CS388: Natural Language Processing
Lecture 8: RNNS

Greg Durrett

Administrivia

» Project 1 due Thursday at 5pm

Recall: Training Tips

» Parameter initialization is critical to get good gradients, some useful
heuristics (e.g., Glorot initializer)

» Dropout is an effective regularizer

» Think about your
optimizer: Adam
or tuned SGD
work well

6.0
5.8}

20 40 60 80 100
Epoch

(e) Generative Parsing (Training Set)

Development Perplexity

6.0
>8] \ Adam (Default): 5.47+0.02 ‘
5.6} /dam: 5.35+0.01
s al . RMSProp: 5.28+0.00 |
5.2} HB: 5.13+0.011
Y
AdaGrad: 5.24+0.02 5': .
>0 20 40 60 80 100

Epoch

(f) Generative Parsing (Development Set)

Recall: Word Vectors

great

XA R xS 2 54 A8 ABSERS Lt by 28 bt o 3¢ b8 SO S Lo s 1t \J AS e 17 CEE R R

SN gy . > .] + ; . & 4
SHE S A = w " ¥] 3 r 38 5, B
BT H =+ MW S % 33 AT 4 R K R I o 4 X K AT e SUBELEERH .Q. i L
HTHESH S v T = LR = 1] H R ittt St

98 3¢ 00 33 X 2 "3 M { INSEN NN HEXR KX %

T XKW 3 L AT XA KRR

..............................
SR e R Rt = e SERES) (oNps DAt ISTIRRd LSt Shel) IO
EE T AN XKML EL LXK ™ WEEL L LXK WML WK LLLK N XN
o I WM e e M WM
¥ X% % XXX, X

XXX XX

president

dog

president

president |the said

governor

governor |the of

governor |the appointed

said sources __ 4 said
said president __ that reported

reported | sources ¢

[Finch and Chater 92, Shuetze 93, many others] b(]d IS

Recall: Continuous Bag-of-Words

» Predict word from context E , Mikolov et al. (2013)
the:dog bit the:man
dog Multiply
softmax
. -
P _
sum, size d (ww—1, w1)

the » Matrix factorization approaches useful for learning
vectors from really large data

Using Word Embeddings

» Approach 1: learn embeddings directly from data in your neural model,
no pretraining

» Often works pretty well

» Approach 2: pretrain using GloVe, keep fixed
» Faster because no need to update these parameters

» Need to make sure GloVe vocabulary contains all the words you need

» Approach 3: initialize using GloVe, fine-tune

» Not as commonly used anymore

Compositional Semantics

» What if we want embedding representations for whole sentences?

» Skip-thought vectors (Kiros et al., 2015), similar to skip-gram generalized
to a sentence level (more later)

» |Is there a way we can compose vectors to make sentence
representations? Summing? RNNs?

This Lecture

» Recurrent neural networks

» Vanishing gradient problem
» LSTMs / GRUs

» Applications / visualizations

RNN Basics

RNN Motivation

» Feedforward NNs can’t handle variable length input: each position in the
feature vector has fixed semantics

e e

the movie was great that was great |

» These don’t look related (great is in two different orthogonal subspaces)

» Instead, we need to:

1) Process each word in a uniform way

2) ...while still exploiting the context that that token occurs in

RNN Abstraction

» Cell that takes some input x, has some hidden state h, and updates that
hidden state and produces output y (all vector-valued)

outputy
previous h next h
(previous c) (next c)

Input X

RNN Uses

» Transducer: make some prediction for each element in a sequence

DT NN VBD JJ
output y = score for each tag, then softmax

r 1t 1t 1

the movie was great

» Acceptor/encoder: encode a sequence into a fixed-sized vector and use

that for some purpose
predict sentiment (matmul + softmax)

;I—»;F»;I—»;I< translate
paraphrase/compress

the movie was great

Elman Networks

output y: h; = tanh(Wx; + Vh;_1 4+ by)
PIEV » Updates hidden state based on input
hidden and current hidden state
state hyy — h:

Yt — tanh(Uht -+ by)

» Computes output from hidden state
Input X

» Long history! (invented in the late 1980s)
Elman (1990)

Training EIman Networks

;I—»;IM—» predict sentiment

the movie was great

» “Backpropagation through time”: build the network as one big
computation graph, some parameters are shared

» RNN potentially needs to learn how to “remember” information for a
long time!

it was my favorite movie of 2016, though it wasn’t without problems -> +

» “Correct” parameter update is to do a better job of remembering the
sentiment of favorite

Vanishing Gradient
@ h) 6.

