CS388: Natural Language Processing
Lecture 4: Sequence Models |

Greg Durrett

Parts of this lecture adapted from Dan Klein, UC Berkele
and Vivek Srikumar, University of Utah

Administrivia
» Mini 1 due today

» Project 1 out today, due September 27
» Viterbi algorithm, CRF NER system, extension

» Extension should be substantial: don’t just try one additional feature
(see syllabus/spec for discussion, samples on website)

» This class will cover what you need to get started on it, the next class
will cover everything you need to complete it

Recall: Multiclass Classification

exp (w' f(z,y))

» Logistic regression: p(y|) = ey exp (W f(z,y))
y'ey ’

Gradient (unregularized):

0
w.‘c(xj’y;'k) = fi(xjw;) —Ey[fi(z;, )]

» SVM: defined by quadratic program (minimization, so gradients are flipped)
Loss-augmented decode

& =maxw' f(ug,y) + Ly, u5) — w f(;0))

Subgradient (unregularized) on jth example = f;(Z;, Ymax) — fi(x;, y;)

Recall: Optimization

» Stochastic gradient *ascent* _ iﬁ
ow

1

p gt,i
\/ €+ ZT:I 972',1

» Large batches (>50 examples): can parallelize within batch

W — W+ oy,

» Adagrad: w; — Wi +a

» SGD/AdaGrad have a batch size parameter

» ...but bigger batches often means more epochs required because
you make fewer parameter updates

» Shuffling: online methods are sensitive to dataset order, shuffling helps!




This Lecture

» Sequence modeling
» HMMs for POS tagging

» HMM parameter estimation

» Viterbi, forward-backward

Linguistic Structures

» Language is tree-structured

AA\/\

| ate the spaghetti with chopsticks

| ate the spaghetti with meatballs

» Understanding syntax fundamentally requires trees — the sentences
have the same shallow analysis

PRP VBZ DT NN IN NNS PRP VBZ DT NN IN NNS
| ate the spaghetti with chopsticks | ate the spaghetti with meatballs

Linguistic Structures

» Language is sequentially structured: interpreted in an online way
8f]

“Put the apple on the towe! in the box." “Put the apple on the towel in the box”
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Tanenhaus et al. (1995)

POS Tagging

» What tags are out there?

Ghana s ambassador should have set up the big meeting in DC yesterday .




POS Tagging

Open class (lexical) words
Nouns Verbs ‘ Adjectives  yellow ‘
Proper Common Main ’ Adverbs  slowly ‘
1BM cat / cats see
Italy snow registered Numbers more
122,312
Closed class (functional) - one
Auxiliary
‘ Determiners the some ‘ can ‘ Prepositions  to with ‘
had
‘Conjunctions and or ‘ ‘Particles off up ‘
’ Pronouns he its ‘ ... more

Slide credit: Dan Klei

POS Tagging

VBD VB VBD
VBN VBZ VBP VBZ VBN VBZ yBp VBZ
NNP NNS NN  NNS CD NN NNP NNS NN  NNS CD NN

Fed raises interest rates 0.5 percent Fed raises interest rates 0.5 percent

| hereby
increase interest
rates 0.5%

I’'m 0.5% interested
in the Fed’s raises!
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» Other paths are also plausible but even more semantically weird...

» What governs the correct choice? Word + context

» Word identity: most words have <=2 tags, many have one (percent, the)
» Context: nouns start sentences, nouns follow verbs, etc.

What is this good for?

» Text-to-speech: record, lead
» Preprocessing step for syntactic parsers
» Domain-independent disambiguation for other tasks

» (Very) shallow information extraction

Sequence Models

»Input x = (21,...,2,) Output'y = (y1,...,¥n)
» POS tagging: x is a sequence of words, y is a sequence of tags

» Today: generative models P(x, y); discriminative models next time




Hidden Markov Models

» Input x = (21, ...,2,) Output y = (y1,..., Yn)

» Model the sequence of y as a Markov process (dynamics model)

» Markov property: future is conditionally independent of the past given
the present

P(ysly1,y2) = P(ysly2)

» Lots of mathematical theory about how Markov chains behave

» If y are tags, this roughly corresponds to assuming that the next tag
only depends on the current tag, not anything before

Hidden Markov Models

» Input x = (21,...,7,)  Outputy = (Y1, ---,Yn)

T

» Observation (x) depends
only on current state (y)

