CS388: Natural Language Processing
Lecture 14: Word Embeddings

Greg Durrett

Recall: Feedforward NNs

P(y|x) = softmax(Wg(V f(x)))
num classes
d hidden units probs

H

d X n matrix nonlinearity num classes x d
n features (tanh, relu, ...) matrix

Recall: Backpropagation

P(y|x) = softmax(Wg(V f(x)))

d hidden units

) H . P
67“7“

err(root)

This Lecture

» Training
» Word representations
» word2vec

» Evaluating word embeddings

Training Tips

Tralning Basics
» Basic formula: compute gradients on batch, use first-order opt. method

» How to initialize? How to regularize? What optimizer to use?

» This lecture: some practical tricks. Take deep learning or optimization
courses to understand this further

How does initialization affect learning?
P(y|x) = softmax(Wg(V f(x)))

d hidden units

H

d x n matrix nonlinearity m x d matrix
n features (tanh, relu, ...)

» How do we initialize V and W? What consequences does this have?

» Nonconvex problem, so initialization matters!

How does initialization affect learning?

» Nonlinear model...how does this affect things?

» If cell activations are too large in absolute value, gradients are small

» ReLU: larger dynamic range (all positive numbers), but can produce
big values, can break down if everything is too negative

Initialization
1) Can’t use zeroes for parameters to produce hidden layers: all values in
that hidden layer are always 0 and have gradients of O, never change

2) Initialize too large and cells are saturated

» Can do random uniform / normal initialization with appropriate scale

0 0
B \/fan—in + fan-out’ _I_\/fan—in + fan—out]

» Want variance of inputs and gradients for each layer to be the same

» Glorot initializer: U

» Batch normalization (loffe and Szegedy, 2015): periodically shift+rescale
each layer to have mean 0 and variance 1 over a batch (useful if net is deep)

Dropout

» Probabilistically zero out parts of the network during training to prevent
overfitting, use whole network at test time

» Form of stochastic
regularization

» Similar to benefits of
ensembling: network
needs to be robust to
missing signals, so it
has redundancy (a) Standard Neural Net

(b) After applying dropout.

» One line in Pytorch/Tensorflow Srivastava et al. (2014)

Optimizer

» Adam (Kingma and Ba, ICLR 2015) is very widely used

» Adaptive step size like Adagrad, incorporates momentum

MNIST Loglstlc Regressuon IMDB BoW feature Loglstlc Regressmn

0.7 ' T ' : L
[; : — AdaGrad

Adagrad+dropout
RMSProp+dropout
SGDNesterov+dropout|
Adam+dropout

— SGDNesterov

— Adam

0.6

0.5H

training cost
training cost
o
w
u

0.4kl i SNUONG: SORUUU: SOOI S S, S S—
. 0300

a A Al -
- v Vi AV f y k
. N \."1 A |
vy vy NI \
. e “ S L b LB a R E Rttt a s st a e a N LW \‘.ln..r'...y, '\',..\\..._ ..)'."
. . vi . ¥ LAY . — e 1 I A U A [\
. e i J 4\
: : : : S e YV

0.3 - A I F ; - L : 0.20 - i : H : : - :
0 5 10 15 20 25 30 35 40 45 0 20 40 60 80 100 120 140 160
iterations over entire dataset iterations over entire dataset

Z2RSITY
73 N
'
Mo vt
A) ° °
T 1215
> . A Z
o\ ¢ 5,¢ *
A Y
IJd ‘\l L‘\."\

» Wilson et al. NIPS 2017: adaptive methods can actually perform badly at
test time (Adam is in pink, SGD in black)

» Check dev set periodically, decrease learning rate if not making progress

6.0 \ 6.0 T

5.8 N \,
5.6} 'g 2.8 \‘.\‘ Adam (Default): 5.47+0.02 ‘
<>l<J 5 4} ‘—3‘
a ' 2 5.6} Adam: S.BStO.Q_IJw‘-_,-,_,-—J.
g_) 5.2} ;E) L=t T
25.0 €5 al RMSProp: 5.28+0.00
S, a o - 1
Uik | — T .
- | “““‘-—---__- ‘ 5 5.2} ' HB: 5.13+0.01+

4.6 — —— 0 Y

\ ——
4.4} — AdaGrad: 5.24+0.02 SGD: 5.09+0.04
20 40 60 80 o 20 40 60 80 100
Epoch Epoch

(e) Generative Parsing (Training Set)

(f) Generative Parsing (Development Set)

Structured Prediction

» Four elements of a machine learning method:

» Model: feedforward, RNNs, CNNs can be defined in a uniform framework

4

» Objective: many loss functions look
similar, just changes the last layer of the =
neural network

? -

1.9 F

» Inference: define the network, your 1
library of choice takes care of it (mostly...) SN

0

-3 -2 -1 0 1 2 3

» Training: lots of choices for optimization/hyperparameters

Word Representations

Word Representations

» Neural networks work very well at continuous data, but words are discrete
» Continuous model <-> expects continuous semantics from input

» “Can tell a word by the company it keeps” Firth 1957

PRI Tl 4! gL S e TRt

Dsaid\that the downturn was over ¢

RITH =0 H W
......

