
Greg	Durrett

CS388:	Natural	Language	Processing	
Lecture	14:	Word	Embeddings

Recall:	Feedforward	NNs

V

n	features

d	hidden	units

d	x	n	matrix num_classes	x	d	
matrix

soEmaxWf
(x
)

z

nonlinearity 
(tanh,	relu,	…)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))
num_classes	
probs

Recall:	BackpropagaNon

V

d	hidden	units

soEmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)@z

@V
err(z)

zf(x)

This	Lecture
‣ Training

‣Word	representaNons

‣ word2vec

‣ EvaluaNng	word	embeddings

Training	Tips

Training	Basics
‣ Basic	formula:	compute	gradients	on	batch,	use	first-order	opt.	method

‣ How	to	iniNalize?	How	to	regularize?	What	opNmizer	to	use?

‣ This	lecture:	some	pracNcal	tricks.	Take	deep	learning	or	opNmizaNon	
courses	to	understand	this	further

How	does	iniNalizaNon	affect	learning?

V

n	features

d	hidden	units

d	x	n	matrix m	x	d	matrix

soEmaxWf
(x
)

z

nonlinearity 
(tanh,	relu,	…)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))

‣ How	do	we	iniNalize	V	and	W?	What	consequences	does	this	have?

‣ Nonconvex	problem,	so	iniNalizaNon	ma[ers!

‣ Nonlinear	model…how	does	this	affect	things?

‣ If	cell	acNvaNons	are	too	large	in	absolute	value,	gradients	are	small

‣ ReLU:	larger	dynamic	range	(all	posiNve	numbers),	but	can	produce	
big	values,	can	break	down	if	everything	is	too	negaNve

How	does	iniNalizaNon	affect	learning?

IniNalizaNon
1)	Can’t	use	zeroes	for	parameters	to	produce	hidden	layers:	all	values	in	
that	hidden	layer	are	always	0	and	have	gradients	of	0,	never	change

‣ Can	do	random	uniform	/	normal	iniNalizaNon	with	appropriate	scale

U

"
�
r

6

fan-in + fan-out

,+

r
6

fan-in + fan-out

#
‣ Glorot	iniNalizer:

‣Want	variance	of	inputs	and	gradients	for	each	layer	to	be	the	same

‣ Batch	normalizaNon	(Ioffe	and	Szegedy,	2015):	periodically	shiE+rescale	
each	layer	to	have	mean	0	and	variance	1	over	a	batch	(useful	if	net	is	deep)

2)	IniNalize	too	large	and	cells	are	saturated

Dropout
‣ ProbabilisNcally	zero	out	parts	of	the	network	during	training	to	prevent	
overfidng,	use	whole	network	at	test	Nme

Srivastava	et	al.	(2014)

‣ Similar	to	benefits	of	
ensembling:	network	
needs	to	be	robust	to	
missing	signals,	so	it	
has	redundancy

‣ Form	of	stochasNc	
regularizaNon	

‣ One	line	in	Pytorch/Tensorflow

OpNmizer
‣ Adam	(Kingma	and	Ba,	ICLR	2015)	is	very	widely	used

‣ AdapNve	step	size	like	Adagrad,	incorporates	momentum

OpNmizer
‣Wilson	et	al.	NIPS	2017:	adapNve	methods	can	actually	perform	badly	at	
test	Nme	(Adam	is	in	pink,	SGD	in	black)
‣ Check	dev	set	periodically,	decrease	learning	rate	if	not	making	progress

Structured	PredicNon
‣ Four	elements	of	a	machine	learning	method:

‣Model:	feedforward,	RNNs,	CNNs	can	be	defined	in	a	uniform	framework

‣ ObjecNve:	many	loss	funcNons	look	
similar,	just	changes	the	last	layer	of	the	
neural	network

‣ Inference:	define	the	network,	your 
library	of	choice	takes	care	of	it	(mostly…)

‣ Training:	lots	of	choices	for	opNmizaNon/hyperparameters

Word	RepresentaNons

Word	RepresentaNons

‣ ConNnuous	model	<->	expects	conNnuous	semanNcs	from	input

‣ “Can	tell	a	word	by	the	company	it	keeps”	Firth	1957

‣ Neural	networks	work	very	well	at	conNnuous	data,	but	words	are	discrete

Discrete	Word	RepresentaNons

good
enjoyablegreat

0

fishcat

‣ Brown	clusters:	hierarchical	agglomeraNve	hard	clustering	(each	word	has	
one	cluster,	not	some	posterior	distribuNon	like	in	mixture	models)

‣Maximize

‣ Useful	features	for	tasks	like	NER,	not	suitable	for	NNs

dog
…

is
go

0

0 1 1

1
1

1

1
0

0

P (wi|wi�1) = P (ci|ci�1)P (wi|ci)

Brown	et	al.	(1992)

Word	Embeddings

Botha	et	al.	(2017)

…

Fed	raises	interest	rates	in	order	to	…

f(x)
?? em
b(raises)

‣Word	embeddings	for	each	word	form	input em
b(interest)

em
b(rates)

previous	word

curr	word

next	word

other	words,	feats,	etc.

