linguistic structure from generative models: unsupervised POS
induction

» Expectation maximization for learning HMMs

» Continuous structure with generative models: variational autoencoders

» Continuous structure with “discriminative” models: transfer learning



EM for HMMs



Recall: Hidden Markov Models

» Input x = (1, .ey ) Output y = (?/1, 7yn)

» Observation (x) depends
only on current state (y)
@ @ » Multinomials: tag x tag

n " transitions, tag x word
P(y,x) = P(1y1) H P(yilyi—1) H P(zi|y;) emissions

(=2 =1 ~ » P(x|y) is a distribution over
I(I o’ ds in th bul
Initial Transition Emission all words In the vocabulary
distribution probabilities probabilities — not a distribution over

features (but could be!)



Unsupervised Learning

» Can we induce linguistic structure? Thought experiment...

abacccc

baccc
» What's a two-state HMM that could produce this?

» What if | show you this sequence?
aabccaa

» What did you do? Use current model parameters + data to refine
vour model. This is what EM will do



Part-of-Speech Induction

4 |npUt X = ($1, ,CEn) OUtPUt Yy — (yb 7yn)

» Assume we don’t have access to labeled examples — how can we learn
a POS tagger?

Generative model explains
» Key idea: optimize P ZP y, X

“— the data x; the right HMM
makes it look likely

» Optimizing marginal log-likelihood with no labels y:

D
£(X1,---,D) — Z log Z P(y, Xi) » hon-convex optimization

problem



Part-of-Speech Induction

4 |npUt X = ($1, ,CEn) OUtPUt Yy — (yb 7yn)

» Optimizing marginal log-likelihood with no labels y:
D
L(x1,..p)=) log) Ply,x)
1=1 Yy

» Can’t use a discriminative model; Z P(y|x) = 1, doesn’t model x

y
» What's the point of this? Model has inductive bias and so should learn

some useful latent structure y (clustering effect)

» EM is just one procedure for optimizing this kind of objective



Expectation Maximization

log Z P(x,y|6) » Condition on parameters §

log Z q(y) P(x,y|0) .Variatjional afpproximation g — this
q(y) is a trick we’ll return to later!

> Z q(y) log » Jensen’s inequality (uses concavity
q(y) of log)

4j’q(y) log P(X7 ;Y|9) T EntrOPY[Q(Y)]

» Can optimize this lower-bound on log likelihood instead of log-likelihood
Adapted from Leon Gu



Expectation Maximization

log » P(x,y(6) > Eqy(y) log P(x,y|6) + Entropy[q(y)]
Y

» If q(y) = P(y|x,6), this bound ends up being tight

» Expectation-maximization: alternating maximization of the

lower bound over g and §

» Current timestep = t, have parameters §%—!

» E-step: maximize w.r.t. g; that is, qt — P(y\X, Qt_l)

» M-step: maximize w.r.t.; that is, §* = argimaxy

.t log P(x,y|0)

Adapted from Leon Gu



EM for HMMs

» Expectation-maximization: alternating maximization
» E-step: maximize w.r.t. g; that is, qt — P(y\x, Ht_l)

» M-step: maximize w.r.t.@; that is, 0" = argmaxyli « log P(x,y|6)

» E-step: for an HMM: run forward-backward with the given parameters

» Compute P(y; = s|x, Ht_l), P(y; = 81,Yi+1 = S2|X, Qt_l)

tag marginals at tag pair marginals at
each position each position

» M-step: set parameters to optimize the crazy argmax term



M-Step

» Recall how we maximized log P(x,y): read counts off data

count(DT, the) = 1 P(the|DT) =1
DT NN count(DT, dog) =0 P(dog|DT) =0
— —
the dog count(NN, the) =0 P(the|NN) =0
count(NN, dog) =1 P(dog|NN) =1

» Same procedure, but maximizing P(xX,y) in expectation under g
means that q specifies fractional counts

count(DT, the) = 0.9 P(the |DT) = 0.75
q DT: 0.9 DT:0.3 count(DT, dog) = 0.3 P(dog|DT) = 0.25
NN: 0.1 NN:0.7: count(NN, the) = 0.1 P(the [NN) = 0.125

the dog count(NN, dog) = 0.7 P(dog|NN) = 0.875



M-Step

» Same for transition probabilities

DT—NN: 0.6 P(DT|DT) = 1/7
¥ DT—DT:.O.l ., P(NN|DT)=6/7
i NN—DT: 0.2 i P(DT|NN) =2/3
e ANTNNEOL P(NNINN) = 1/3



How does EM learn things?

