
CS388:	Natural	Language	Processing	
Lecture	6:	Neural	Networks

Greg	Durrett

Administrivia

‣Mini	1	graded,	posted	on	Canvas

‣ Project	1	due	in	9	days

‣ Xi	Ye	(88.0	F1),	Quang	Duong	(87.3	F1),	Uday	KusupaQ	(87.2	F1)  
6	students	in	the	86	range,	rest	are	85	or	below
‣ Test	F1s	<<	dev	F1
‣ Changing	thresholds	/	imbalanced	classificaQon

‣ POS/chunk	features

‣ Small	bug	fixed	in	BadNerModel	(no	impact	on	the	code	you	write)

‣ Someone	got	86.3	with	only	7	features	total,	classifier	is	a	dicQonary

This	Lecture

‣ Feedforward	neural	networks	+	backpropagaQon

‣Neural	network	basics

‣ ApplicaQons

‣Neural	network	history

‣ Beam	search:	in	a	few	lectures

‣ ImplemenQng	neural	networks	(if	Qme)

History:	NN	“dark	ages”
‣ Convnets:	applied	to	MNIST	by	LeCun	in	1998

‣ LSTMs:	Hochreiter	and	Schmidhuber	(1997)

‣Henderson	(2003):	neural	shic-reduce	parser,	not	SOTA

2008-2013:	A	glimmer	of	light…

‣ Collobert	and	Weston	2011:	“NLP	(almost)	from	scratch”

‣ Feedforward	neural	nets	induce	features	for	
sequenQal	CRFs	(“neural	CRF”)

‣ 2008	version	was	marred	by	bad	experiments,	
claimed	SOTA	but	wasn’t,	2011	version	Qed	SOTA

‣ Socher	2011-2014:	tree-structured	RNNs	working	okay

‣ Krizhevskey	et	al.	(2012):	AlexNet	for	vision

2014:	Stuff	starts	working

‣ Sutskever	et	al.	+	Bahdanau	et	al.:	seq2seq	for	neural	MT	(LSTMs	work	
for	NLP?)

‣ Kim	(2014)	+	Kalchbrenner	et	al.	(2014):	sentence	classificaQon	/	senQment	
(convnets	work	for	NLP?)

‣ 2015:	explosion	of	neural	nets	for	everything	under	the	sun

‣ Chen	and	Manning	transiQon-based	dependency	parser	(even	feedforward	
networks	work	well	for	NLP?)

Why	didn’t	they	work	before?
‣Datasets	too	small:	for	MT,	not	really	bener	unQl	you	have	1M+	parallel	
sentences	(and	really	need	a	lot	more)

‣Op,miza,on	not	well	understood:	good	iniQalizaQon,	per-feature	scaling	
+	momentum	(Adagrad	/	Adadelta	/	Adam)	work	best	out-of-the-box

‣ Regulariza,on:	dropout	is	preny	helpful

‣ Inputs:	need	word	representaQons	to	have	the	right	conQnuous	semanQcs

‣ Computers	not	big	enough:	can’t	run	for	enough	iteraQons

Neural	Net	Basics

Neural	Networks

‣How	can	we	do	nonlinear	classificaQon?	Kernels	are	too	slow…

‣Want	to	learn	intermediate	conjuncQve	features	of	the	input

argmaxyw
>
f(x, y)‣ Linear	classificaQon:

the	movie	was	not	all	that	good

I[contains	not	&	contains	good]

Neural	Networks:	XOR

x1

x2

x1 x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

x1, x2

(generally x = (x1, . . . , xm))

y

(generally y = (y1, . . . , yn))
y = x1 XOR x2

‣ Let’s	see	how	we	can	use	neural	nets 
to	learn	a	simple	nonlinear	funcQon

‣ Inputs

‣Output

Neural	Networks:	XOR

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1
“or”

y = a1x1 + a2x2 X
y = a1x1 + a2x2 + a3 tanh(x1 + x2)

(looks like action
potential in neuron)

