CS388: Natural Language Processing

Lecture 12: Dependency I

Greg Durrett

Recall: Constituency

- Tree-structured syntactic analyses of sentences
- Nonterminals (NP, VP, etc.) as well as POS tags (bottom layer)
- Structured is defined by a CFG

Recall: CKY

- Find $\text{argmax } P(T|\mathbf{x}) = \text{argmax } P(T, \mathbf{x})$
- Dynamic programming: chart maintains the best way of building symbol X over span (i, j)
- Loop over all split points k, apply rules $X \rightarrow Y Z$ to build X in every possible way

 Administrivia

- Project 1 graded, discussion at end of lecture
- Mini 2 due tonight
- Final project proposals due next Tuesday
Recall: Top-down Parsing

- Can score split points and also labels
- Dynamic programming version:
 \[n_{\text{best}}(i, j) = \max_{\ell,k} [n_{\text{label}}(i, j, \ell) + n_{\text{split}}(i, k, j)] \]
 (best way of building \(i \) and \(j \) involves maxing over split point and a single label)
- Greedy top-down version: at each stage, predict split point \(k \) and label \(l \)
 \[(\hat{\ell}, \hat{k}) = \arg\max_{\ell,k} [n_{\text{label}}(i, j, \ell) + n_{\text{split}}(i, k, j)] \]

Outline

- Dependency representation, contrast with constituency
- Projectivity
- Graph-based dependency parsers

Dependency Representation

Lexicalized Parsing
Dependency Parsing

- Dependency syntax: syntactic structure is defined by these arcs
- Head (parent, governor) connected to dependent (child, modifier)
- Each word has exactly one parent except for the ROOT symbol, dependencies must form a directed acyclic graph
- POS tags same as before, usually run a tagger first as preprocessing

Sall a notion of hierarchy! Subtrees often align with constituents

Can label dependencies according to syntactic function

Major source of ambiguity is in the structure, so we focus on that more (labeling separately with a classifier works pretty well)

Constituency: several rule productions need to change
Dependency vs. Constituency: PP Attachment

- Dependency: one word (with) assigned a different parent
- More predicate-argument focused view of syntax
- “What’s the main verb of the sentence? What is its subject and object?” — easier to answer under dependency parsing

Stanford Dependencies

- Designed to be practically useful for relation extraction

Bills on ports and immigration were submitted by Senator Brownback, Republican of Kansas
Dependency vs. Constituency

- Dependency is often more useful in practice (models predicate argument structure)
- Slightly different representational choices:
 - PP attachment is better modeled under dependency
 - Coordination is better modeled under constituency
- Dependency parsers are easier to build: no “grammar engineering”, no unaries, easier to get structured discriminative models working well
- Dependency parsers are usually faster
- Dependencies are more universal cross-lingually

Universal Dependencies

- Annotate dependencies with the same representation in many languages

Projectivity

- Any subtree is a contiguous span of the sentence <-> tree is projective

Projectivity

- Projective <-> no “crossing” arcs

Crossing arcs:

- dogs in houses and cats
- the dog ran to the house

credit: Language Log
Projectivity in other languages

- Swiss-German has famous non-context-free constructions

Number of trees produceable under different formalisms

<table>
<thead>
<tr>
<th></th>
<th>Arabic</th>
<th>Czech</th>
<th>Danish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projective</td>
<td>1297 (88.8)</td>
<td>55872 (76.8)</td>
<td>4379 (84.4)</td>
</tr>
<tr>
<td>Sentences</td>
<td>1460</td>
<td>72703</td>
<td>5190</td>
</tr>
</tbody>
</table>

- Many trees in other languages are nonprojective

Graph-Based Parsing

- Some other formalisms (that are harder to parse in), most useful one is 1-Endpoint-Crossing

credit: Pitler et al. (2013)
Defining Dependency Graphs

- Words in sentence x, tree T is a collection of directed edges $(\text{parent}(i), i)$ for each word i
 - Parsing = identify parent(i) for each word
 - Each word has exactly one parent. Edges must form a projective tree
- Log-linear CRF (discriminative): $P(T|x) = \exp \left(\sum_i w^T f(i, \text{parent}(i), x) \right)$
- Example of a feature = $l[\text{head=}to \& \text{modifier=}house]$ (more in a few slides)

Generalizing CKY

- Score matrix with three dimensions: start, end, and head, start \leq head \leq end
- new score = score($2, 5, 4$) + score($5, 7, 5$) + edge score($4 \rightarrow 5$)
- score($2, 7, 4$) = max(score($2, 7, 4$), new score)
- Time complexity of this?
- Many spurious derivations: can build the same tree in many ways...need a better algorithm

Eisner’s Algorithm: $O(n^3)$

- Cubic-time algorithm
- Maintain two dynamic programming charts with dimension [n, n, 2]:
 - Complete items: head is at “tall end”, may be missing children on tall side
 - Incomplete items: arc from “tall” to “short” end, word on short end may also be missing children

Eisner’s Algorithm: $O(n^3)$

- Complete item: all children are attached, head is at the “tall end”
- Incomplete item: arc from “tall end” to “short end”, may still expect children
 - Take two adjacent complete items, add arc and build incomplete item
 - Take an incomplete item, complete it
 (other case is symmetric)
Eisner’s Algorithm: $O(n^3)$