‣ Part-of-speech	tagging	with	FFNNs

‣What	properNes	should	these	vectors	have?

good
enjoyable

bad

dog

great

is

‣Want	a	vector	space	where	similar	words	have	similar	embeddings

the	movie	was	great

the	movie	was	good
~~

Word	Embeddings

‣ Goal:	come	up	with	a	way	to	
produce	these	embeddings

word2vec

ConNnuous	Bag-of-Words
‣ Predict	word	from	context the	dog	bit	the	man

‣ Parameters:	d	x	|V|	(one	d-length	vector	per	voc	word), 
																						|V|	x	d	output	parameters	(W)

dog

the

+

size	d

soEmaxMulNply 
by	W

gold	label	=	bit, 
no	manual	labeling 
required!

Mikolov	et	al.	(2013)

d-dimensional  
word	embeddings

P (w|w�1, w+1) = softmax (W (c(w�1) + c(w+1)))

size	|V|	x	d

Skip-Gram

the	dog	bit	the	man‣ Predict	one	word	of	context	from	word

bit

soEmaxMulNply 
by	W

gold	=	dog

‣ Parameters:	d	x	|V|	vectors,	|V|	x	d	output	parameters	(W)	(also	
usable	as	vectors!)

‣ Another	training	example:	bit	->	the

P (w0|w) = softmax(We(w))

Mikolov	et	al.	(2013)

Hierarchical	SoEmax

‣Matmul	+	soEmax	over	|V|	is	very	slow	to	compute	for	CBOW	and	SG

‣ Hierarchical	soEmax:

P (w|w�1, w+1) = softmax (W (c(w�1) + c(w+1)))

‣ Standard	soEmax:	
[|V|	x	d]	x	d log(|V|)	dot	products	of	size	d,

…

…

the
a

‣ Huffman	encode	
vocabulary,	use	binary 
classifiers	to	decide	
which	branch	to	take

|V|	x	d	parameters Mikolov	et	al.	(2013)

P (w0|w) = softmax(We(w))

‣ log(|V|)	binary	decisions

Skip-Gram	with	NegaNve	Sampling

‣ d	x	|V|	vectors,	d	x	|V|	context	vectors	(same	#	of	params	as	before)

Mikolov	et	al.	(2013)

(bit,	the)	=>	+1
(bit,	cat)	=>	-1
(bit,	a)	=>	-1
(bit,	fish)	=>	-1

‣ Take	(word,	context)	pairs	and	classify	them	as	“real”	or	not.	Create	
random	negaNve	examples	by	sampling	from	unigram	distribuNon

words	in	similar	
contexts	select	for	
similar	c	vectors

P (y = 1|w, c) = ew·c

ew·c + 1

‣ ObjecNve	=	 logP (y = 1|w, c)� 1

k

nX

i=1

logP (y = 0|wi, c)
sampled

ConnecNons	with	Matrix	FactorizaNon

Levy	et	al.	(2014)

‣ Skip-gram	model	looks	at	word-word	co-occurrences	and	produces	two	
types	of	vectors

word	pair 
counts

|V|

|V| |V|

d

d

|V|

context	vecs
word  
vecs

‣ Looks	almost	like	a	matrix	factorizaNon…can	we	interpret	it	this	way?

Skip-Gram	as	Matrix	FactorizaNon

Levy	et	al.	(2014)

|V|

|V|
Mij = PMI(wi, cj)� log k

PMI(w
i

, c
j

) =
P (w

i

, c
j

)

P (w
i

)P (c
j

)
=

count(wi,cj)

D

count(wi)

D

count(cj)

D

‣ If	we	sample	negaNve	examples	from	the	uniform	distribuNon	over	words

num	negaNve	samples

‣ …and	it’s	a	weighted	factorizaNon	problem	(weighted	by	word	freq)

Skip-gram	objecNve	exactly	corresponds	to	factoring	this	matrix:

GloVe

Pennington	et	al.	(2014)