Neural	Networks:	XOR
y = a1x1 + a2x2

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

X
y = a1x1 + a2x2 + a3 tanh(x1 + x2)

x2

x1

“or”
y = �x1 � x2 + 2 tanh(x1 + x2)

Neural	Networks:	XOR

x1

x2

0

1 -1

0

x2

x1

[not]

[good] y = �2x1 � x2 + 2 tanh(x1 + x2)

I

I

the	movie	was	not	all	that	good

Neural	Networks

Taken	from	hnp://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Warp
space

ShiftNonlinear
transformation

Linear model: y = w · x+ b

y = g(w · x+ b)

y = g(Wx+ b)

Neural	Networks

Taken	from	hnp://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linear	classifier Neural	network
…possible	because	
we	transformed	the	
space!

Deep	Neural	Networks

Adopted from Chris Dyer

}

output	of	first	layer

z = g(Vg(Wx+ b) + c)

z = g(Vy + c)

Input Second  
Layer

First	
Layer

“Feedforward”	computaQon	(not	
recurrent)

z = V(Wx+ b) + c

Check:	what	happens	if	no	nonlinearity?	
More	powerful	than	basic	linear	models?

Deep	Neural	Networks

Taken	from	hnp://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Feedforward	Networks,	
BackpropagaQon

LogisQc	Regression	with	NNs
P (y|x) = exp(w>f(x, y))P

y0 exp(w>f(x, y0))
‣ Single	scalar	probability

P (y|x) = softmax

�
[w>f(x, y)]y2Y

� ‣ Compute	scores	for	all	possible 
labels	at	once	(returns	vector)

softmax(p)i =
exp(pi)P
i0 exp(pi0)

‣ socmax:	exps	and	normalizes	a	
given	vector

P (y|x) = softmax(Wf(x)) ‣Weight	vector	per	class; 
W	is	[num	classes	x	num	feats]

P (y|x) = softmax(Wg(V f(x))) ‣Now	one	hidden	layer

Neural	Networks	for	ClassificaQon

V

n	features

d	hidden	units

d	x	n	matrix num_classes	x	d	
matrix

socmaxWf
(x
)

z

nonlinearity 
(tanh,	relu,	…)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))
num_classes	

probs

Training	Neural	Networks

‣ Maximize	log	likelihood	of	training	data

‣ i*:	index	of	the	gold	label

‣ ei:	1	in	the	ith	row,	zero	elsewhere.	Dot	by	this	=	select	ith	index

z = g(V f(x))P (y|x) = softmax(Wz)

L(x, i⇤) = Wz · ei⇤ � log

X

j

exp(Wz) · ej

L(x, i⇤) = logP (y = i⇤|x) = log (softmax(Wz) · ei⇤)

CompuQng	Gradients

‣ Gradient	with	respect	to	W

if	i	=	i*
zj � P (y = i|x)zj

�P (y = i|x)zj

@

@Wij
L(x, i⇤) =

zj � P (y = i|x)zj

�P (y = i|x)zj otherwise

‣ Looks	like	logisQc	regression	with	z	as	the	features!

i

j

{

L(x, i⇤) = Wz · ei⇤ � log

X

j

exp(Wz) · ej

W

Neural	Networks	for	ClassificaQon

V socmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@Wz

CompuQng	Gradients:	BackpropagaQon
z = g(V f(x))

AcQvaQons	at	
hidden	layer

‣ Gradient	with	respect	to	V:	apply	the	chain	rule

err(root) = ei⇤ � P (y|x)
dim	=	m dim	=	d

@L(x, i⇤)
@z

= err(z) = W>err(root)

L(x, i⇤) = Wz · ei⇤ � log

X

j

exp(Wz) · ej

[some	math…]

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

@Vij

BackpropagaQon:	Picture

V socmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)err(z)

z

‣ Can	forget	everything	acer	z,	treat 
it	as	the	output	and	keep	backpropping

BackpropagaQon:	Takeaways
‣ Gradients	of	output	weights	W	are	easy	to	compute	—	looks	like	
logisQc	regression	with	hidden	layer	z	as	feature	vector

‣ Can	compute	derivaQve	of	loss	with	respect	to	z	to	form	an	“error	
signal”	for	backpropagaQon

