CS388: Natural Language Processing

Lecture 12: Dependency I

coordination

dependency syntax

Greg Durrett

The University of Texas at Austin
Administrivia

- Project 1 graded, discussion at end of lecture
- Mini 2 due tonight
- Final project proposals due next Tuesday
Recall: Constituency

- Tree-structured syntactic analyses of sentences
- Nonterminals (NP, VP, etc.) as well as POS tags (bottom layer)
- Structured is defined by a CFG
Recall: CKY

- Find \(\text{argmax } P(T | x) = \text{argmax } P(T, x) \)

- Dynamic programming: chart maintains the best way of building symbol \(X \) over span \((i, j)\)

- Loop over all split points \(k \), apply rules \(X \rightarrow Y Z \) to build \(X \) in every possible way

Cocke-Kasami-Younger
Can score split points and also labels

Dynamic programming version:

\[s_{\text{best}}(i, j) = \max_{\ell, k} [s_{\text{label}}(i, j, \ell) + \tilde{s}_{\text{split}}(i, k, j)] \]

(best way of building \(i \) and \(j \) involves maxing over split point and a single label)

Greedy top-down version: at each stage, predict split point \(k \) and label \(\ell \)

\[(\ell, \hat{k}) = \arg\max_{\ell, k} [s_{\text{label}}(i, j, \ell) + s_{\text{split}}(i, k, j)] \]
Outline

- Dependency representation, contrast with constituency

- Projectivity

- Graph-based dependency parsers
Dependency Representation
Lexicalized Parsing

- S(ran)
 - VP(ran)
 - NP(dog)
 - DT(the) the
 - NN(dog) dog
 - PP(to)
 - DT(the) the
 - VBD(ran) ran
 - TO(to) to
 - NP(house)
 - DT(the) the
 - NN(house) house
 Dependency Parsing

- Dependency syntax: syntactic structure is defined by these arcs
- Head (parent, governor) connected to dependent (child, modifier)
- Each word has exactly one parent except for the ROOT symbol, dependencies must form a directed acyclic graph

POS tags same as before, usually run a tagger first as preprocessing
Still a notion of hierarchy! Subtrees often align with constituents.
Dependency Parsing

- Can label dependencies according to syntactic function
- Major source of ambiguity is in the structure, so we focus on that more (labeling separately with a classifier works pretty well)
Constituency: several rule productions need to change
Dependency vs. Constituency: PP Attachment

- Dependency: one word (with) assigned a different parent

 the children ate the cake with a spoon

- More predicate-argument focused view of syntax

- “What’s the main verb of the sentence? What is its subject and object?” — easier to answer under dependency parsing
Dependency vs. Constituency: Coordination

- Constituency: ternary rule NP -> NP CC NP
Dependency vs. Constituency: Coordination

- Dependency: first item is the head

 - Dependency:
 - dogs in houses and cats
 - [dogs in houses] and cats

 - Coordination is decomposed across a few arcs as opposed to being a single rule production as in constituency

 - Can also choose *and* to be the head

 - In both cases, headword doesn’t really represent the phrase — constituency representation makes more sense
Stanford Dependencies

- Designed to be practically useful for relation extraction

Bills on ports and immigration were submitted by Senator Brownback, Republican of Kansas
Dependency vs. Constituency

- Dependency is often more useful in practice (models predicate argument structure)
- Slightly different representational choices:
 - PP attachment is better modeled under dependency
 - Coordination is better modeled under constituency
- Dependency parsers are easier to build: no “grammar engineering”, no unaries, easier to get structured discriminative models working well
- Dependency parsers are usually faster
- Dependencies are more universal cross-lingually
Universal Dependencies

- Annotate dependencies with the same representation in many languages

English:
1. The dog was chased by the cat

Bulgarian:
2. Кучето се преследваше от котката

Czech:
3. Pes byl honěn kočkou

Swiss:
4. Hunden jagades av katten

http://universaldependencies.org/
Any subtree is a contiguous span of the sentence <-> tree is projective
Projectivity

- Projective <-> no “crossing” arcs

- Crossing arcs:

 dogs in houses and cats
 the dog ran to the house

credit: Language Log
Projectivity in other languages

- Swiss-German has famous non-context-free constructions

credit: Pitler et al. (2013)
Projectivity

- Number of trees produceable under different formalisms

<table>
<thead>
<tr>
<th></th>
<th>Arabic</th>
<th>Czech</th>
<th>Danish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projective</td>
<td>1297 (88.8)</td>
<td>55872 (76.8)</td>
<td>4379 (84.4)</td>
</tr>
<tr>
<td>Sentences</td>
<td>1460</td>
<td>72703</td>
<td>5190</td>
</tr>
</tbody>
</table>

