CS388: Natural Language Processing Lecture 4: Sequence Models I

Greg Durrett

Administrivia

- Mini 1 due today
- Project 1 out today, due September 27
 - Viterbi algorithm, CRF NER system, extension
 - Extension should be substantial: don't just try one additional feature (see syllabus/spec for discussion, samples on website)
 - This class will cover what you need to get started on it, the next class will cover everything you need to complete it

Recall: Multiclass Classification

Logistic regression: $P(y|x) = \frac{\exp\left(w^{\top}f(x,y)\right)}{\sum_{y' \in \mathcal{Y}} \exp\left(w^{\top}f(x,y')\right)}$

Gradient (unregularized):
$$\frac{\partial}{\partial w_i} \mathcal{L}(x_j, y_j^*) = f_i(x_j, y_j^*) - \mathbb{E}_y[f_i(x_j, y)]$$

SVM: defined by quadratic program (minimization, so gradients are flipped)
 Loss-augmented decode

$$\xi_j = \max_{y \in \mathcal{Y}} w^{\mathsf{T}} f(x_j, y) + \ell(y, y_j^*) - w^{\mathsf{T}} f(x_j, y_j^*)$$

Subgradient (unregularized) on jth example $=f_i(x_j,y_{\max})-f_i(x_j,y_j^*)$

Recall: Optimization

Stochastic gradient *ascent*

$$w \leftarrow w + \alpha g, \quad g = \frac{\partial}{\partial w} \mathcal{L}$$

Adagrad:

$$w_i \leftarrow w_i + \alpha \frac{1}{\sqrt{\epsilon + \sum_{\tau=1}^t g_{\tau,i}^2}} g_{t,i}$$

- SGD/AdaGrad have a batch size parameter
 - Large batches (>50 examples): can parallelize within batch
 - ...but bigger batches often means more epochs required because you make fewer parameter updates
- Shuffling: online methods are sensitive to dataset order, shuffling helps!

This Lecture

Sequence modeling

HMMs for POS tagging

HMM parameter estimation

Viterbi, forward-backward

Linguistic Structures

Language is tree-structured

▶ Understanding syntax fundamentally requires trees — the sentences have the same shallow analysis

```
PRP VBZ DT NN IN NNS PRP VBZ DT NN IN NNS I ate the spaghetti with chopsticks I ate the spaghetti with meatballs
```


Linguistic Structures

Language is sequentially structured: interpreted in an online way

Tanenhaus et al. (1995)

POS Tagging

What tags are out there?

Ghana's ambassador should have set up the big meeting in DC yesterday.

POS Tagging

Slide credit: Dan Klein

POS Tagging

VBD VB

VBN VBZ VBP VBZ

NNP NNS NN NNS CD NN

Fed raises interest rates 0.5 percent

I hereby increase interest rates 0.5%

VBD VBV VBP

NNP NNS NN NNS CD NN

Fed raises interest rates 0.5 percent

VBZ

I'm 0.5% interested in the Fed's raises!

- Other paths are also plausible but even more semantically weird...
- What governs the correct choice? Word + context
 - Word identity: most words have <=2 tags, many have one (percent, the)</p>
 - Context: nouns start sentences, nouns follow verbs, etc.

What is this good for?

- Text-to-speech: record, lead
- Preprocessing step for syntactic parsers
- Domain-independent disambiguation for other tasks
- (Very) shallow information extraction

Sequence Models

Input $\mathbf{x} = (x_1, ..., x_n)$ Output $\mathbf{y} = (y_1, ..., y_n)$

▶ POS tagging: **x** is a sequence of words, **y** is a sequence of tags

▶ Today: generative models P(x, y); discriminative models next time

Hidden Markov Models

- Input $\mathbf{x} = (x_1, ..., x_n)$ Output $\mathbf{y} = (y_1, ..., y_n)$
- ▶ Model the sequence of y as a Markov process (dynamics model)
- Markov property: future is conditionally independent of the past given the present

$$(y_1) \rightarrow (y_2) \rightarrow (y_3)$$
 $P(y_3|y_1,y_2) = P(y_3|y_2)$

- Lots of mathematical theory about how Markov chains behave
- If y are tags, this roughly corresponds to assuming that the next tage only depends on the current tag, not anything before

Hidden Markov Models

Input $\mathbf{x} = (x_1, ..., x_n)$ Output $\mathbf{y} = (y_1, ..., y_n)$

$$P(\mathbf{y}, \mathbf{x}) = P(y_1) \prod_{i=2}^{n} P(y_i | y_{i-1}) \prod_{i=1}^{n} P(x_i | y_i)$$

Initial Transition distribution probabilities

Emission probabilities

- Observation (x) depends
 only on current state (y)
- Multinomials: tag x tag transitions, tag x word emissions
- P(x|y) is a distribution over all words in the vocabulary
 not a distribution over features (but could be!)