‣ Easy	to	update	parameters	based	on	“error	signal”	from	next	layer,	
keep	pushing	error	signal	back	as	backpropagaQon

‣ Need	to	remember	the	values	from	the	forward	computaQon

ApplicaQons

NLP	with	Feedforward	Networks

Botha	et	al.	(2017)

…

Fed	raises	interest	rates	in	order	to	…

f(x)
?? em

b(raises)

‣ Word	embeddings	for	each	word	form	input

‣ ~1000	features	here	—	smaller	feature	vector	
than	in	sparse	models,	but	every	feature	fires	on	
every	example

em
b(interest)

em
b(rates)‣ Weight	matrix	learns	posiQon-dependent	

processing	of	the	words

previous	word

curr	word

next	word

other	words,	feats,	etc.

‣ Part-of-speech	tagging	with	FFNNs

NLP	with	Feedforward	Networks

‣ Hidden	layer	mixes	these	
different	signals	and	learns	
feature	conjuncQons

Botha	et	al.	(2017)

NLP	with	Feedforward	Networks
‣ MulQlingual	tagging	results:

Botha	et	al.	(2017)

‣ Gillick	used	LSTMs;	this	is	smaller,	faster,	and	bener

SenQment	Analysis
‣ Deep	Averaging	Networks:	feedforward	neural	network	on	average	of	
word	embeddings	from	input

Iyyer	et	al.	(2015)

SenQment	Analysis

{

{
Bag-of-words

Tree	RNNs	/	
CNNS	/	LSTMS

Wang	and	
Manning	(2012)

Kim	(2014)

Iyyer	et	al.	(2015)

Coreference	ResoluQon
‣ Feedforward	networks	idenQfy	coreference	arcs

Clark	and	Manning	(2015),	Wiseman	et	al.	(2015)

President	Obama	signed…

He	later	gave	a	speech…

? ImplementaQon	Details

ComputaQon	Graphs

‣ CompuQng	gradients	is	hard!

‣ AutomaQc	differenQaQon:	instrument	code	to	keep	track	of	derivaQves

y = x * x (y,dy) = (x * x, 2 * x * dx)
codegen

‣ ComputaQon	is	now	something	we	need	to	reason	about	symbolically

‣ Use	a	library	like	Pytorch	or	Tensorflow.	This	class:	Pytorch

ComputaQon	Graphs	in	Pytorch
P (y|x) = softmax(Wg(V f(x)))

class FFNN(nn.Module):
 def __init__(self, inp, hid, out):
 super(FFNN, self).__init__()
 self.V = nn.Linear(inp, hid)
 self.g = nn.Tanh()
 self.W = nn.Linear(hid, out)
 self.softmax = nn.Softmax(dim=0)

 def forward(self, x):
 return self.softmax(self.W(self.g(self.V(x))))

‣Define	forward	pass	for

ComputaQon	Graphs	in	Pytorch

P (y|x) = softmax(Wg(V f(x)))

ffnn = FFNN()

loss.backward()

probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold_label)

optimizer.step()

def make_update(input, gold_label):

ffnn.zero_grad() # clear gradient variables

ei*: one-hot vector  
of the label  
(e.g., [0, 1, 0])

Training	a	Model
Define	a	computaQon	graph

For	each	epoch:

Compute	loss	on	batch

For	each	batch	of	data:

Decode	test	set

Autograd	to	compute	gradients	and	take	step

Batching

‣ Batching	data	gives	speedups	due	to	more	efficient	matrix	operaQons

‣ Need	to	make	the	computaQon	graph	process	a	batch	at	the	same	Qme

probs = ffnn.forward(input) # [batch_size, num_classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold_label))

...

‣ Batch	sizes	from	1-100	ocen	work	well

def make_update(input, gold_label)

input is [batch_size, num_feats]  
gold_label is [batch_size, num_classes]

...

Next	Time
‣ More	implementaQon	details:	pracQcal	training	techniques

‣ Word	representaQons	/	word	vectors

‣ word2vec,	GloVe

