
CS388 Final Project

Proposal Due: October 15, 11:59pm
Presentations: December 3/5, 12:30pm

Final Report Due: December 13, 11:59pm

Collaboration You are free to work on this project in teams of two (strongly encouraged) or individu-
ally. Individual projects can be less ambitious but should not be less complete: a half-implemented system
does not make a good project outcome. All partners should contribute equally to the submission, and all
partners will receive the same grade for it. You may collaborate with a person from outside the course as
well in case you’re also using this final project for another course. You are also free to discuss your project
with others in the course, though only the people on your team should contribute to the actual implementa-
tion/experimentation involved. Any external resources used must be clearly cited.

Combining with other final projects You are allowed to combine this project with your research or
projects from other courses. However, your project must still involve concepts from this course! You are
allowed to apply these models to data that isn’t language data provided that it has some interesting language-
like structure (e.g., genomics data, time-series data, etc.). Investigating feedforward neural network archi-
tectures on MNIST would not be an acceptable course project.

Deliverables

This project is an independently-conducted study that constitutes original research on an NLP problem. The
final project is worth 40% of your course grade. The deliverables are as follows.

Proposal (10 points) You should turn in a one page proposal on the proposal due date. This proposal
should outline what problem you want to address, what dataset(s) you plan to use, and a rough plan for how
you will pursue the project (e.g., “we propose to download X system, run it, then implement our system on
top of their framework and compare the results”). While you don’t need a full related work section, you
should mention a few pieces of prior work and state how your project relates to them. The course staff will
then provide feedback and guidance on the direction to maximize the project’s change of succeeding.
Grading: 10 points for turning in a proposal meeting a minimum level of coherence and quality. You are
not evaluated on how good the idea is—this is a stage to get feedback and refine things.

Final Report (80 points) The primary deliverable is a paper written in the style of an ACL/NeurIPS/etc.
conference submission. It should begin with an abstract and introduction, clearly describe the proposed idea,
present technical details, give results, compare to baselines, provide analysis and discussion of the results,
and cite sources throughout (you’ll probably want to cite at least 5-10 papers depending on how broad your
topic is).

If you are working in a team of two, the paper should be on the order of 8 pages excluding references;
working alone, you should target more like 5-6 pages. Don’t treat these as hard page requirements or limits,
and let the project drive things. If you have lots of analysis and discussion or are trying something more
ambitious, your paper might be longer; if you’re implementing something complex but succinctly described,
your paper might be shorter.

1



Note that your project is not graded solely on the basis of results. You should feel free to try an idea
that’s a bit “out there” or challenging as long as it’s well-motivated and can be evaluated. Critically, you
should also approach the work in such a way that success isn’t all-or-nothing. You should be able to show
results, describe some successes, and analyze why things worked or didn’t work beyond “my code errored
out.” Think about structuring your proposal in a few phases (like the projects) so that even if everything you
set out to do isn’t successful, you’ve at least gotten something working, run some experiments, and gotten
some kind of results to report.
Grading: We will grade the projects according to the following rubric:

• Clarity/Writing (16 points): Your paper should clearly convey a core idea/hypothesis, describe how
you tested it/what you built, and situate it with respect to related work. See the “Tips for Academic
Writing” on the course website if you have doubts about what is expected.

• Implementation/Soundness (32 points): Is the idea technically sound? Do you describe what seems
like a convincing implementation? Is the experimental design correct?

• Results/Analysis (32 points) Whether the results are positive or negative, try to motivate them by
providing examples and analysis. If things worked, what error classes are reduced? If things didn’t
work, why might that be? What aspects of the data/model might not be right? If you’re writing a paper
that revolves around building a system, you should try to report results for a baseline from the literature,
your own baseline, your best model, and possibly results of ablation experiments.

Final Presentation (10 points) During the last week of class, every group will give a 3-to-5-minute pre-
sentation on their project (depending on the number of groups). This presentation should state the problem,
describe the methodology used, and give highlights of the results. Because the project reports won’t have
been due yet, these results might be preliminary, but should be nonzero. Teams will be assigned a presenta-
tion date randomly at the time the proposal is due.
Grading: The final presentation should be clear and fit within the allotted time limit. It should describe
your methodology, related prior work, and preliminary results or analysis.

