
CS388:	Natural	Language	Processing	
Lecture	5:	Sequence	Models	II

Greg	Durrett

Administrivia

‣ Project	1	is	out,	sample	writeups	on	website

‣Mini	1	graded	by	next	lecture

Recall:	HMMs

‣ Inference	problem:

‣ Viterbi:

‣ Input	
x = (x1, ..., xn) y = (y1, ..., yn)Output	

y1 y2 yn

x1 x2 xn

…
P (y,x) = P (y1)

nY

i=2

P (yi|yi�1)
nY

i=1

P (xi|yi)

argmaxyP (y|x) = argmaxy
P (y,x)

P (x)

‣ Training:	maximum	likelihood	esQmaQon	(with	smoothing)

scorei(s) = max

yi�1

P (s|yi�1)P (xi|s)scorei�1(yi�1)

This	Lecture

‣ (if	Qme)	Beam	search	

‣ CRFs:	model	(+features	for	NER),	inference,	learning

‣Named	enQty	recogniQon	(NER)



Named	EnQty	RecogniQon

Barack	Obama	will	travel	to	Hangzhou	today	for	the	G20	mee=ng	.

PERSON LOC ORG

B-PER I-PER O O O B-LOC B-ORGO O O O O

‣ BIO	tagset:	begin,	inside,	outside	

‣ Why	might	an	HMM	not	do	so	well	here?

‣ Lots	of	O’s,	so	tags	aren’t	as	informaQve	about	context

‣ Sequence	of	tags	—	should	we	use	an	HMM?

‣ Insufficient	features/capacity	with	mulQnomials	(especially	for	unks)

CRFs

CondiQonal	Random	Fields

‣ HMMs	are	expressible	as	Bayes	nets	(factor	graphs)

y1 y2 yn

x1 x2 xn

…

‣ This	reflects	the	following	decomposiQon:

‣ Locally	normalized	model:	each	factor	is	a	probability	distribuQon	that	
normalizes

P (y,x) = P (y1)P (x1|y1)P (y2|y1)P (x2|y2) . . .

CondiQonal	Random	Fields

any	real-valued	scoring	funcQon	of	its	arguments

‣How	do	we	max	over	y?	Intractable	in	general	—	can	we	fix	this?

‣ CRFs:	discriminaQve	models	with	the	following	globally-normalized	form:

‣ HMMs:

‣ Naive	Bayes	:	logisQc	regression	::	HMMs	:	CRFs 
local	vs.	global	normalizaQon	<->	generaQve	vs.	discriminaQve

P (y|x) = 1

Z

Y

k

exp(�k(x,y))

normalizer

P (y,x) = P (y1)P (x1|y1)P (y2|y1)P (x2|y2) . . .

‣ Locally	normalized	discriminaQve	models	do	exist	(MEMMs)



SequenQal	CRFs

y1 y2 yn

x1 x2 xn

…

P (y|x) /
Y

k

exp(�k(x,y))

y1 y2 yn

x1 x2 xn

…
�t

�e

�
o

P (y|x) / exp(�

o

(y1))

nY

i=2

exp(�

t

(y

i�1, yi))

nY

i=1

exp(�

e

(x

i

, y

i

))

‣ HMMs:

‣ CRFs:

P (y,x) = P (y1)P (x1|y1)P (y2|y1)P (x2|y2) . . .

SequenQal	CRFs

y1 y2 yn

x1 x2 xn

…
�t

�e

�
o y1 y2 yn…

�t

�e

�
o

x

P (y|x) / exp(�

o

(y1))

nY

i=2

exp(�

t

(y

i�1, yi))

nY

i=1

exp(�

e

(x

i

, y

i

))

‣ We	condiQon	on	x,	so	every	factor	can	
depend	on	all	of	x	(including	transiQons,	
but	we	won’t	do	this)

nY

i=1

exp(�e(yi, i,x))

‣ y	can’t	depend	arbitrarily	on	x	in	a	generaQve	model
token	index	—	lets	us	
look	at	current	word

SequenQal	CRFs

‣ NotaQon:	omit	x	from	the	factor	graph	enQrely	(implicit)

y1 y2 yn…

�t

�e

�
o

x

y1 y2 yn…
�t

�e

�
o

‣ Don’t	include	iniQal	distribuQon,	can	bake	into	other	factors

P (y|x) = 1

Z

nY

i=2

exp(�t(yi�1, yi))
nY

i=1

exp(�e(yi, i,x))

SequenQal	CRFs:

Feature	FuncQons

y1 y2 yn…

�e

�t

‣ Phis	can	be	almost	anything!	Here	we	use	linear	funcQons	of	sparse	features

‣ Looks	like	our	single	weight	vector	mulQclass	logisQc	regression	model

�t(yi�1, yi) = w>ft(yi�1, yi)

P (y|x) / expw>

"
nX

i=2

ft(yi�1, yi) +
nX

i=1

fe(yi, i,x)

#
�e(yi, i,x) = w>fe(yi, i,x)

P (y|x) = 1

Z

nY

i=2

exp(�t(yi�1, yi))
nY

i=1

exp(�e(yi, i,x))



Basic	Features	for	NER

Barack	Obama	will	travel	to		Hangzhou		today	for	the	G20	mee=ng	.

