
CS388:	Natural	Language	Processing

Greg	Durre8

Lecture	12:	
Dependency	I dependency  

syntax

coordina@on



Administrivia

‣ Project	1	graded,	discussion	at	end	of	lecture

‣Mini	2	due	tonight

‣ Final	project	proposals	due	next	Tuesday



Recall:	Cons@tuency

‣ Tree-structured	syntac@c	analyses	of	sentences

‣ Nonterminals	(NP,	VP,	etc.)	as	well	as	POS  
tags	(bo8om	layer)

‣ Structured	is	defined	by	a	CFG



Recall:	CKY

He wrote a long report on Mars

NP
PP

NP

‣ Find	argmax	P(T|x)	=	argmax	P(T,	x)

‣ Dynamic	programming:	chart	maintains	the 
best	way	of	building	symbol	X	over 
span	(i,	j)

‣ Loop	over	all	split	points	k, 
apply	rules	X	->	Y	Z	to	build  
X	in	every	possible	way

Cocke-Kasami-Younger

i jk

X

Z
Y



Recall:	Top-down	Parsing

‣ Dynamic	programming	version:

‣ Greedy	top-down	version:	at	each	
stage,	predict	split	point	k	and	label	l

(best	way	of	building	i	and	j	involves	
maxing	over	split	point	and	a	single	
label)

‣ Can	score	split	points	and	also	labels



Outline

‣ Dependency	representa@on,	contrast	with	cons@tuency

‣ Projec@vity

‣ Graph-based	dependency	parsers



Dependency	Representa@on



Lexicalized	Parsing

S(ran)

NP(dog)

VP(ran)

PP(to)

NP(house)

DT(the) NN(house)TO(to)VBD(ran)DT(the) NN(dog)
the housetoranthe dog



Dependency	Parsing

DT NNTOVBDDT NN
the housetoranthe dog

‣ Dependency	syntax:	syntac@c	structure	is	defined	by	these	arcs	
‣ Head	(parent,	governor)	connected	to	dependent	(child,	modifier)	
‣ Each	word	has	exactly	one	parent	except	for	the	ROOT	symbol,	
dependencies	must	form	a	directed	acyclic	graph

ROOT

‣ POS	tags	same	as	before,	usually	run	a	tagger	first	as	preprocessing



Dependency	Parsing

DT

NN

TO

VBD

DT

NN

the

house

to

ran

the

dog

‣ S@ll	a	no@on	of	hierarchy!	Subtrees	oben	align	with	cons@tuents



Dependency	Parsing

DT NNTOVBDDT NN
the housetoranthe dog

‣ Can	label	dependencies	according	to	syntac@c	func@on

det

‣Major	source	of	ambiguity	is	in	the	structure,	so	we	focus	on	that	more	
(labeling	separately	with	a	classifier	works	pre8y	well)

nsubj

pobj

detprep



Dependency	vs.	Cons0tuency:	PP	A5achment

‣ Cons@tuency:	several	rule	produc@ons	need	to	change



the	children	ate	the	cake	with	a	spoon

‣ Dependency:	one	word	(with)	assigned	a	different	parent

Dependency	vs.	Cons0tuency:	PP	A5achment

‣More	predicate-argument	focused	view	of	syntax

‣ “What’s	the	main	verb	of	the	sentence?	What	is	its	subject	and	object?”	
—	easier	to	answer	under	dependency	parsing



‣ Cons@tuency:	ternary	rule	NP	->	NP	CC	NP

Dependency	vs.	Cons0tuency:	Coordina0on



dogs	in	houses	and	cats

‣ Dependency:	first	item	is	the	head

Dependency	vs.	Cons0tuency:	Coordina0on

dogs	in	houses	and	cats

‣ Coordina@on	is	decomposed	across	a	few	arcs	as	opposed	to	being	a	
single	rule	produc@on	as	in	cons@tuency

‣ Can	also	choose	and	to	be	the	head
‣ In	both	cases,	headword	doesn’t	really	represent	the	phrase	—	
cons@tuency	representa@on	makes	more	sense

[dogs	in	houses]	and	cats dogs	in	[houses	and	cats]



Stanford	Dependencies
‣ Designed	to	be	prac@cally	useful	for	rela@on	extrac@on

Standard Collapsed

Bills	on	ports	and	immigra@on	were	submi8ed	by	Senator	Brownback,	Republican	of	Kansas



Dependency	vs.	Cons@tuency

‣ Dependency	is	oben	more	useful	in	prac@ce	(models	predicate	argument	
structure)