Transitions in POS Tagging

Dynamics model $P(y_1)\prod_{i=2}^{\infty}P(y_i|y_{i-1})$

```
VBD VBZ VBP VBZ NNP NNS CD NN
```

Fed raises interest rates 0.5 percent

- $P(y_1 = NNP)$ likely because start of sentence
- $P(y_2 = VBZ|y_1 = NNP)$ likely because verb often follows noun
- $P(y_3 = NN|y_2 = VBZ)$ direct object follows verb, other verb rarely follows past tense verb (main verbs can follow modals though!)

Estimating Transitions

NNP VBZ NN NNS CD NN . Fed raises interest rates 0.5 percent .

- Similar to Naive Bayes estimation: maximum likelihood solution = normalized counts (with smoothing) read off supervised data
- P(tag | NN) = (0.5., 0.5 NNS)
- How to smooth?
- One method: smooth with unigram distribution over tags

$$P(\text{tag}|\text{tag}_{-1}) = (1-\lambda)\hat{P}(\text{tag}|\text{tag}_{-1}) + \lambda\hat{P}(\text{tag})$$

$$\hat{P} = \text{empirical distribution (read off from data)}$$

Emissions in POS Tagging

NNP VBZ NN NNS CD NN

Fed raises interest rates 0.5 percent

- ▶ Emissions $P(x \mid y)$ capture the distribution of words occurring with a given tag
- P(word | NN) = (0.05 person, 0.04 official, 0.03 interest, 0.03 percent ...)
- When you compute the posterior for a given word's tags, the distribution favors tags that are more likely to generate that word
- ▶ How should we smooth this?

Inference in HMMs

Input $\mathbf{x} = (x_1, ..., x_n)$ Output $\mathbf{y} = (y_1, ..., y_n)$

$$P(\mathbf{y}, \mathbf{x}) = P(y_1) \prod_{i=2}^{n} P(y_i|y_{i-1}) \prod_{i=1}^{n} P(x_i|y_i)$$

- Inference problem: $\operatorname{argmax}_{\mathbf{y}} P(\mathbf{y}|\mathbf{x}) = \operatorname{argmax}_{\mathbf{y}} \frac{P(\mathbf{y},\mathbf{x})}{P(\mathbf{x})}$
- Exponentially many possible y here!
- ▶ Solution: dynamic programming (possible because of Markov structure!)
 - Many neural sequence models depend on entire previous tag sequence, need to use approximations like beam search

$$P(x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n) = P(y_1) \prod_{i=1}^n P(y_{i+1}|y_i) \prod_{i=1}^n P(x_i|y_i)$$

 $\max_{y_1,y_2,\cdots,y_n} P(y_n|y_{n-1})P(x_n|y_n)\cdots P(y_2|y_1)P(x_2|y_2)P(y_1)P(x_1|y_1)$

Transition probabilities

Emission probabilities

Initial probability

$$P(x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n) = P(y_1) \prod_{i=1}^n P(y_{i+1}|y_i) \prod_{i=1}^n P(x_i|y_i)$$

$$\max_{y_1, y_2, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \dots P(y_2 | y_1) P(x_2 | y_2) P(y_1) P(x_1 | y_1)$$

$$= \max_{y_2, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \dots \max_{y_1} P(y_2 | y_1) P(x_2 | y_2) P(y_1) P(x_1 | y_1)$$

The only terms that depend on y₁

slide credit: Vivek Srikumar

$$P(x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n) = P(y_1) \prod_{i=1}^n P(y_{i+1}|y_i) \prod_{i=1}^n P(x_i|y_i)$$

$$\max_{y_1, y_2, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \dots P(y_2 | y_1) P(x_2 | y_2) P(y_1) P(x_1 | y_1)
= \max_{y_2, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \dots \max_{y_1} P(y_2 | y_1) P(x_2 | y_2) P(y_1) P(x_1 | y_1)
= \max_{y_2, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \dots \max_{y_1} P(y_2 | y_1) P(x_2 | y_2) \text{score}_1(y_1)$$