O						B-LOC									O		

TransiQons:

Emissions: Ind[B-LOC	&	Current	word	=	Hangzhou]
Ind[B-LOC	&	Prev	word	=	to]

ft(yi�1, yi) = Ind[yi�1 & yi]

fe(y6, 6,x) =

P (y|x) / expw>

"
nX

i=2

ft(yi�1, yi) +
nX

i=1

fe(yi, i,x)

#

=	Ind[O	—	B-LOC]

Features	for	NER

Leicestershire		is	a	nice	place	to	visit…

I	took	a	vaca=on	to	Boston

Apple	released	a	new	version…

According	to	the	New	York	Times…

ORG

ORG

LOC

LOC

Texas	governor	Greg	AbboI	said

Leonardo	DiCaprio	won	an	award…

PER

PER

LOC

�e(yi, i,x)

Features	for	NER

‣ Context	features	(can’t	use	in	HMM!)	
‣ Words	before/ajer	
‣ Tags	before/ajer

‣ Word	features	(can	use	in	HMM)	
‣ CapitalizaQon	
‣ Word	shape	
‣ Prefixes/suffixes	
‣ Lexical	indicators

‣ Gazekeers
‣ Word	clusters

Leicestershire

Boston

Apple	released	a	new	version…

According	to	the	New	York	Times…

CRFs	Outline

‣Model: P (y|x) = 1

Z

nY

i=2

exp(�t(yi�1, yi))
nY

i=1

exp(�e(yi, i,x))

‣ Inference

‣ Learning

P (y|x) / expw>

"
nX

i=2

ft(yi�1, yi) +
nX

i=1

fe(yi, i,x)

#



CompuQng	(arg)maxes

y1 y2 yn…

�e

�t

‣ 																													:	can	use	Viterbi	exactly	as	in	HMM	case

‣ 																																	and																													play	the	role	of	the	Ps	now,	
same	dynamic	program
exp(�t(yi�1, yi)) exp(�e(yi, i,x))

P (y|x) = 1

Z

nY

i=2

exp(�t(yi�1, yi))
nY

i=1

exp(�e(yi, i,x))

argmaxyP (y|x)

{max

y1,...,yn

e�t(yn�1,yn)e�e(yn,n,x) · · · e�e(y2,2,x)e�t(y1,y2)e�e(y1,1,x)

= max

y2,...,yn

e�t(yn�1,yn)e�e(yn,n,x) · · · e�e(y2,2,x)
max

y1

e�t(y1,y2)e�e(y1,1,x)

= max

y3,...,yn

e�t(yn�1,yn)e�e(yn,n,x) · · ·max

y2

e�t(y2,y3)e�e(y2,2,x)
max

y1

e�t(y1,y2)
score1(y1){

Inference	in	General	CRFs

y1 y2 yn…

�e

�t

‣ Can	do	inference	in	any	tree-structured	CRF

‣Max-product	algorithm:	generalizaQon	of	Viterbi	to	arbitrary	tree-
structured	graphs	(sum-product	is	generalizaQon	of	forward-backward)

CRFs	Outline

‣Model: P (y|x) = 1

Z

nY

i=2

exp(�t(yi�1, yi))
nY

i=1

exp(�e(yi, i,x))

‣ Inference:	argmax	P(y|x)	from	Viterbi

‣ Learning

P (y|x) / expw>

"
nX

i=2

ft(yi�1, yi) +
nX

i=1

fe(yi, i,x)

#

Training	CRFs

‣ Gradient	is	completely	analogous	to	logisQc	regression:

P (y|x) / expw>

"
nX

i=2

ft(yi�1, yi) +
nX

i=1

fe(yi, i,x)

#

P (y|x) / expw

>
f(x, y)

‣ LogisQc	regression:	

‣ Maximize L(y⇤,x) = logP (y

⇤|x)

intractable!