..............................
AALLLXLXX A XKL KX XLLX N 0 X%

L e e

president

president |the said @S / deD
governor
governor |the of

governor |the appointed

said sources __ 4 said
said president __ that reported

reported | sources ¢

[Finch and Chater 92, Shuetze 93, many others]

Discrete Word Representations

» Brown clusters: hierarchical agglomerative hard clustering (each word has
one cluster, not some posterior distribution like in mixture models)

0 1
0 1 0 1
0 /\1 1 IS 0/\1
. go 'ovab/
cat fish great €njoyanie

dog good

» Maximize P(w;|w;—1) = P(c;|ci—1)P(w;|c;)

» Useful features for tasks like NER, not suitable for NNs = 5 o\ o4 o1 (1992)

Word Embeddings

» Part-of-speech tagging with FFNNs

Fed raises interest rates in order to .. previous word

(sasipJ)quia

» Word embeddings for each word form input

curr word
» What properties should these vectors have?

next word

)
3
2
S.
~k
M
P
®
n
=
>
=
2
P
Q
~
M)
Z

other words, feats, etc. L=
Botha et al. (2017)

Word Embeddings

» Want a vector space where similar words have similar embeddings

great
the movie was great good
x enjoyable

th ' d
e movie was goo dog

» Goal: come up with a way to

produce these embeddings
bad

IS

word2vec

Continuous Bag-of-Words

» Predict word from context

d-dimensional et
dog I word embeddings]

gold label = bit,

Multiply no manual labeling
O I required!

I sized size |V|xd
the
P(w|w_1,w,1) = softmax (W (c(w_1) + c(wy1)))

» Parameters: d x |V| (one d-length vector per voc word),
V| x d output parameters (W) Mikolov et al. (2013)

Skip-Gram

» Predict one word of context from word

||

| gold = dog
Multiply
I P(w'|w) = softmax(We(w))
bit

» Another training example: bit -> the

» Parameters: d x |V]| vectors, |V| x d output parameters (W) (also

usable as vectors!) Mikolov et al. (2013)

Hierarchical Softmax

P(w|w_1,wy1) = softmax (W(c(w_1) + c(wy1))) P(w'|w) = softmax(We(w))

» Matmul + softmax over |V]| is very slow to compute for CBOW and SG

] = - » Huffman encode
vocabulary, use binary
E| classifiers to decide

which branch to take

th

A . » log(|V|) binary decisions

» Standard softmax: » Hierarchical softmax:
[|V] xd] xd log(|V|) dot products of size d,

|V| x d parameters Mikolov et al. (2013)

Skip-Gram with Negative Sampling

» Take (word, context) pairs and classify them as “real” or not. Create
random negative examples by sampling from unigram distribution

(bit, the) => +1
. - ew-c
(bit, cat) =>-1 P(y — 1|w, C) — \Words in similar

. w - C
(bit, a) => -1 € ™ contexts select for
(bit, fish) => -1 similar ¢ vectors

» d x |V| vectors, d x |V| context vectors (same # of params as before)
/sampled

1 mn
» Objective = log P(y = 1|w, c¢) . Zlog P(y = 0w, c)
i=1

Mikolov et al. (2013)

Connections with Matrix Factorization

» Skip-gram model looks at word-word co-occurrences and produces two
types of vectors

V| d V]
d
word pair | —p |v| |Word
counts Vecs

» Looks almost like a matrix factorization...can we interpret it this way?