» Initialize (M-step 0):

» Emissions
P(the|DT) =0.9 P(the|NN) = 0.05
P(dog|DT) = 0.05 P(dog|NN) = 0.9

P(marsupial |DT) = 0.05 P(marsupial [NN) = 0.05
» Transition probabilities: uniform

» E-step 1: (all values are approximate)

DT: 0.95 DT: 0.05 DT: 0.95 |DT: 0.5
NN: 0.05 NN: 0.95 NN: O0.05 NN: 0.5

the dog the marsupial

» uniform



How does EM learn things?

» E-step 1:
DT: 0.95 DT: 0.05 DT: 0.95 DT: 0.5
NN: 0.05 NN: 0.95 NN: 0.05 NN: 0.5
the dog the marsupial
» M-step 1:

» Emissions aren’t so different
» Transition probabilities (approx): P(NN|DT) = 3/4, P(DT|DT) = 1/4



How does EM learn things?

» E-step 2:
DT: 0.95 DT: 0.05 DT: 0.95 |DT: 0.30
NN: 0.05 NN: 0.95 NN: 0.05/NN: 0.70
the dog the marsupial
» M-step 1:

» Emissions aren’t so different
» Transition probabilities (approx): P(NN|DT) = 3/4, P(DT|DT) = 1/4



How does EM learn things?

» E-step 2:
DT: 0.95 DT: 0.05 DT: 0.95 |DT: 0.30
NN: 0.05 NN: 0.95 NN: 0.05/NN: 0.70
the dog the marsupial
» M-step 2:

» Emission P(marsupial |[NN) > P(marsupial | DT)
» Remember to tag marsupial as NN in the future!

» Context constrained what we learned! That’s how data helped us



How does EM learn things?

» Can think of g as a kind of “fractional annotation”
» E-step: compute annotations (posterior under current model)

» M-step: supervised learning with those fractional annotations

» Initialize with some reasonable weights, alternate E and M until
convergence



EM’s Lower Bound

= Initialize probabilities 6
L(X1,...p) = ZlOgZP(y,XZ’) repeat
1=1 y ® Compute expected counts e
@ Fit parameters 6

L (Xl ....D; 9) until convergence

slide credit: Taylor Berg-Kirkpatrick




EM’s Lower Bound

= Initialize probabilities 6
ﬁ(Xl,...,D) — ZlOgZP(yvxz) repeat
i=1 y ® Compute expected counts e
@ Fit parameters 6

L (X 1,....D; 9) until convergence

» E-step: compute g which
» initial theta gives this lower bound

slide credit: Taylor Berg-Kirkpatrick




EM’s Lower Bound

D Initialize probabilities @
ﬁ(Xl,...,D) — ZlOgZP(YaXi) repeat
1=1 Yy

® Compute expected counts e
@ Fit parameters 6

L (Xl ...D; 9) until convergence

» M-step: find
aximum of
lower bound

slide credit: Taylor Berg-Kirkpatrick




EM’s Lower Bound

D Initialize probabilities @
L(X1,..p) = ZIOgZP(}’UXz’) repeat
1=1 Yy

® Compute expected counts e
@ Fit parameters @

L(Xl,,,,,p; (9) , until convergence

» E-step 2: re-estimate g

slide credit: Taylor Berg-Kirkpatrick




EM’s Lower Bound

Initialize probabilities &

D
L(Xl,...,D) — ZlogZP(y,xi) repeat
i=1 y ® Compute expected counts e
@ Fit parameters 6