‣ PP	a8achment	is	be8er	modeled	under	dependency

‣ Coordina@on	is	be8er	modeled	under	cons@tuency

‣ Slightly	different	representa@onal	choices:

‣ Dependency	parsers	are	easier	to	build:	no	“grammar	engineering”,	no	
unaries,	easier	to	get	structured	discrimina@ve	models	working	well

‣ Dependency	parsers	are	usually	faster

‣ Dependencies	are	more	universal	cross-lingually



Universal	Dependencies
‣ Annotate	dependencies	with	the	same	representa@on	in	many	languages

h8p://universaldependencies.org/

English

Bulgarian

Czech

Swiss



Projec@vity

DT

NN

TO

VBD

DT

NN

the

house

to

ran

the

dog

‣ Any	subtree	is	a	con@guous	span	of	the	sentence	<->	tree	is	projec/ve



Projec@vity
‣ Projec@ve	<->	no	“crossing”	arcs

dogs	in	houses	and	cats the	dog	ran	to	the	house

credit:	Language	Log

‣ Crossing	arcs:



Projec@vity	in	other	languages

credit:	Pitler	et	al.	(2013)

‣ (Swiss	German	also	has	famous	non-context-free	construc@ons)

‣ Swiss	German	example



Projec@vity

Pitler	et	al.	(2013)

‣Many	trees	in	other	languages	are	nonprojec@ve

‣ Number	of	trees	produceable	under	different	formalisms



Projec@vity

‣Many	trees	in	other	languages	are	nonprojec@ve

‣ Some	other	formalisms	(that	are	harder	to	parse	in),	most	useful	one	is	1-
Endpoint-Crossing

‣ Number	of	trees	produceable	under	different	formalisms

Pitler	et	al.	(2013)



Graph-Based	Parsing



Defining	Dependency	Graphs

‣Words	in	sentence	x,	tree	T	is	a	collec@on	of	directed	edges	(parent(i),	i)	
for	each	word	i

‣ Each	word	has	exactly	one	parent.	Edges	must	form	a	projec@ve	tree

‣ Log-linear	CRF	(discrimina@ve):

‣ Example	of	a	feature	=	I[head=to	&	modifier=house]	(more	in	a	few	slides)

the housetoranthe dogROOT

P (T |x) = exp

 
X

i

w>f(i, parent(i),x)

!

‣ Parsing	=	iden@fy	parent(i)	for	each	word



Generalizing	CKY

wrote a long report on Mars

4
5

4

2 5

‣ score(2,	7,	4)	=	max(score(2,	7,	4),	new	score)

‣ new	score	=	chart(2,	5,	4)	+	chart(5,	7,	5)	+	edge	score(4	->	5)
‣ DP	chart	with	three	dimensions:	start,	end,	and	head,	start	<=	head	<	end

‣ Time	complexity	of	this?

‣Many	spurious	deriva/ons: 
can	build	the	same	tree	in	many 
ways…need	a	be8er	algorithm

4	=	report
5	=	on

4 7



Eisner’s	Algorithm:	O(n3)

DT NNTOVBDDT NN
the housetoranthe dog

ROOT

‣ Complete	items:	head	is	at	“tall	end”,	may	be	missing	children	on	tall	side

‣ Incomplete	items:	arc	from	“tall”	to	“short”	end,	word	on	short	end	may 
																																																	also	be	missing	children

‣ Cubic-@me	algorithm

‣Maintain	two	dynamic	programming	charts	with	dimension	[n,	n,	2]:



Eisner’s	Algorithm:	O(n3)

DT NNTOVBDDT NN
the housetoranthe dog

ROOT

+

‣ Complete	item:	all	children	are	a8ached,	head	is	at	the	“tall	end”

‣ Incomplete	item:	arc	from	“tall	end”	to	“short	end”,	may	s@ll	expect	children

‣ Take	two	adjacent	complete	items,	add	arc	and	build	incomplete	item

= or

+ =

‣ Take	an	incomplete	item,	complete	it
(other	case	is	
symmetric)



Eisner’s	Algorithm:	O(n3)

DT NNTOVBDDT NN
the housetoranthe dog

ROOT

1)	Build	incomplete	span

2)	Promote	to	complete

3)	Build	incomplete	span

+

=

+

or

=



Eisner’s	Algorithm:	O(n3)

DT NNTOVBDDT NN
the housetoranthe dog

ROOT

+

=

+

or

=
4)	Promote	to	complete



Eisner’s	Algorithm:	O(n3)