@

@w
L(y⇤,x) =

nX

i=2

ft(y
⇤
i�1, y

⇤
i ) +

nX

i=1

fe(y
⇤
i , i,x)

�Ey

"
nX

i=2

ft(yi�1, yi) +
nX

i=1

fe(yi, i,x)

#



Training	CRFs

‣ Let’s	focus	on	emission	feature	expectaQon

@

@w
L(y⇤,x) =

nX

i=2

ft(y
⇤
i�1, y

⇤
i ) +

nX

i=1

fe(y
⇤
i , i,x)

�Ey

"
nX

i=2

ft(yi�1, yi) +
nX

i=1

fe(yi, i,x)

#

Ey

"
nX

i=1

fe(yi, i,x)

#
=

X

y2Y
P (y|x)

"
nX

i=1

fe(yi, i,x)

#
=

nX

i=1

X

y2Y
P (y|x)fe(yi, i,x)

=
nX

i=1

X

s

P (yi = s|x)fe(s, i,x)

CompuQng	Marginals

y1 y2 yn…

�e

�t

P (y|x) = 1

Z

nY

i=2

exp(�t(yi�1, yi))
nY

i=1

exp(�e(yi, i,x))

Z =

X

y

nY

i=2

exp(�t(yi�1, yi))
nY

i=1

exp(�e(yi, i,x))

‣ For	both	HMMs	and	CRFs:

‣ Normalizing	constant

P (yi = s|x) = forwardi(s)backwardi(s)P
s0 forwardi(s

0
)backwardi(s0)

Z	for	CRFs,	P(x)	
for	HMMs

‣ Analogous	to	P(x)	for	HMMs

Posteriors	vs.	ProbabiliQes

P (yi = s|x) = forwardi(s)backwardi(s)P
s0 forwardi(s

0
)backwardi(s0)

‣ Posterior	is	derived	from	the	parameters	and	the	data	(condiQoned	on	x!)

HMM

CRF

Model	parameter	(usually	
mulQnomial	distribuQon)

Inferred	quanQty	from	
forward-backward

Inferred	quanQty	from	
forward-backward

Undefined	(model	is	by	
definiQon	condiQoned	on	x)

P (xi|yi), P (yi|yi�1) P (yi|x), P (yi�1, yi|x)

Training	CRFs

‣ TransiQon	features:	need	to	compute

‣…but	you	can	build	a	preky	good	system	without	transiQon	features

P (yi = s1, yi+1 = s2|x)
using	forward-backward	as	well

‣ For	emission	features:

gold	features	—	expected	features	under	model

@

@w
L(y⇤,x) =

nX

i=1

fe(y
⇤
i , i,x)�

nX

i=1

X

s

P (yi = s|x)fe(s, i,x)



CRFs	Outline

‣Model: P (y|x) = 1

Z

nY

i=2

exp(�t(yi�1, yi))
nY

i=1

exp(�e(yi, i,x))

‣ Inference:	argmax	P(y|x)	from	Viterbi

‣ Learning:	run	forward-backward	to	compute	posterior	probabiliQes;	then

P (y|x) / expw>

"
nX

i=2

ft(yi�1, yi) +
nX

i=1

fe(yi, i,x)

#

@

@w
L(y⇤,x) =

nX

i=1

fe(y
⇤
i , i,x)�

nX

i=1

X

s

P (yi = s|x)fe(s, i,x)

Pseudocode

for	each	epoch

for	each	example

extract	features	on	each	emission	and	transiQon	(look	up	in	cache)

compute	marginal	probabiliQes	with	forward-backward

compute	potenQals	phi	based	on	features	+	weights

accumulate	gradient	over	all	emissions	and	transiQons

ImplementaQon	Tips	for	CRFs
‣ Caching	is	your	friend!	Cache	feature	vectors	especially

‣ Try	to	reduce	redundant	computaQon,	e.g.	if	you	compute	both	the	
gradient	and	the	objecQve	value,	don’t	rerun	the	dynamic	program

‣ If	things	are	too	slow,	run	a	profiler	and	see	where	Qme	is	being	spent.	
Forward-backward	should	take	most	of	the	Qme

‣ Exploit	sparsity	in	feature	vectors	where	possible,	especially	in	feature	
vectors	and	gradients

‣ Do	all	dynamic	program	computaQon	in	log	space	to	avoid	underflow

Debugging	Tips	for	CRFs
‣ Hard	to	know	whether	inference,	learning,	or	the	model	is	broken!

‣ Compute	the	objecQve	—	is	opQmizaQon	working?

‣ Learning:	is	the	objecQve	going	down?	Can	you	fit	a	small	training	set?	
Are	you	applying	the	gradient	correctly?