Abstract away the score for all decisions till here into score

Best (partial) score for a sequence ending in state s

$$\underline{\mathbf{score}_1(s)} = P(s)P(x_1|s)$$

$$P(x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n) = P(y_1) \prod_{i=1}^n P(y_{i+1}|y_i) \prod_{i=1}^n P(x_i|y_i)$$

$$\max_{y_1, y_2, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \cdots P(y_2 | y_1) P(x_2 | y_2) P(y_1) P(x_1 | y_1)
= \max_{y_2, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \cdots \max_{y_1} P(y_2 | y_1) P(x_2 | y_2) P(y_1) P(x_1 | y_1)
= \max_{y_2, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \cdots \max_{y_1} P(y_2 | y_1) P(x_2 | y_2) \text{score}_1(y_1)
= \max_{y_3, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \cdots \max_{y_2} P(y_3 | y_2) P(x_3 | y_3) \max_{y_1} P(y_2 | y_1) P(x_2 | y_2) \text{score}_1(y_1)
= \max_{y_3, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \cdots \max_{y_2} P(y_3 | y_2) P(x_3 | y_3) \max_{y_1} P(y_2 | y_1) P(x_2 | y_2) \text{score}_1(y_1)$$

Only terms that depend on y₂

slide credit: Vivek Srikumar

$$P(x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n) = P(y_1) \prod_{i=1}^n P(y_{i+1}|y_i) \prod_{i=1}^n P(x_i|y_i)$$

$$\max_{y_1,y_2,\cdots,y_n} P(y_n|y_{n-1})P(x_n|y_n)\cdots P(y_2|y_1)P(x_2|y_2)P(y_1)P(x_1|y_1)$$

$$= \max_{y_2,\cdots,y_n} P(y_n|y_{n-1})P(x_n|y_n)\cdots \max_{y_1} P(y_2|y_1)P(x_2|y_2)P(y_1)P(x_1|y_1)$$

$$= \max_{y_2,\cdots,y_n} P(y_n|y_{n-1})P(x_n|y_n)\cdots \max_{y_1} P(y_2|y_1)P(x_2|y_2) \text{score}_1(y_1)$$

$$= \max_{y_3,\cdots,y_n} P(y_n|y_{n-1})P(x_n|y_n)\cdots \max_{y_2} P(y_3|y_2)P(x_3|y_3) \max_{y_1} P(y_2|y_1)P(x_2|y_2) \text{score}_1(y_1)$$

$$= \max_{y_3,\cdots,y_n} P(y_n|y_{n-1})P(x_n|y_n)\cdots \max_{y_2} P(y_3|y_2)P(x_3|y_3) \text{score}_2(y_2)$$

$$= \max_{y_3,\cdots,y_n} P(y_n|y_n)P(x_n|y_n)\cdots \max_{y_2} P(y_n|y_n)P(x_n|y_n)$$

$$= \max_{y_3,\cdots,y_n} P(y_n|y_n)P(x_n|y_n)P(x_n|y_n)$$

$$= \max_{y_3,\cdots,y_n} P(y_n|y_n)P(x_n|y_n)P(x_n|y_n)$$

$$= \max_{y_3,\cdots,y_n} P(y_n|y_n)P(x_n|y_n)P(x_n|y_n)$$

$$= \max_{y_3,\cdots,y_n} P(y_n|y_n)P(x_n|y_n)$$

$$= \max_{y_3,\cdots,y_n} P(x_n|y_n)$$

$$= \max_{y_3,\cdots,y_n} P(x_n|y_n)$$

$$= \max_{y_3,$$

Abstract away the score for all decisions till here into score

slide credit: Vivek Srikumar

Viterbi Algorithm

"Think about" all possible immediate prior state values. Everything before that has already been accounted for by earlier stages.