» Multinomials: tag x tag
transitions, tag x word

P(y7 ) yl H P yl|yz 1) (Q;Z|yl) emissions
=2 =1 > . . . .
N = - P(x|y)is a distribution over
Initial Transition Emission all words in the vocabulary

— not a distribution over
features (but could be!)

distribution probabilities probabilities

Transitions in POS Tagging

n
» Dynamics model P(y;) H P(yilyi-1)
VBD VB =2
VBN VBZ yBpP VBZ

NNP NNS NN NNS CD NN
Fed raises interest rates 0.5 percent

» P(y1 = NNP)likely because start of sentence

>P(3/2 = VBZ|y1 = NNP) likely because verb often follows noun

» P(ys = NN|ys = VBZ) direct object follows verb, other verb rarely
follows past tense verb (main verbs can follow modals though!)

Estimating Transitions

NNP VBZ NN NNS CD NN
Fed raises interest rates 0.5 percent .

» Similar to Naive Bayes estimation: maximum likelihood solution =
normalized counts (with smoothing) read off supervised data

» P(tag | NN) = (0.5 ., 0.5 NNS)

» How to smooth?

» One method: smooth with unigram distribution over tags
P(tagltag_;) = (1 — \)P(tagltag_,) + AP(tag)

P = empirical distribution (read off from data)




Emissions in POS Tagging

NNP VBZ NN NNS CD NN
Fed raises interest rates 0.5 percent

» Emissions P(x | y) capture the distribution of words occurring with a
given tag

» P(word | NN) = (0.05 person, 0.04 official, 0.03 interest, 0.03 percent ...)

» When you compute the posterior for a given word’s tags, the distribution
favors tags that are more likely to generate that word

» How should we smooth this?

Inference in HMMs

» Input x = (21,...,2,) Output y = (y1, .-+, Yn)

() (=) @

Py, x)
Loy
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» Inference problem: argmax, P(y|x) = argmax,,
» Exponentially many possible y here!
» Solution: dynamic programming (possible because of Markov structure!)

» Many neural sequence models depend on entire previous tag
sequence, need to use approximations like beam search

n—1

n
P(y: HP yl+l|yz)HP(-'L'i|yi)
i=1

i=1

P(a"l’w?"" yTnsY1,Y2, " Yn )

max  P(yn[yn—1)P(@n|yn) - - - P(y2|y1) P (2]y2) P(y1) P(z1]y1)

Y1,Y2,"" ) Yn

Transition probabilities Emission probabilities Initial probability
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slide credit: Vivek Srikuma

n—1

P(y) [ [ Pwisalv) [ [ P(ailys)
i=1

i=1

P(II’I27'“ s TnsY1,Y2, " Yn )

max  P(yn[yn—1)P(@nlyn) - -+ P(y2ly1) P(z2]y2) P(y1) P(z1|y1)

Y1,Y2," " Yn -~
= max P(Yn|yn—1)P(Tnlyn) - rma.X\,P(y2|y1) (z2|y2) P(y1) P(x1|y1)
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The only terms that depend on y,

slide credit: Vivek Srikuma




n—1 n—1 n
P(z1,22, T, Y1,Y2, P(y1) H P(yit1]y:) HP(CMZ/Z x P(21,32,"+ ,Tn,Y1,92, - Yn) = P(y1) [ [ P@iralys) [ ] Plailys)
=1 i=1
,, max P(Yn|yn—1)P(2n|yn) - - - P(y2|y1) P(22|y2) P(y1) P(z1|y1) yomax  P(ynlyn-1)P(znlyn) - Plyelys) P(w2ly2) P(y1) P(1ly1)
= X P(Yn|yn—1)P(@nlyn) - --max P(ys[yn) P(ws]y2) P(y1) P(21]y1) = nax P(yn[yn—1)P(@nlyn) - - max Plyalyr) P(z2|y2) P(y1) P(1y1)
2 1
= max P(yn|yn 1)P(zn|yn) - - - max P(y2|y1) P(z2|y2)scorei (y1) =, fnax P(ynlyn—1)P(@nlyn) -« IILaXP(yg\yl)P(zz\yz)scorel(yl)
Y2, (21 2, 1
. = P(Yn|Yn-1)P(Tn|yn P P P J2 g
» Best (partial) score for a sequence 422 Plynlyn-1)P(enlyn) - max (y3‘y:3 (@s]ys) max (yzL’\y1) (leyZ)qcorel(yl)
Abstract away the score for all ending in state s R \\ ,
decisions till here into score Tt~ N,
score1(s) = P(s)P(z1]s) ~y

slide credit: Vivek Srikuma

Only terms that depend ony,

slide credit: Vivek Srikuman

P ) y T ydny i [ =P P 2 i P 1194 * 1 1 H
(zl T2 Tn,Y1,Y2 (yl)H y+1|y)ll_[1 Zly Vlterbl Algorlthm
o 08x P(ynlyn—1)P(@nlyn) -+ P(y2lys) P(@2ly2) P(y1) P(@1]y1)