Levy et al. (2014)

Skip-Gram as Matrix Factorization

num negative samples

............. > M;; = PMI(w;,c;) —logk

V] (ws.c0)
P(wz -) count (w;,c;
PMI(w;, ¢j) = e "
J P(wz)P(cj) Counlt)(wi) coufrg(cj)

Skip-gram objective exactly corresponds to factoring this matrix:

» If we sample negative examples from the uniform distribution over words

» ...and it’s a weighted factorization problem (weighted by word freq)

Levy et al. (2014)

GloVe

» Also operates on counts matrix, weighted
regression on the log co-occurrence matrix word pair

(weights f) counts

» Objective = Z f (count(w;, c;)) (@U;l_Cj + a; + b; — log count (wj, Cj)))2
2,]

» Constant in the dataset size (just need counts), quadratic in voc size

» By far the most common word vectors used today (5000+ citations)

Pennington et al. (2014)

Preview: Context-dependent Embeddings

» How to handle different word senses? One vector for balls
— — — —

LTI S

Fil o e s e

they dance at balls they hit the balls

» Train a neural language model to predict the next word given previous
words in the sentence, use its internal representations as word vectors

» Context-sensitive word embeddings: depend on rest of the sentence

» Huge improvements across nearly all NLP tasks over GloVe
Peters et al. (2018)

Evaluation

Evaluating Word Embeddings

» What properties of language should word embeddings capture?

» Similarity: similar words are close to

great
each other
cat good
» Analogy: enjoyable
good is to best as smartis to ??? dog
Paris is to France as Tokyo is to ?7?7?
tiger =

wolf bad was IS

Similarity

Method WordSim WordSim Brunietal. Radinsky etal. Luongetal. Hill et al.
Similarity Relatedness MEN M. Turk Rare Words SimlLex
PPMI 135 697 145 .686 462 393
SVD 793 691 A78 666 S14 432
SGNS 793 685 174 693 470 438
GloVe 125 604 129 632 403 398

» SVD = singular value decomposition on PMI matrix

» GloVe does not appear to be the best when experiments are carefully

controlled, but it depends on hyperparameters + these distinctions don’t
matter in practice

Levy et al. (2015)

Hypernymy Detection

» Hypernyms: detective is a person, dog is a animal

» Do word vectors encode these relationships?

Dataset TM14 | Kotlerman 2010 HypeNet WordNet | Avg (10 datasets)
Random 52.0 30.8 24.5 55.2 23.2
Word2Vec + C | 52.1 39.5 20.7 63.0 25.3
GE + C 53.9 36.0 21.6 58.2 26.1
GE + KL 52.0 39.4 23.7 54.4 25.9
DIVE + C-AS S7.2 36.6 32.0 60.9 32.7

» word2vec (SGNS) works barely better than random guessing here

Chang et al. (2017)

Analogies

(king - man) + woman = queen
king + (woman - man) = queen

» Why would this be?

» woman - man captures the difference in
the contexts that these occur in

» Dominant change: more “he” with man
and “she” with woman — similar to
difference between king and queen

king

 gueen

\man

< woman

Analogies

Google MSR
Add/Mul Add/Mul
PPMI | .553/.679 .306/.535
SVD 54 /.591 408/ .468
SGNS | .676/.688 .618/.645
GloVe | .569/.596 .533/.580

Method

» These methods can perform well on analogies on two different
datasets using two different methods

Maximizing for b: Add = cos(b,as — a1 +b1) Mul = cos(bz, az) cos(bz, b1)
cos(bo, a1) + €

Levy et al. (2015)

Using Semantic Knowledge

incorrect / @l / @ O I | gl Nnd I ve CtO I fO I f a I Se

—

I..' Llﬂ;lu'c’t{ ,..‘ |..‘ LIH?ID'HC "."

" ' l. o /

(Gincorrect N A 4w | Adapted vector for false

o L -

» Structure derived from a resource like WordNet

» Doesn’t help most problems

Faruqui et al. (2015)

Using Word Embeddings

» Approach 1: learn embeddings as parameters from your data

» Often works pretty well

» Approach 2: initialize using GloVe/ELMo, keep fixed

» Faster because no need to update these parameters

» Approach 3: initialize using GloVe, fine-tune

» Works best for some tasks, but not used for ELMo

Compositional Semantics

» What if we want embedding representations for whole sentences?

» Skip-thought vectors (Kiros et al., 2015), similar to skip-gram generalized
to a sentence level (more later)

» |Is there a way we can compose vectors to make sentence
representations? Summing?

» Will return to this in a few weeks as we move on to syntax and
semantics

Takeaways

» Lots to tune with neural networks
» Training: optimizer, initializer, regularization (dropout), ...

» Hyperparameters: dimensionality of word embeddings, layers, ...

» Word vectors: learning word -> context mappings has given way to
matrix factorization approaches (constant in dataset size)

» Lots of pretrained embeddings work well in practice, they capture some
desirable properties

» Even better: context-sensitive word embeddings (ELMo)

» Next time: RNNs and CNNs