$$P(x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n) = P(y_1) \prod_{i=1}^{n-1} P(y_{i+1}|y_i) \prod_{i=1}^{n} P(x_i|y_i)$$

$$\max_{y_1, y_2, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \dots P(y_2 | y_1) P(x_2 | y_2) P(y_1) P(x_1 | y_1)$$

$$= \max_{y_2, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \dots \max_{y_1} P(y_2 | y_1) P(x_2 | y_2) P(y_1) P(x_1 | y_1)$$

$$= \max_{y_2, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \dots \max_{y_1} P(y_2 | y_1) P(x_2 | y_2) \operatorname{score}_1(y_1)$$

$$= \max_{y_3, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \dots \max_{y_2} P(y_3 | y_2) P(x_3 | y_3) \max_{y_1} P(y_2 | y_1) P(x_2 | y_2) \operatorname{score}_1(y_1)$$

$$= \max_{y_3, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \dots \max_{y_2} P(y_3 | y_2) P(x_3 | y_3) \operatorname{score}_2(y_2)$$

$$\vdots$$

$$= \max_{y_3, \dots, y_n} \operatorname{score}_n(y_n)$$

Abstract away the score for all decisions till here into score slide credit: Vivek Srikumar

$$P(x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n) = P(y_1) \prod_{i=1}^{n-1} P(y_{i+1}|y_i) \prod_{i=1}^{n} P(x_i|y_i)$$

$$\max_{y_1, y_2, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \cdots P(y_2 | y_1) P(x_2 | y_2) P(y_1) P(x_1 | y_1)
= \max_{y_2, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \cdots \max_{y_1} P(y_2 | y_1) P(x_2 | y_2) P(y_1) P(x_1 | y_1)
= \max_{y_2, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \cdots \max_{y_1} P(y_2 | y_1) P(x_2 | y_2) \frac{1}{y_2} \frac{$$

$$= \max_{y_n} \operatorname{score}_n(y_n)$$

$$score_1(s) = P(s)P(x_1|s)$$

$$\frac{\text{score}_i(s) = \max_{y_{i-1}} P(s|y_{i-1}) P(x_i|s) \frac{\text{score}_{i-1}(y_{i-1})}{\text{slide credit: Vivek Srikumar}}$$

1. Initial: For each state s, calculate

$$score_1(s) = P(s)P(x_1|s) = \pi_s B_{x_1,s}$$

2. Recurrence: For i = 2 to n, for every state s, calculate

$$score_{i}(s) = \max_{y_{i-1}} P(s|y_{i-1}) P(x_{i}|s) score_{i-1}(y_{i-1})
= \max_{y_{i-1}} A_{y_{i-1},s} B_{s,x_{i}} score_{i-1}(y_{i-1})
y_{i-1}$$

3. Final state: calculate

$$\max_{\mathbf{y}} P(\mathbf{y}, \mathbf{x} | \pi, A, B) = \max_{s} \operatorname{score}_{n}(s)$$

π: Initial probabilities

A: Transitions

B: Emissions

This only calculates the max. To get final answer (argmax),

- keep track of which state corresponds to the max at each step
- build the answer using these back pointers

In addition to finding the best path, we may want to compute marginal probabilities of paths $P(y_i=s|\mathbf{x})$

$$P(y_i = s | \mathbf{x}) = \sum_{y_1, \dots, y_{i-1}, y_{i+1}, \dots, y_n} P(\mathbf{y} | \mathbf{x})$$

ullet What did Viterbi compute? $P(\mathbf{y}_{\max}|\mathbf{x}) = \max_{y_1,...,y_n} P(\mathbf{y}|\mathbf{x})$

 Can compute marginals with dynamic programming as well using an algorithm called forward-backward

$$P(y_3 = 2|\mathbf{x}) =$$

sum of all paths through state 2 at time 3 sum of all paths

$$P(y_3 = 2|\mathbf{x}) =$$

sum of all paths through state 2 at time 3 sum of all paths

Easiest and most flexible to do one pass to compute and one to compute

► Initial:

$$\alpha_1(s) = P(s)P(x_1|s)$$

Recurrence:

$$\alpha_t(s_t) = \sum_{s_{t-1}} \alpha_{t-1}(s_{t-1}) P(s_t|s_{t-1}) P(x_t|s_t)$$

- Same as Viterbi but summing instead of maxing!
- These quantities get very small!
 Store everything as log probabilities

Initial:

$$\beta_n(s) = 1$$

Recurrence:

$$\beta_t(s_t) = \sum_{s_{t+1}} \beta_{t+1}(s_{t+1}) P(s_{t+1}|s_t) P(x_{t+1}|s_{t+1})$$