= Joax P(yn|yn—1)P(@nlyn) - - -rr;axP(y2|y1)P(z2\y2)P( y1)P(z1|y1) =1 » “Think about” all possible immediate

: ' rior state values. Everything before
= max P(yalyn—1)P@alyn) - max Plyalys) P(walys)scores (y1) P yehing

Y2, Wn u i=2 that has already been accounted for by
= max P(yn|yn—1)P(Tnlyn) - - - max P(ys|y2) P(zs]ys) max P(yaly1) P(zz]yz)score: (1) earlier stages.
= Jnax P(yn[yn-1)P(Znlyn) - max P(yslyz) P(zslys)scores (y2) s

score;(s maxP (s|yi=1)P(zs|s)score;—1(yi—1)
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Abstract away the score for all decisions till here into score slide credit: Vivek Srikuma

slide credit: Dan Klein
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P(y) [ ] Pisal) H (ilys)

=1
P(y2|y1) P(w2|y2) P(y1) P(z 1|y1)
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Abstract away the score for all decisions till here into score slide credit: Vivek Srikumar
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max P(yn|yn—1)P(@n|yn) - - - P(y2|y1) P(z2|y2) P(y1) P(z1]y1)

Y1,Y2,°
=, max P(yn[yn—1)P(@n|yn) - - max P(yalyr) P(z2ly2) P(y1) P(z1]y1)
= max P(yn|yn—1)P(Znlyn) - max P(yzly) P(xzlyz)scores (y1)
:ys)ﬂ}??;np( |yn_1)P(xn|yn)~-~max (ysly2) P(z3]ys) axP(y2|y1) (w2]y2)score (y1
= nax P(yn|yn—1)P(Znlyn) - max P(yslyz) P(zslys)score: (y2)

= maxscore,, (Yn)
Yn

scoreq (s) = P(s)P(z1]s)

score; (s maxP P(x;|s)score; -
1( ) ( ‘yz 1) ( l‘ ) T 1(ylslldg credit: VlvekSrlkumar

1. Initial: For each state s, calculate

score; (s) = P(s)P(z1|s) = ms By, s

2. Recurrence: Fori=2to n, for every state s, calculate

score;(s) = max P(s|y;—1)P(zi|s)score;—1(yi—1)
Yi—1

= rgflax Ay, | sBs z,score;_1(yi—1)
i—1

3. Final state: calculate 1T: Initial probabilities

A: Transitions
max P(y,x|r, A, B) = max scorey,(s) -
This only calculates the max. To get final answer (argmax),

* keep track of which state corresponds to the max at each step

* build the answer using these back pointers

slide credit: Vivek Srikuma

Forward-Backward Algorithm

» In addition to finding the best path, we may want to compute
marginal probabilities of paths P(yi = s|x)

Py = slx) = > P(y[x)

Y15--3Yi—1Yit15-3Yn

» What did Viterbi compute? P(ymax|X) = max P(y|x)

Y1, Yn

» Can compute marginals with dynamic programming as well using an
algorithm called forward-backward




Forward-Backward Algorithm

P(ys =2[x) =

sum of all paths through state 2 at time 3

sum of all paths

Forward-Backward Algorithm

, Plys =2[x) =

sum of all paths through state 2 at time 3
) sum of all paths
)

| ]

» Easiest and most flexible to do one

pass to compute and one to

compute

slide credit: Dan Klein

Forward-Backward Algorithm

)
—o|

f

» Initial:

a1(s) = P(s)P(x1]s)

A
» Recurrence:

St—1

» Same as Viterbi but summing
instead of maxing!