1) Build incomplete span
2) Promote to complete
3) Build incomplete span

- $\uparrow + \downarrow = \uparrow$
- $\uparrow + \downarrow = \downarrow$

ROOT DT NN VBD TO DT NN
the dog ran to the house

Eisner’s Algorithm: $O(n^3)$

4) Promote to complete

ROOT DT NN VBD TO DT NN
the dog ran to the house

‣ We’ve built left children and right children of ran as complete items

‣ Attaching to ROOT makes an incomplete item with left children, attaches with right children subsequently to finish the parse
Eisner’s Algorithm

- Eisner’s algorithm doesn’t have split point ambiguities like CKY does
- Left and right children are built independently, heads are edges of spans
- Charts are $n \times n \times 2$ because we need to track arc direction / left vs right

```
Eisner:

n^2

ROOT   DT   NN
the   dog
VBD   TO   DT   NN
ran   to   the   house
```

Building Systems

- Can implement decoding and marginal computation using Eisner’s algorithm to max/sum over projective trees
- Conceptually the same as inference/learning for sequential CRFs for NER, can also use margin-based methods

```
Can implement decoding and marginal computation using Eisner’s algorithm to max/sum over projective trees
```

Features in Graph-Based Parsing

- Dynamic program exposes the parent and child indices
 \[
 f(i, parent(i), x)
 \]
- McDonald et al. (2005) — conjunctions of parent and child words + POS, POS of words in between, POS of surrounding words
- $\text{HEAD}=\text{TO} \& \text{MOD}=%\text{NN}$
- $\text{HEAD}=\text{TO} \& \text{MOD}=\text{house}$
- $\text{HEAD}=\text{TO} \& \text{MOD-1}=\text{the}$
- $\text{ARC_CROSSES}=\text{DT}$

```
Features in Graph-Based Parsing:

f(i, parent(i), parent(parent(i)), x)
```

Higher-Order Parsing

- Track additional state during parsing so we can look at “grandparents” (and siblings). \(O(n^4)\) dynamic program or use approximate search

```
Higher-Order Parsing:

f(i, parent(i), parent(parent(i)), x)
```
Biaffine Neural Parsing

- Neural CRFs for dependency parsing: let $c = \text{LSTM embedding of } i$, $p = \text{LSTM embedding of parent}(i)$, $\text{score}(i, \text{parent}(i), x) = p^T U c$

Evaluating Dependency Parsing

- UAS: unlabeled attachment score. Accuracy of choosing each word’s parent (n decisions per sentence)
- LAS: additionally consider label for each edge
- Log-linear CRF parser, decoding with Eisner algorithm: 91 UAS
- Higher-order features from Koo parser: 93 UAS
- Best English results with neural CRFs (Dozat and Manning): 95-96 UAS

HPSG

- Head-driven phrase structure grammar (HPSG): very complex grammar formalism which annotates large feature structures over tree
- Very little work on HPSG in NLP since no real treebank exists

Parsing with “HPSG”

- Joint model of constituency and dependency combining ideas from Dozat + Manning and Stern et al.
Parsing with “HPSG”

- Slightly stronger results than Dozat + Manning, significantly better results on Chinese

<table>
<thead>
<tr>
<th>Model</th>
<th>English UAS</th>
<th>English LAS</th>
<th>Chinese UAS</th>
<th>Chinese LAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen and Manning (2014)</td>
<td>91.8</td>
<td>89.6</td>
<td>83.9</td>
<td>82.4</td>
</tr>
<tr>
<td>Andor et al. (2016)</td>
<td>94.61</td>
<td>92.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang et al. (2016)</td>
<td>93.42</td>
<td>91.29</td>
<td>87.65</td>
<td>86.17</td>
</tr>
<tr>
<td>Cheng et al. (2016)</td>
<td>94.10</td>
<td>91.49</td>
<td>88.1</td>
<td>85.7</td>
</tr>
<tr>
<td>Kuncoro et al. (2016)</td>
<td>94.26</td>
<td>92.06</td>
<td>88.87</td>
<td>87.30</td>
</tr>
<tr>
<td>Ma and Hovy (2017)</td>
<td>94.88</td>
<td>92.98</td>
<td>89.05</td>
<td>87.74</td>
</tr>
<tr>
<td>Dozat and Manning (2017)</td>
<td>95.74</td>
<td>94.08</td>
<td>89.30</td>
<td>88.23</td>
</tr>
<tr>
<td>Li et al. (2018a)</td>
<td>94.11</td>
<td>92.08</td>
<td>88.78</td>
<td>86.23</td>
</tr>
<tr>
<td>Ma et al. (2018)</td>
<td>95.87</td>
<td>94.19</td>
<td>90.59</td>
<td>89.29</td>
</tr>
<tr>
<td>Our (Division)</td>
<td>94.32</td>
<td>93.09</td>
<td>89.14</td>
<td>87.31</td>
</tr>
<tr>
<td>Our (Joint)</td>
<td>96.09</td>
<td>94.68</td>
<td>91.21</td>
<td>89.15</td>
</tr>
<tr>
<td>Our (Division*)</td>
<td>-</td>
<td>-</td>
<td>91.69</td>
<td>90.54</td>
</tr>
<tr>
<td>Our (Joint*)</td>
<td>-</td>
<td>-</td>
<td>93.24</td>
<td>91.95</td>
</tr>
</tbody>
</table>

Zhou and Zhao (2019)

Takeaways

- Dependency formalism provides an alternative to constituency, particularly useful in how portable it is across languages
- Dependency parsing also has efficient dynamic programs for inference
- CRFs + neural CRFs (again) work well