DT NNTOVBDDT NN
the housetoranthe dog

ROOT

‣We’ve	built	leb	children	and	right	children	of	ran	as	complete	items

‣ A8aching	to	ROOT	makes	an	incomplete	item	with	leb	children,	a8aches	
with	right	children	subsequently	to	finish	the	parse



Eisner’s	Algorithm

the ran to the housedogROOTthe ran to the housedogROOT

Right	complete

Leb	
complete

Right	incomplete

Leb	
incomplete



Eisner’s	Algorithm

DT NNTOVBDDT NN
the housetoranthe dog

ROOT

‣ Eisner’s	algorithm	doesn’t	have	split	point	ambigui@es	like	CKY	does

‣ Leb	and	right	children	are	built	independently,	heads	are	edges	of	spans

‣ Charts	are	n	x	n	x	2	because	we	need	to	track	arc	direc@on	/	leb	vs	right

Eisner:

n5



Building	Systems

‣ Can	implement	decoding	and	marginal	computa@on	using	Eisner’s	
algorithm	to	max/sum	over	projec@ve	trees

‣ Conceptually	the	same	as	inference/learning	for	sequen@al	CRFs	for	
NER,	can	also	use	margin-based	methods



Features	in	Graph-Based	Parsing

‣ Dynamic	program	exposes	the	parent	and	child	indices

‣McDonald	et	al.	(2005)	—	conjunc@ons	of	parent	and	child	words	+	POS,	
POS	of	words	in	between,	POS	of	surrounding	words

DT NNTOVBDDT NN
the housetoranthe dog

ROOT

‣ HEAD=TO	&	MOD=NN
‣ HEAD=TO	&	MOD-1=the

‣ HEAD=TO	&	MOD=house
‣ ARC_CROSSES=DT

f(i, parent(i),x)



Higher-Order	Parsing

Koo	and	Collins	(2009)

‣ Track	addi@onal	state	during	parsing	so	
we	can	look	at	“grandparents”	(and	
siblings).	O(n4)	dynamic	program	or	
use	approximate	search

DT NNTOVBDDT NN
the housetoranthe dog

ROOT

f(i, parent(i), parent(parent(i)),x)



Biaffine	Neural	Parsing
‣ Neural	CRFs	for	dependency	parsing:	let	c	=	LSTM	embedding	of	i,	p	=	
LSTM	embedding	of	parent(i).	score(i,	parent(i),	x)	=	pTUc

Dozat	and	Manning	(2017)

(num	words	x	hidden	size) (num	words	x	
num	words)

LSTM	looks	at	words	and	POS



Evalua@ng	Dependency	Parsing
‣ UAS:	unlabeled	a8achment	score.	Accuracy	of	choosing	each	word’s	
parent	(n	decisions	per	sentence)

‣ Log-linear	CRF	parser,	decoding	with	Eisner	algorithm:	91	UAS

‣ LAS:	addi@onally	consider	label	for	each	edge

‣ Higher-order	features	from	Koo	parser:	93	UAS

‣ Best	English	results	with	neural	CRFs	(Dozat	and	Manning):	95-96	UAS



HPSG

Pollard	and	Sag	(1994),	Zhou	and	Zhao	(2019)

‣ Head-driven	phrase	structure	
grammar	(HPSG):	very	complex	
grammar	formalism	which	
annotates	large	feature	structures	
over	tree

‣ Very	li8le	work	on	HPSG	in	NLP



Parsing	with	“HPSG”

Zhou	and	Zhao	(2019)

‣ Joint	model	of	cons@tuency	and	dependency	combining	ideas	from	
Dozat	+	Manning	and	Stern	et	al.



Parsing	with	“HPSG”

Zhou	and	Zhao	(2019)

‣ Slightly	stronger	results	
than	Dozat	+	Manning,	
significantly	be8er	
results	on	Chinese



Takeaways

‣ Dependency	parsing	also	has	efficient	dynamic	programs	for	inference

‣ Dependency	formalism	provides	an	alterna@ve	to	cons@tuency,	
par@cularly	useful	in	how	portable	it	is	across	languages

‣ CRFs	+	neural	CRFs	(again)	work	well



Proj	1	Results

Jiaming	Chen:	82.46	F1

Po-Yi	Chen:	82.02	F1

Ting-Yu	Yen:	81.57	F1

All	others	<81

‣WordPair	features,	larger	window	
for	POS	tag	extrac@on	([-2,	2])

‣ Also	larger	window	and	data	
shuffling	in	between	epochs

‣ City	gaze8eer,	generic	date	
recognizer

Prakhar	Singh:	81.54	F1

‣ Unregularized	Adagrad	worked	
best