Big differences: count emission for the *next* timestep (not current one)

$$\alpha_1(s) = P(s)P(x_1|s)$$

$$\alpha_t(s_t) = \sum_{s_{t-1}} \alpha_{t-1}(s_{t-1}) P(s_t|s_{t-1}) P(x_t|s_t)$$

$$\beta_n(s) = 1$$

$$\beta_t(s_t) = \sum_{s_{t+1}} \beta_{t+1}(s_{t+1}) P(s_{t+1}|s_t) P(x_{t+1}|s_{t+1})$$

$$P(s_3 = 2|\mathbf{x}) = \frac{\alpha_3(2)\beta_3(2)}{\sum_i \alpha_3(i)\beta_3(i)}$$

- Does this explain why beta is what it is?
- What is the denominator here? $P(\mathbf{x})$

HMM POS Tagging

- ▶ Baseline: assign each word its most frequent tag: ~90% accuracy
- ► Trigram HMM: ~95% accuracy / 55% on unknown words

Slide credit: Dan Klein

Trigram Taggers

NNP VBZ NN NNS CD NN

Fed raises interest rates 0.5 percent

- Trigram model: $y_1 = (<S>, NNP), y_2 = (NNP, VBZ), ...$
- ▶ P((VBZ, NN) | (NNP, VBZ)) more context! Noun-verb-noun S-V-O
- ▶ Tradeoff between model capacity and data size trigrams are a "sweet spot" for POS tagging

HMM POS Tagging

- ▶ Baseline: assign each word its most frequent tag: ~90% accuracy
- ► Trigram HMM: ~95% accuracy / 55% on unknown words
- ▶ TnT tagger (Brants 1998, tuned HMM): 96.2% accuracy / 86.0% on unks
- State-of-the-art (BiLSTM-CRFs): 97.5% / 89%+

Slide credit: Dan Klein

Errors

	JJ	NN	NNP	NNPS	RB	RP	IN	VB	VBD	VBN	VBP	Total
JJ	0 (177	56	0	61	2	5	10	15	108	0	488
NN	244	0	103	0	12	1	1	29	5	6	19	525
NNP	107	106	0	132	5	0	7	5	I	2	0	427
NNPS	1	0	110	0	0	0	0	0	0	0	0	142
RB	72	21	7	0	0	16	138	1	0	0	0	295
RP	0	0	0	0	39	0	65	0	0	0	0	104
IN	11	0	1	0	169	103	0	1	0	0	0	323
VB	17	64	9	0	2	0	1	0	4	7	85	189
VBD	10	5	3	0	0	0	0	3	0	143	2	166
VBN	101	3	3	0	0	0	0	3	108	0	1	221
VBP	5	34	3	1	1	0	2	49	6	3	0	104
Total	626	536	348	144	317	122	279	102	140	269	108	3651

JJ/NN NN official knowledge

VBD RP/IN DT NN made up the story

RB VBD/VBN NNS recently sold shares

(NN NN: tax cut, art gallery, ...)

Slide credit: Dan Klein / Toutanova + Manning (2000)

Remaining Errors

- Lexicon gap (word not seen with that tag in training) 4.5%
- ► Unknown word: 4.5%
- Could get right: 16% (many of these involve parsing!)
- Difficult linguistics: 20%

```
VBD / VBP? (past or present?)

They set up absurd situations, detached from reality
```

Underspecified / unclear, gold standard inconsistent / wrong: 58%

adjective or verbal participle? JJ / VBN? a \$ 10 million fourth-quarter charge against discontinued operations

Manning 2011 "Part-of-Speech Tagging from 97% to 100%: Is It Time for Some Linguistics?"

Other Languages

Language	CRF+	CRF	BTS	BTS*	
Bulgarian	97.97	97.00	97.84	97.02	
Czech	98.38	98.00	98.50	98.44	
Danish	95.93	95.06	95.52	92.45	
German	93.08	91.99	92.87	92.34	
Greek	97.72	97.21	97.39	96.64	
English	95.11	94.51	93.87	94.00	
Spanish	96.08	95.03	95.80	95.26	
Farsi	96.59	96.25	96.82	96.76	
Finnish	94.34	92.82	95.48	96.05	
French	96.00	95.93	95.75	95.17	
Indonesian	92.84	92.71	92.85	91.03	
Italian	97.70	97.61	97.56	97.40	
Swedish	96.81	96.15	95.57	93.17	
AVERAGE	96.04	95.41	95.85	95.06	

▶ Universal POS tagset (~12 tags), cross-lingual model works as well as tuned CRF using external resources

Next Time

► CRFs: feature-based discriminative models

Structured SVM for sequences

Named entity recognition