L (Xl ...D; (9) until convergence

» E-step 2: re-estimate g

slide credit: Taylor Berg-Kirkpatrick




EM’s Lower Bound

D Initialize probabilities 6
L(x1,..p) = » log » Ply,x;) repeat
1=1 y

® Compute expected counts e
® Fit parameters @

L (X 1,....D5 9) until convergence

slide credit: Taylor Berg-Kirkpatrick




EM’s Lower Bound

Initialize probabilities

D
L(X1..D)= ZlOgZP(y’Xi) repeat
1=1 y

® Compute expected counts e
@ Fit parameters @

L (X 1,....D3 (9) until convergence

o4

slide credit: Taylor Berg-Kirkpatrick




EM’s Lower Bound

Inmitialize probabilities @

D
L(X1..D)= ZlogZP(y,xi) repeat
1=1 Yy

® Compute expected counts e
@ Fit parameters @

L (X 1.....D3 6’) until convergence

o

slide credit: Taylor Berg-Kirkpatrick




Part-of-speech Induction

» Merialdo (1994): you have a whitelist of tags for each word

» Learn parameters on k examples to start, use those to initialize
EM, run on 1 million words of unlabeled data

» Tag dictionary + data should get us started in the right
direction...



Number of tagged sentences used for the initial model

() 100 2000 5000 10000 20000 all

Iter Correct tags (% words) after ML on 1M words
0 770 96.2 96.6 969  97.0
1 805 926 96.3  96.6 96.7 96.8
2 818 930 96.1  96.3 96.4 96.4
3 830 931 958  96.1 96.2 96.2
4 840 93.0 955  95.8 96.0 96.0
5 848 929 954  95.6 95.8 95.8
6 853 928 952 955 95.6 95.7
/ 858 928 951 953 95.5 95.5
8 861 927 950  95.2 95.4 95.4
9 863 926 949 951 95.3 95.3
10 94.8 95.2 95.2

86.6

92.6

95.0

Part-of-speech Induction

» Small amounts
of data > large
amounts of
unlabeled data

» Running EM *hurts*
performance once
vou have labeled
data

Merialdo (1994)



Two Hours of Annotation

Human Annotations 0. No EM 1. EM only 2. With LP
Initial data T K U | T K U | T K U
KIN tokens A 72 90 58 |55 82 32|71 86 358
KIN types A 63 77 32|78 83 69
MLG tokens B 74 89 49 | 68 &7 39|74 89 49
MLG types B 71 87 46 |72 81 57
ENG tokens A 63 83 38|62 83 37|72 8 55
ENG types A 66 76 37|75 81 56
ENG tokens B 70 87 44 |70 &7 43 |78 90 60
ENG types B 69 83 38 |75 82 61

» Kinyarwanda and Malagasy (two actual low-resource languages)

» Label propagation (technique for using dictionary labels) helps a lot,

with data that was collected in two hours
Garrette and Baldridge (2013)



Variational Autoencoders



Continuous Latent Variables

» For discrete latent variables y, we optimized: P Z P y,

» What if we want to use continuous latent variables?

P(z,x) = P(z)P(x|z)

P(x) = / P(2)P(x|2)0x

» Can use EM here when P(z) and P(x|z) are Gaussians

» What if we want P(x|z) to be something more complicated, like an
LSTM with z as the initial state?



Deep Generative Models

the movie| was |good|[STOP]

» Z is a latent variable which should control the generation of the
sentence, maybe capture something about its topic



Deep Generative Models

o o b (w55 > [t

Jensen

= Eq(21x) |~ log q(z|x) + log P(x, 2|0))]
= E,21x) [log P(x]z,0)] — KL(q(z[x) || P(2))

“make the data likely under 9" “make q close to the prior”
(discriminative)

» KL divergence: distance metric over distributions (more dissimilar <=>
higher KL)



Variational Autoencoders
Lq(2x) log P(x|z,0)] — KL(q(2|x)[|P(2))

Generative model (test): Autoencoder (training):

[ 12~P(z) T— x  Input

l l “inference network”

L 1X ] q(z|x) distribution over z

l generative model

[ 1 X Maximize P(x|z,0)

Miao et al. (2015)



Training VAEs

4:q(z|x) [lOgP(X|Z79)] - KL(Q(Z‘X)HP(Z))

» Choose g to be Gaussian with Autoencoder (training):
parameters that are computed from x

1 X

_ : 2
q = N(u(x),diag(c”(x))) o l “inference network”
» mu and sigma are computed from an [ ] q(z]x)

LSTM over x, call their parameters ¢ 0 l generative model
» How to handle the expectation? I

Sampling

Miao et al. (2015)



Training VAEs

For each example x Autoencoder (training):
Compute g (run forward pass to ——— X
compute mu and sigma) 0 l “inference network”
For some number of samples ] q(z]x)
Samplez ™~ qg 6 l generative model

Compute P(x]|z) and compute loss [ 1 X
Backpropagate to update phi, theta



Autoencoders

the movie| was |good|[STOP]

LU

the movie was great + <s>

!