®
®
o= S Ptaln PGl
L
@

» These quantities get very small!

t=2 t=3 t=4 t=5

Store everything as log probabilities

Forward-Backward Algorithm

» Initial:

Bn(s) =1
» Recurrence:

Bi(st) = Y Bpa(st41)P(se41lst) P(@rgr|sea

St41

» Big differences: count emission for
the next timestep (not current one)

o v v w 9




Forward-Backward Algorithm

)

a1(s) = P(s)P(z1]s)
Qt(st) = Z atfl(stfl)P(5t|5t71)P($t‘St)

St—1

Bn(s) =1
Bils) = Y Brra(seg1) P(sisls) P(wesasii
| 3(2)B5(2)
P =2 = =
s = 2 = 5 @Bl

» Does this explain why beta is what it is?

» What is the denominator here? P(x)

HMM POS Tagging

» Baseline: assign each word its most frequent tag: ~90% accuracy

» Trigram HMM: ~95% accuracy / 55% on unknown words

Slide credit: Dan Klein

NNP VBZ
Fed raises interest rates 0.5 percent

NN

Trigram Taggers

NNS CD NN

» Trigram model: y1 = (<S>, NNP), y> = (NNP, VBZ), ...
» P((VBZ, NN) | (NNP, VBZ)) — more context! Noun-verb-noun S-V-O

» Tradeoff between model capacity and data size — trigrams are a
“sweet spot” for POS tagging

HMM POS Tagging

» Baseline: assign each word its most frequent tag: ~90% accuracy

» Trigram HMM: ~95% accuracy / 55% on unknown words

» TnT tagger (Brants 1998, tuned HMM): 96.2% accuracy / 86.0% on unks

» State-of-the-art (BiLSTM-CRFs): 97.5% / 89%+

Slide credit: Dan Klein




Errors

] NNP NNPS RB RP IN VB VBD VBN VBP Toml
n 0 56 0 61 2 5 10 15 108 0 488
NN 244 0 103 0 12 1 1 29 5 6 19 55
NNP 107 106 O 132 5 0 7 5 1 2 0 427
NNPS 1 0 110 0 0 0 0 0 ©0 0 0 14
RB 72 21 7 0 0 1613 1 0 0 0 25
RP 0o 0 o 0 39 0 _6 0 ©0 0 0 104
N noo0 1 0 169 o 1 0o 0o 0 323
VB 17 6 9 0 2 0 1 0 4 85 189
VBD 10 5 3 o 0 0 0 3 0 2 166
VBN 101 3 3 0 0 0 o0 3 108 0 1 221
VBP 5 34 3 1 1 0 2 4 6 3 0 104
Total 626 536 348 144 317 122 279 102 140 269 108 3651

JJ/NN NN
official knowledge

VBD RP/IN DT NN
made up the story

RB VBD/VBN NNS
recently sold shares
(NN NN: tax cut, art gallery, ...)

Slide credit: Dan Klein / Toutanova + Manning (2000)

Remaining Errors

» Lexicon gap (word not seen with that tag in training) 4.5%
» Unknown word: 4.5%

» Could get right: 16% (many of these involve parsing!)

» Difficult linguistics: 20%

VBD / VBP? (past or present?)
They set  up absurd situations, detached from reality

» Underspecified / unclear, gold standard inconsistent / wrong: 58%

adjective or verbal participle? JJ / VBN?
a S 10 million fourth-quarter charge against discontinued operations

Manning 2011 “Part-of-Speech Tagging from 97% to 100%: Is It Time for Some Linguistics?”

Other Languages

:?»ulg:riz;l (9:;{5;- 9C7Rol:) 9B7TSS4 ];’71‘3: I()scar Romero was born in El Salvador.I Gillick et al. 2016
Czech 9838 98.00 | 98.50 98.44

Danish 9593 95.06 | 9552 92.45 SEGMENT o s ¢
German 93.08 91.99 | 92.87 92.34

Greek 9772 97.21|97.39 96.64 Oxc3 Ox83 Ox73  0x63
English 95.11 9451 | 93.87 94.00

Spanish 96.08 95.03 | 95.80 95.26 BTS L0000
Farsi 9659 96.25 | 96.82 96.76

Finnish 9434 9282|9548 96.05

French 96.00 9593 | 95.75 95.17 $ .
Indonesian | 92.84 92.71 | 92.85 91.03

Italian 97.70 97.61 | 97.56 97.40 SPANS

Swedish 96.81 96.15 | 95.57 93.17 : |

AVERAGE | 96.04| 95.41 | 95.85 | 95.06 [SO, L13, PER] [S26, L11,LOC]

» Universal POS tagset (~12 tags), cross-lingual model works as well as
tuned CRF using external resources

Next Time

» CRFs: feature-based discriminative models

» Structured SVM for sequences

» Named entity recognition