‣ Inference:	check	gradient	computaQon	(most	likely	place	for	bugs)	
‣ Is																																													the	same	for	all	i?		
‣ Do	probabiliQes	normalize	correctly	+	look	“reasonable”?	(Nearly	
uniform	when	untrained,	then	slowly	converging	to	the	right	thing)

‣ If	objecQve	is	going	down	but	model	performance	is	bad:

‣ Inference:	check	performance	if	you	decode	the	training	set

X

s

forwardi(s)backwardi(s)



NER

NER

‣ CRF	with	lexical	features	can	get	around	85	F1	on	this	problem

‣ Other	pieces	of	informaQon	that	many	systems	capture

‣ World	knowledge:

The	delegaQon	met	the	president	at	the	airport,	Tanjug	said.

ORG?
PER?

Nonlocal	Features

The	delegaQon	met	the	president	at	the	airport,	Tanjug	said.

The	news	agency	Tanjug	reported	on	the	outcome	of	the	meeQng.

‣ More	complex	factor	graph	structures	can	let	you	capture	this,	or	just	
decode	sentences	in	order	and	use	features	on	previous	sentences

Finkel	and	Manning	(2008),	RaQnov	and	Roth	(2009)

Semi-Markov	Models

Barack	Obama	will	travel	to	Hangzhou	today	for	the	G20	mee=ng	.

‣ Chunk-level	predicQon	rather	than	token-level	BIO

‣ y	is	a	set	of	touching	spans	of	the	sentence

‣ Cons:	there’s	an	extra	factor	of	n	in	the	dynamic	programs

{ { { { { {

PER O LOC ORG OO

‣ Pros:	features	can	look	at	whole	span	at	once

Sarawagi	and	Cohen	(2004)



EvaluaQng	NER

‣ PredicQon	of	all	Os	sQll	gets	66%	accuracy	on	this	example!

Barack	Obama	will	travel	to	Hangzhou	today	for	the	G20	mee=ng	.

PERSON LOC ORG

B-PER I-PER O O O B-LOC B-ORGO O O O O

‣ What	we	really	want	to	know:	how	many	named	enQty	chunk	
predicQons	did	we	get	right?
‣ Precision:	of	the	ones	we	predicted,	how	many	are	right?

‣ Recall:	of	the	gold	named	enQQes,	how	many	did	we	find?

‣ F-measure:	harmonic	mean	of	these	two

How	well	do	NER	systems	do?

RaQnov	and	Roth	(2009)

Lample	et	al.	(2016)

BiLSTM-CRF	+	ELMo  
Peters	et	al.	(2018)

92.2

Beam	Search

Viterbi	Time	Complexity

Fed	raises	interest	rates	0.5	percent

VBD
VBN
NNP

VBZ
NNS

VB
VBP
NN

VBZ
NNS CD NN

‣ n	word	sentence,	s	tags	to	consider	—	what	is	the	Qme	complexity?

ta
gs

sentence

‣O(ns2)	—	s	is	~40	for	POS,	n	is	~20



Viterbi	Time	Complexity

‣Many	tags	are	totally	implausible

‣ Can	any	of	these	be:	
‣ Determiners?	
‣ PreposiQons?	
‣ AdjecQves?
‣ Features	quickly	eliminate	many	outcomes	from	consideraQon	—	don’t	
need	to	consider	these	going	forward

Fed	raises	interest	rates	0.5	percent

VBD
VBN
NNP

VBZ
NNS

VB
VBP
NN

VBZ
NNS CD NN

Beam	Search
‣ Maintain	a	beam	of	k	plausible	states	at	the	current	Qmestep

‣ Expand	all	states,	only	keep	k	top	hypotheses	at	new	Qmestep

Fed

VBD

VBN

NNP

raises

+1.2

+0.9

+0.7
NN +0.3

VBZ +1.2

VBZ -2.0
NNS-1.0

Not	expanded

… VBZ

DT

NNS

+1.2

-1.0

-5.3

…

…
PRP -5.8

Not	expanded

‣ Beam	size	of	k,	Qme	complexity

-2.0

O(nks	log(ks))

‣Maintain	priority	queue	
to	efficiently	add	things

How	good	is	beam	search?
‣ k=1:	greedy	search

‣ Choosing	beam	size:

‣ 2	is	usually	beker	than	1

‣ Usually	don’t	use	larger	than	50

‣ Depends	on	problem	structure

‣ If	beam	search	is	much	faster	than	compuQng	full	sums,	can	use	
structured	SVM	instead	of	CRFs,	but	we	won’t	discuss	that	here

Next	Time
‣ Neural	networks