’ L
<- tiny gradient <- smaller gradient <- gradient

A

tanh

%))

» Gradient diminishes going through tanh; if
not in [-2, 2], gradient is almost O

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs/GRUSs

Gated Connections

» Desighed to fix “vanishing gradient” problem using gates

ht — ht—l O, f -+ fU_IlC(Xt) ht — tanh(WXt

gated Elman

» Vector-valued “forget gate” f computed
based on input and previous hidden state
f =oc(W*x, + Wh,_)
h:;

» Sigmoid: elements of f are in [0, 1]

» Iff=1, we simply sum up a function of
all inputs — gradient doesn’t vanish!

Vhy

LSTMSs

» “Cell” ¢ in addition to hidden state h
Ct = C¢_1 © f -+ fU.IlC(Xt, ht—l)

» Vector-valued forget gate f depends on the h hidden state
f =o(W*x, + W' h,_,)

» Basic communication flow: x -> ¢ -> h, each step of this process is gated
in addition to gates from previous timesteps

LSTMs
@ Cj ZCj_l) f +

f :O'(XjWXf + hj_1th)

x g = tanh(x; W*€ + h;_; W"8)
i =0(x; WX + h;_; W)
. {hi} h; =tanh(c;) ® o
@ 0 =0(x;W*° + h;_; W"°)

» f, 1, 0 are gates that control information flow
» g reflects the main computation of the cell

Goldberg lecture notes
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs
D cj =10 f +g O

f :O'(XjWXf + hj_Ith)

C;
@ . g = ta,nh(ijxg + hj_IWhg)
'mﬁ floff i =0 (x;W* + hj_ W)
— —hj} h; = tanh(c;) ® o

O ZO'(Xijo -I- hj_1Wh°)
» Can we ighore c in our current computation?
» Can an LSTM sum up its inputs x?
» Can we ignhore a particular input x?
» Can we output something without changing c?

LSTMSs

» lgnoring recurrent state entirely:

» Lets us get feedforward layer over token
» Ignoring input:

» Lets us discard stopwords

» Summing inputs:

» Lets us compute a bag-of-words
representation

Goldberg lecture notes
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

SR

i
1
X &)

» Gradient still dlmmlshes, but in a controlled way and generally by less —
usually initialize forget gate = 1 to remember everything to start

'<- gradient —»>

A

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Understanding LSTM Parameters

O tan

» Initialize hidden layer randomly

» Need to learn how the gates work: what do
we forget/remember?

» g uses an arbitrary nonlinearity, this is the
“layer” of the cell

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

tan O
8

» LSTM: more complex and
slower, may work a bit better

GRUSs

» GRU: faster, a bit simpler

» Two gates: z (forget, mixes s and
h) and r (mixes h and x)

What do RNNs produce?

\

ﬂ

the movie was great

» Encoding of the sentence — can pass this a decoder or make a
classification decision about the sentence

» Encoding of each word — can pass this to another layer to make a
prediction (can also pool these to get a different sentence encoding)

» RNN can be viewed as a transformation of a sequence of vectors into a
sequence of context-dependent vectors

Multilayer Bidirectional RNN

e e e S [

the movie was great the movie was great

» Token classification based on

I:I concatenation of both directions’
I:I token representations

I —

» Sentence classification
based on concatenation
of both final outputs

Training RNNSs

soogH

the movie was great

» Loss = negative log likelihood of probability of gold label (or use SVM
or other loss)

» Backpropagate through entire network

» Example: sentiment analysis

Training RNNSs

the movie was great

» Loss = negative log likelihood of probability of gold predictions,
summed over the tags

» Loss terms filter back through network

» Example: language modeling (predict next word given context)

Applications

What can LSTMs model?