Gaussian noise

» Another interpretation: train an autoencoder and add Gaussian noise

» Same computation graph as VAE, add KL divergence term to make the
objective the same

» Inference network (q) is the encoder and generator is the decoder



Visualization

2, (- llog P(x],0)] + KL(g(z[%) | P(2)

» What does gradient encourage latent space to do?

prior direction of better likelihood for x




What do VAEs do?

» Let us encode a sentence and generate similar sentences:

INPUT we looked out at the setting sun . i went to the kitchen . how are you doing 7
MEAN they were laughing at the same time . 2 went to the kitchen . what are you doing ¥
SAMP. 1 il see you in the early morning . 2 went to my apartment . “are you sure ¢
SAMP. 2 1 looked up at the blue sky . ¢ looked around the room .  what are you doing ¢
SAMP. 3 it was down on the dance floor . ¢ turned back to the table . what are you doing ¢
: Positive great indoor mall .
» Style transfer: also e RAE o amoking mall.
condition on sentiment, = Cross-AE terrible outdoor urine .
cha Nnge Se ntiment Positive 1t has a great atmosphere , with wonderful service .
= ARAE it has no taste , with a complete jerk .
» _.or use the latent = Cross-AE it has a great horrible food and run out service .

representations for semi-

supervised learnin
upervi ing Bowman et al. (2016), Zhao et al. (2017)



Self-Supervision / Transfer Learning



Goals of Unsupervised Learning

» We want to use unlabeled data, but EM “requires” generative models.
Are models like this really necessary?

» word2vec: predict nearby word given context. This wasn’t generative,
but the supervision is free...

» Language modeling is a “more contextualized” form of word2vec



—--.
- N
- S
-
——
-

1 1 I oo ] + learnalinear classifier on top of
Q_Q_QH_Q "+ this vector to get a POS tagger
with 97.3% accuracy (~“SOTA)
they dance  at balls

P(QZ‘@|ZE‘1, e ,Clii_l) — LSTM(CEl, e ,SIZ’Z'_l)

» Generative model of the data!

» Train one model in each direction on 1B words, use the LSTM hidden
states as context-aware token representations



BERT

» Text “infilling” task: replace 15% of tokens with something else and try
to predict the original

» 80% of the time: MASK; 10%: random word; 10%: keep same

| went to the store and bought a gallon of milk . My favorite kind is 2% .

Transformer (12-24 layers)
ﬁ

| went to the MASK and bought MASK gallon of dog . My MASK kind is 2% .

» Also generate “fake” sentence pairs and try to predict real from fake

| went to the MASK and bought MASK gallon of dog . I love karaoke!



Results

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE | Average
392k 363k 108k 67k 85k J.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 823 932 350 81.0 860 61.7| 74.0
BiLSTM+ELMo+Attn 76.4/76.1 648 799 904 360 733 849 568 71.0
OpenAl GPT 82.1/81.4 70.3 88.1 91.3 454 80.0 823 56.0| 75.2
BERTgASE 84.6/83.4 71.2 90.1 935 52.1 858 889 664| 79.6
BERT| ARGE 36.7/85.9 72.1 91.1 949 605 865 893 70.1| 81.9

» Dramatic gains on a range of sentence pair / single sentence tasks:

paraphrase identification, entailment, sentiment, textual similarity, ...

» Not a generative model! But learns really effective representations...




Unsupervised Learning

» Discrete linguistic structure with generative models: unsupervised POS
induction

» These models are hard to learn in an unsupervised way and too
impoverished to really be all that useful

» Continuous structure with generative models: variational autoencoders
» Useful, but also hard to learn in practice
» Continuous structure with “discriminative” models

» ELMo / BERT seem extremely useful



Takeaways

» EM sort of works for POS induction

» VAE can learn sentence representations

» Language modeling or text infilling as pretraining seems best —
arguably not “unsupervised” but the annotation is free

» Using unlabeled data effectively seems like one of the most
important directions in NLP right now

» Next time: Jessy Li guest lecture on discourse