X

i,j

f(count(wi, cj))
�
w>

i cj + ai + bj � log count(wi, cj))
�2‣ ObjecNve	=	

‣ Also	operates	on	counts	matrix,	weighted  
regression	on	the	log	co-occurrence	matrix 
(weights	f)

‣ Constant	in	the	dataset	size	(just	need	counts),	quadraNc	in	voc	size

‣ By	far	the	most	common	word	vectors	used	today	(5000+	citaNons)

word	pair 
counts

|V|

|V|

Preview:	Context-dependent	Embeddings

Peters	et	al.	(2018)

‣ Train	a	neural	language	model	to	predict	the	next	word	given	previous	
words	in	the	sentence,	use	its	internal	representaNons	as	word	vectors
‣ Context-sensiCve	word	embeddings:	depend	on	rest	of	the	sentence

‣ Huge	improvements	across	nearly	all	NLP	tasks	over	GloVe

they hit the ballsthey dance at balls

‣ How	to	handle	different	word	senses?	One	vector	for	balls

EvaluaNon

EvaluaNng	Word	Embeddings
‣What	properNes	of	language	should	word	embeddings	capture?

good
enjoyable

bad

dog

great

is

cat

wolf

Cger

was

‣ Similarity:	similar	words	are	close	to	
each	other

‣ Analogy:

Paris	is	to	France	as	Tokyo	is	to	???

good	is	to	best	as	smart	is	to	???

Similarity

Levy	et	al.	(2015)

‣ SVD	=	singular	value	decomposiNon	on	PMI	matrix

‣ GloVe	does	not	appear	to	be	the	best	when	experiments	are	carefully	
controlled,	but	it	depends	on	hyperparameters	+	these	disNncNons	don’t	
ma[er	in	pracNce

Hypernymy	DetecNon

‣ Hypernyms:	detecNve	is	a	person,	dog	is	a	animal

‣ word2vec	(SGNS)	works	barely	be[er	than	random	guessing	here

‣ Do	word	vectors	encode	these	relaNonships?

Chang	et	al.	(2017)

Analogies

queen
king

woman
man

(king	-	man)	+	woman	=	queen

‣Why	would	this	be?

‣ woman	-	man	captures	the	difference	in 
the	contexts	that	these	occur	in

king	+	(woman	-	man)	=	queen

‣ Dominant	change:	more	“he”	with	man	
and	“she”	with	woman	—	similar	to	
difference	between	king	and	queen

Analogies

Levy	et	al.	(2015)

‣ These	methods	can	perform	well	on	analogies	on	two	different	
datasets	using	two	different	methods	

cos(b, a2 � a1 + b1)Maximizing	for	b:	Add	=	 Mul	=	 cos(b2, a2) cos(b2, b1)
cos(b2, a1) + ✏

Using	SemanNc	Knowledge

Faruqui	et	al.	(2015)

‣ Structure	derived	from	a	resource	like	WordNet

Original	vector	for	false

Adapted	vector	for	false

‣ Doesn’t	help	most	problems

Using	Word	Embeddings
‣ Approach	1:	learn	embeddings	as	parameters	from	your	data

‣ Approach	2:	iniNalize	using	GloVe/ELMo,	keep	fixed

‣ Approach	3:	iniNalize	using	GloVe,	fine-tune
‣ Faster	because	no	need	to	update	these	parameters

‣Works	best	for	some	tasks,	but	not	used	for	ELMo

‣ OEen	works	pre[y	well

ComposiNonal	SemanNcs
‣What	if	we	want	embedding	representaNons	for	whole	sentences?

‣ Skip-thought	vectors	(Kiros	et	al.,	2015),	similar	to	skip-gram	generalized	
to	a	sentence	level	(more	later)

‣ Is	there	a	way	we	can	compose	vectors	to	make	sentence	
representaNons?	Summing?

‣Will	return	to	this	in	a	few	weeks	as	we	move	on	to	syntax	and	
semanNcs

Takeaways
‣ Lots	to	tune	with	neural	networks

‣Word	vectors:	learning	word	->	context	mappings	has	given	way	to	
matrix	factorizaNon	approaches	(constant	in	dataset	size)

‣ Training:	opNmizer,	iniNalizer,	regularizaNon	(dropout),	…

‣ Hyperparameters:	dimensionality	of	word	embeddings,	layers,	…

‣ Next	Nme:	RNNs	and	CNNs

‣ Lots	of	pretrained	embeddings	work	well	in	pracNce,	they	capture	some	
desirable	properNes

‣ Even	be[er:	context-sensiNve	word	embeddings	(ELMo)