Choosing a Topic

There are a few directions you can go with this project. You might do a more engineering-style project: pick
a task and a dataset, design or expand on some model, and try to get good results, similar to what you were
doing in the first three projects. You can also do a more analytical project: pick some problem and try to
characterize it in greater depth. What does the data tell us? What does this tell us about language or about
how we should design our NLP systems?

Your project should include something novel: your end goal shouldn’t be just reimplementing what others
have done. However, implementing someone else’s model or downloading and running an existing model
are great first steps and might end up getting you most of the way there, and implementing a couple of
approaches in order to gain some insight from comparing them can be a good project. One good way to
attack things is to pick a task and a dataset, download and run a model from the literature, and assess the
errors to see what it does wrong. While it’s best to go in with some intuition of how you can improve things,
letting yourself be guided by the data and not sticking to assumptions that may prove incorrect is the best
way to build something that actually works well.

Be bold in your choice! This project is not graded on how well your system works, as long as you can
convincingly show that your model is doing something. Start with baby steps rather than implementing

2



the full model from scratch: build baselines and improve them in a direction that will eventually take you
towards your full model. The initial projects in this class are structured to do this, to give you an example of
this process.

The following is a (non-exhaustive!) list of tasks and corpora, just a few to give you some pointers.
Another approach is to look through the papers in recent ACL/EMNLP conferences and see if there are
topics that seem interesting to you, then try to find datasets for those tasks.

Text annotation tasks Tasks like POS tagging, NER, sentiment analysis, and parsing are well understood
and have been thoroughly studied; it is hard to improve on state-of-the-art models for these on English
datasets. However, other domains (web forums, biomedical text, Twitter), and other languages are less well
understood, but datasets exist for these and there are small “cottage industries” of papers around each of
these topics. Many of the state-of-the-art English systems for these tasks have been discussed in class—
perhaps download these and see how they compare to other models on new data.

Entity Linking Entity linking involves resolving a span of text in a document (John Smith) to a Wikipedia
article capturing that entity’s true identity (https://en.wikipedia.org/wiki/John Smith (explorer)).
Classical methods use data from Wikipedia and use features such as cosine similarity of tf-idf vectors be-
tween the source context and target Wikipedia article (Ratinov et al., 2011). A newly released dataset (Eshel
et al., 2017) is much cleaner and larger and more admissible to training neural network models. Multilingual
approaches (Sil et al., 2018) might also be nice to investigate or follow up on.

Semantic Parsing Classic semantic parsing on datasets like Geoquery is a bit hard to advance due to
small datasets and limited domains. However, there are plenty of interesting language-to-code style tasks
that are in a similar domain. The CoNaLa dataset (Yin et al., 2018) contains Python snippets and natural
language—there are interesting things to do with this, but just trying to map between language and code
directly does not work well. There also exist a plethora of datasets for the text-to-SQL task (Finegan-Dollak
et al., 2018), which you can investigate.

Multilingual settings Pre-trained models like ELMo and BERT have been extensively studied for English.
Because of the word piece abstraction, there is clear transfer to related languages that use Latin script.
Because of code-mixed data, these models also have some success for frequent languages that don’t share
an alphabet with English, such as Chinese. However, for more distant languages like Thai which have their
own script, these models underperform. Past work (Pires et al., 2019) has some analysis of this on a few
basic tasks, but there’s a lot more to investigate here.

Interpretability/Probing Neural Networks Given the success of neural models, particularly BERT, there
is increased interest in understanding them: what their representations capture, how they generalize, etc.
For example, we can using probing tasks to analyze the abilities of LSTMs to generalize along certain
dimensions (Linzen et al., 2016) or to understand what the layers of BERT capture (Tenney et al., 2019).
One viable project option is to try to improve our understanding of these models through new analyses
or probing them in new ways. Note that with such projects, you should really be aiming to test a clear
hypothesis and be able to accept/reject it based on your results. It’s not a good project to just say you’ll plot
some aspect of BERT, then plot it and make handwavy conclusions about things.

3



QA / Machine Reading A plethora of question-answering datasets have been released recently: SQuAD
(Rajpurkar et al., 2016), TriviaQA (Joshi et al., 2017), RACE (Lai et al., 2017), WikiHop (Welbl et al.,
2017). Many of these datasets are hard to improve on with fully end-to-end neural network approaches (you
need large BERT models to push the state-of-the-art). However, recent new datasets are always emerging
(Dasigi et al., 2019; Lin et al., 2019). You can also feel free to tackle a subset of examples in a dataset or
try out an interesting technique other than end-to-end neural networks. Building faster QA models is also
potentially an interesting direction.