- Many trees in other languages are nonprojective

Pitler et al. (2013)
Projectivity

- Number of trees produceable under different formalisms

<table>
<thead>
<tr>
<th></th>
<th>Arabic</th>
<th>Czech</th>
<th>Danish</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Endpoint-Crossing</td>
<td>1457 (99.8)</td>
<td>71810 (98.8)</td>
<td>5144 (99.1)</td>
</tr>
<tr>
<td>Well-nested, block degree 2</td>
<td>1458 (99.9)</td>
<td>72321 (99.5)</td>
<td>5175 (99.7)</td>
</tr>
<tr>
<td>Gap-Minding</td>
<td>1394 (95.5)</td>
<td>70695 (97.2)</td>
<td>4985 (96.1)</td>
</tr>
<tr>
<td>Projective</td>
<td>1297 (88.8)</td>
<td>55872 (76.8)</td>
<td>4379 (84.4)</td>
</tr>
<tr>
<td>Sentences</td>
<td>1460</td>
<td>72703</td>
<td>5190</td>
</tr>
</tbody>
</table>

- Many trees in other languages are nonprojective

- Some other formalisms (that are harder to parse in), most useful one is 1-Endpoint-Crossing

Pitler et al. (2013)
Graph-Based Parsing
Defining Dependency Graphs

- Words in sentence \(x \), tree \(T \) is a collection of directed edges \((\text{parent}(i), i)\) for each word \(i \)
 - Parsing = identify parent \((i)\) for each word
 - Each word has exactly one parent. Edges must form a projective tree

- Log-linear CRF (discriminative):
 \[
P(T|x) = \exp \left(\sum_i w^\top f(i, \text{parent}(i), x) \right)
\]

- Example of a feature = \(I[\text{head=to} \& \text{modifier}=\text{house}] \) (more in a few slides)
Generalizing CKY

- Score matrix with three dimensions: start, end, and head, start ≤ head < end
- new score = score(2, 5, 4) + score(5, 7, 5) + edge score(4 -> 5)
- score(2, 7, 4) = max(score(2, 7, 4), new score)
- Time complexity of this?
- Many spurious derivations: can build the same tree in many ways...need a better algorithm
Eisner’s Algorithm: $O(n^3)$

- Cubic-time algorithm
- Maintain two dynamic programming charts with dimension $[n, n, 2]$:
 - **Complete items**: head is at “tall end”, may be missing children on tall side
 - **Incomplete items**: arc from “tall” to “short” end, word on short end may also be missing children

ROOT

<table>
<thead>
<tr>
<th>DT</th>
<th>NN</th>
<th>VBD</th>
<th>TO</th>
<th>DT</th>
<th>NN</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>dog</td>
<td>ran</td>
<td>to</td>
<td>the</td>
<td>house</td>
</tr>
</tbody>
</table>
Eisner’s Algorithm: O(n^3)

- **Complete item**: all children are attached, head is at the “tall end”
- **Incomplete item**: arc from “tall end” to “short end”, may still expect children

- Take two adjacent complete items, add arc and build incomplete item

 \[
 \begin{align*}
 \text{Complete item:} & \quad \text{all children are attached, head is at the “tall end”} \\
 \text{Incomplete item:} & \quad \text{arc from “tall end” to “short end”, may still expect children}
 \end{align*}
 \]

- **Take two adjacent complete items, add arc and build incomplete item**

 \[
 \begin{align*}
 \text{Take two adjacent complete items, add arc and build incomplete item}
 \end{align*}
 \]

- **Take an incomplete item, complete it**

 \[
 \begin{align*}
 \text{Take an incomplete item, complete it}
 \end{align*}
 \]

 (other case is symmetric)
Eisner’s Algorithm: $O(n^3)$

1) Build incomplete span

2) Promote to complete

3) Build incomplete span

ROOT

DT the

NN dog

VBD ran

TO to

DT the

NN house
Eisner’s Algorithm: $O(n^3)$
Eisner’s Algorithm: $O(n^3)$

- Attaching to ROOT makes an incomplete item with left children, attaches with right children subsequently to finish the parse.