» Sentiment

» Encode one sentence, predict
» Language models

» Move left-to-right, per-token prediction
» Translation

» Encode sentence + then decode, use token predictions for attention
weights (later in the course)

Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells (components of ¢) to understand them

» Counter: know when to generate \n

The sole 1mportance OFf the crossing of the Berezina lies 1n the fact
that it plainly and 1ndub1tably proved the fallacy of all the plans for
cutting off the enemy' retreat and the soundness of the only possible
line of action--the one Kutuzov and the general mass of the army
demanded--namely, simply to follow the enemy up. The French crowd fled

at a continually increasing speed and all its energy was directed to
reaching its goal. It fled like a wounded animal and 1t was impossible
to block 1ts path. This was shown not so much by the arrangements 1it
made for crossing as by what took place at the bridges. When the bridges
broke down, unarmed soldiers, people from Moscow and women with children
wWho were with the French transport, all--carried on by vis 1inertiae- -
pressed ftorward into boats and i1nto the 1ce-covered water and did not,
surrender.

Karpathy et al. (2015)

Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track

» Binary switch: tells us if we’re in a quote or not

Karpathy et al. (2015)

Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track

» Stack: activation based on indentation

#i1ifdef CONFIG_AUDITSYSCALL
static inline 1nt@EaAUOYEE RN A SS D ESTINE CELASS S T2 =S K
{
1I'mE s
il elassesslclassl) H

for (1 = @82 1 <= AUDIT_BITNHNASKOSIZEDHAET)

iT ((maskiil] & slassesiclass]ixin

" et L

return 1;

}

Karpathy et al. (2015)

Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track

» Uninterpretable: probably doing double-duty, or only makes sense in the
context of another activation

picl{ltr-eld_triﬂno FrEipres@intation [from WSler - spaice
buffer
{lhar Salud 1t palckDstring(lllid *Hbvufp, sEzeltHENEE", SHzemt: NHEN)

har

n))

_.ntgrtr ing Blle 1 d's |
d gth

Karpathy et al. (2015)

What can LSTMs model?

» Sentiment

» Encode one sentence, predict
» Language models

» Move left-to-right, per-token prediction
» Translation

» Encode sentence + then decode, use token predictions for attention
weights (next lecture)

» Textual entailment

» Encode two sentences, predict

Natural Language Inference

Premise Hypothesis
A boy plays in the snow entails A boy is outside
A man inspects the uniform of a figure contradicts The man is sleeping
T] d
An older and younger man smiling neutral WO Men are SIS an

laughing at cats playing

» Long history of this task: “Recognizing Textual Entailment” challenge in
2006 (Dagan, Glickman, Magnini)

» Early datasets: small (hundreds of pairs), very ambitious (lots of world
knowledge, temporal reasoning, etc.)

SNLI| Dataset

» Show people captions for (unseen) images and solicit entailed / neural /
contradictory statements

» >500,000 sentence pairs Sy S°fm;a" Saasaice
200d tanh 1
» Encode each sentence and process —
200d tanh 1
100D LSTM: 78% accuracy T
200d tanh 1
300D LSTM: 80% accuracy - - 3<
(Bowman et al., 2016) 100d premise 100d hypothesis
. | |
3OOD BILSTM 83% dCCUra CV sentence model sentence model
with premise input with hypothesis 1input

(Liu et al., 2016)
» Later: better models for this Bowman et al. (2015)

Takeaways

» RNNs can transduce inputs (produce one output for each input) or
compress the whole input into a vector

» Useful for a range of tasks with sequential input: sentiment analysis,
language modeling, natural language inference, machine translation

» Next time: CNNs and neural CRFs