Miscellaneous (1) BERT has a “next sentence prediction” module. This has not been extensively investi-
gated. Suppose you have two sentences s1 and s2. Given a bunch of other sentences s′1, . . . , s

′
n, if NSP(s1,s′i)

≈ NSP(s2,s′i) for all i, does that imply that s1 and s2 are paraphrases or anything interesting about them?
(2) There are plenty of interesting things you can do with masked language models, such as testing them to
see what explicit knowledge they contain (Petroni et al., 2019). Think about what you might be able to do
with these!

Computational Linguistics While we haven’t focused on it much in this class, if you want to use any of
the models in this course to study phenomena in language, you are more than welcome to!

CAUTION Your project should not focus on new pretraining techniques for language models. Such
experiments are too large-scale to feasibly execute even if you have access to significant other compute
resources. Fine-tuning BERT-Base on a dataset can often be done effectively with more limited resources,
but will still typically require GPUs. Moreover, the tasks of machine translation and summarization rely on
training on particularly large datasets. There are good projects you can do in these domains, but you may
wish to focus on low-resource settings or more traditional models, as large-scale neural approaches won’t
be feasible to explore unless you have access to significant GPU resources.

Computational Resources Available

This course has an allocation on the Maverick2 cluster on TACC. The class has 2000 SUs across 50 students,
meaning that each student gets roughly 40 node-hours on this resource (though in practice you can use more
since not every student will be using TACC). Try to reserve this for when your model is working and you
need to run full-scale experiments.

Submission

You should submit your final report in a single PDF on Canvas. No other datasets, code, results, etc. need to
be uploaded.

Slip Days Slip days may not be used for any component of this project.

References

Pradeep Dasigi, Nelson F. Liu, Ana Marasovic, Noah A. Smith, and Matt Gardner. 2019. QUOREF: A Reading
Comprehension Dataset with Questions Requiring Coreferential Reasoning. In arXiv.

4



Yotam Eshel, Noam Cohen, Kira Radinsky, Shaul Markovitch, Ikuya Yamada, and Omer Levy. 2017. Named En-
tity Disambiguation for Noisy Text. In Proceedings of the 21st Conference on Computational Natural Language
Learning (CoNLL).

Catherine Finegan-Dollak, Jonathan K. Kummerfeld, Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui Zhang,
and Dragomir Radev. 2018. Improving Text-to-SQL Evaluation Methodology. In Proceedings of the Association
for Computational Linguistics (ACL).

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. 2017. TriviaQA: A Large Scale Distantly Supervised
Challenge Dataset for Reading Comprehension. In Proceedings of the Association for Computational Linguistics
(ACL).

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. 2017. RACE: Large-scale ReAding Compre-
hension Dataset From Examinations. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP).

Kevin Lin, Oyvind Tafjord, Peter Clark, and Matt Gardner. 2019. Reasoning Over Paragraph Effects in Situations. In
arXiv.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. 2016. Assessing the Ability of LSTMs to Learn Syntax-Sensitive
Dependencies. In Transactions of the Association for Computational Linguistics.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and Alexander Miller.
2019. Language Models as Knowledge Bases? In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019. How Multilingual is Multilingual BERT? In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics (ACL).

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. SQuAD: 100,000+ Questions for Machine
Comprehension of Text. In Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP).

Lev Ratinov, Dan Roth, Doug Downey, and Mike Anderson. 2011. Local and Global Algorithms for Disambiguation
to Wikipedia. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies (ACL).

Avirup Sil, Gourab Kundu, Radu Florian, and Wael Hamza. 2018. Neural cross-lingual entity linking. In Proceedings
of AAAI.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. BERT Rediscovers the Classical NLP Pipeline. In Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics (ACL).

Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel. 2017. Constructing Datasets for Multi-hop Reading Com-
prehension Across Documents. In arXiv.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and Graham Neubig. 2018. Learning to Mine Aligned
Code and Natural Language Pairs from Stack Overflow. In International Conference on Mining Software Reposi-
tories, MSR, pages 476–486.

5