- We’ve built left children and right children of *ran* as complete items.
Eisner’s Algorithm

Right complete

Left complete

Right incomplete

Left incomplete
Eisner’s Algorithm

- Eisner’s algorithm doesn’t have split point ambiguities like CKY does
- Left and right children are built independently, heads are edges of spans
- Charts are $n \times n \times 2$ because we need to track arc direction / left vs right

Eisner:

n^5

ROOT

DT
the

NN
dog

VBD
ran

TO
to

DT
the

NN
house
Building Systems

- Can implement decoding and marginal computation using Eisner’s algorithm to max/sum over projective trees

- Conceptually the same as inference/learning for sequential CRFs for NER, can also use margin-based methods
Dynamic program exposes the parent and child indices

\[f(i, \text{parent}(i), x) \]

- McDonald et al. (2005) — conjunctions of parent and child words + POS, POS of words in between, POS of surrounding words
 - HEAD=TO & MOD=NN
 - HEAD=TO & MOD-1=the
 - HEAD=TO & MOD=house
 - ARC_CROSSES=DT
Higher-Order Parsing

\[f(i, \text{parent}(i), \text{parent(parent}(i)), x) \]

- Track additional state during parsing so we can look at “grandparents” (and siblings). \(O(n^4) \) dynamic program or use approximate search

Koo and Collins (2009)
Neural CRFs for dependency parsing: let $c = \text{LSTM embedding of } i$, $p = \text{LSTM embedding of parent}(i)$. $\text{score}(i, \text{parent}(i), x) = p^T U c$

LSTM looks at words and POS

Dozat and Manning (2017)
Evaluating Dependency Parsing

- UAS: unlabeled attachment score. Accuracy of choosing each word’s parent \((n\) decisions per sentence)
- LAS: additionally consider label for each edge
- Log-linear CRF parser, decoding with Eisner algorithm: 91 UAS
- Higher-order features from Koo parser: 93 UAS
- Best English results with neural CRFs (Dozat and Manning): 95-96 UAS
Head-driven phrase structure grammar (HPSG): very complex grammar formalism which annotates large feature structures over tree

Very little work on HPSG in NLP since no real treebank exists

Parsing with “HPSG”

- Joint model of constituency and dependency combining ideas from Dozat + Manning and Stern et al.

Zhou and Zhao (2019)
Slightly stronger results than Dozat + Manning, significantly better results on Chinese

<table>
<thead>
<tr>
<th>Model</th>
<th>English</th>
<th></th>
<th>Chinese</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UAS</td>
<td>LAS</td>
<td>UAS</td>
<td>LAS</td>
</tr>
<tr>
<td>Chen and Manning (2014)</td>
<td>91.8</td>
<td>89.6</td>
<td>83.9</td>
<td>82.4</td>
</tr>
<tr>
<td>Andor et al. (2016)</td>
<td>94.61</td>
<td>92.79</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zhang et al. (2016)</td>
<td>93.42</td>
<td>91.29</td>
<td>87.65</td>
<td>86.17</td>
</tr>
<tr>
<td>Cheng et al. (2016)</td>
<td>94.10</td>
<td>91.49</td>
<td>88.1</td>
<td>85.7</td>
</tr>
<tr>
<td>Kuncoro et al. (2016)</td>
<td>94.26</td>
<td>92.06</td>
<td>88.87</td>
<td>87.30</td>
</tr>
<tr>
<td>Ma and Hovy (2017)</td>
<td>94.88</td>
<td>92.98</td>
<td>89.05</td>
<td>87.74</td>
</tr>
<tr>
<td>Dozat and Manning (2017)</td>
<td>95.74</td>
<td>94.08</td>
<td>89.30</td>
<td>88.23</td>
</tr>
<tr>
<td>Li et al. (2018a)</td>
<td>94.11</td>
<td>92.08</td>
<td>88.78</td>
<td>86.23</td>
</tr>
<tr>
<td>Ma et al. (2018)</td>
<td>95.87</td>
<td>94.19</td>
<td>90.59</td>
<td>89.29</td>
</tr>
<tr>
<td>Our (Division)</td>
<td>94.32</td>
<td>93.09</td>
<td>89.14</td>
<td>87.31</td>
</tr>
<tr>
<td>Our (Joint)</td>
<td>96.09</td>
<td>94.68</td>
<td>91.21</td>
<td>89.15</td>
</tr>
<tr>
<td>Our (Division*)</td>
<td>-</td>
<td>-</td>
<td>91.69</td>
<td>90.54</td>
</tr>
<tr>
<td>Our (Joint*)</td>
<td>-</td>
<td>-</td>
<td>93.24</td>
<td>91.95</td>
</tr>
</tbody>
</table>

Zhou and Zhao (2019)
Takeaways

- Dependency formalism provides an alternative to constituency, particularly useful in how portable it is across languages.

- Dependency parsing also has efficient dynamic programs for inference.

- CRFs + neural CRFs (again) work well.