Recall: Constituency

- Tree-structured syntactic analyses of sentences
- Nonterminals (NP, VP, etc.) as well as POS tags (bottom layer)
- Structured is defined by a CFG

Recall: CKY

- Find $\text{argmax } P(T|x) = \text{argmax } P(T, x)$
- Dynamic programming: chart maintains the best way of building symbol X over span (i, j)
- Loop over all split points k, apply rules $X \rightarrow Y Z$ to build X in every possible way

He wrote a long report on Mars

Cocke-Kasami-Younger
Recall: Top-down Parsing

- Can score split points and also labels
- Dynamic programming version:
 \[s_{\text{best}}(i, j) = \max_{\ell, k} [s_{\text{label}}(i, j, \ell) + s_{\text{split}}(i, k, j)] \]
 (best way of building \(i\) and \(j\) involves maxing over split point and a single label)
- Greedy top-down version: at each stage, predict split point \(k\) and label \(l\)
 \[(\hat{\ell}, \hat{k}) = \arg\max_{\ell, k} [s_{\text{label}}(i, j, \ell) + s_{\text{split}}(i, k, j)] \]

Outline

- Dependency representation, contrast with constituency
 - Projectivity
- Graph-based dependency parsers

Dependency Representation

Lexicalized Parsing
Dependency Parsing

- Dependency syntax: syntactic structure is defined by these arcs
- Head (parent, governor) connected to dependent (child, modifier)
- Each word has exactly one parent except for the ROOT symbol, dependencies must form a directed acyclic graph

- POS tags same as before, usually run a tagger first as preprocessing

Dependency Parsing

- Still a notion of hierarchy! Subtrees often align with constituents

Dependency vs. Constituency: PP Attachment

- Constituency: several rule productions need to change
Dependency vs. Constituency: PP Attachment

- Dependency: one word (with) assigned a different parent

 - the children ate the cake with a spoon

- More predicate-argument focused view of syntax

- “What’s the main verb of the sentence? What is its subject and object?” — easier to answer under dependency parsing

Dependency vs. Constituency: Coordination

- Constituency: ternary rule NP -> NP CC NP

Dependency vs. Constituency: Coordination

- Dependency: first item is the head

 - dogs in houses and cats

- Coordination is decomposed across a few arcs as opposed to being a single rule production as in constituency

- Can also choose and to be the head

- In both cases, headword doesn’t really represent the phrase — constituency representation makes more sense

Stanford Dependencies

- Designed to be practically useful for relation extraction

 Bills on ports and immigration were submitted by Senator Brownback, Republican of Kansas

 - Standard
 -Collapsed
Dependency vs. Constituency

- Dependency is often more useful in practice (models predicate argument structure)
- Slightly different representational choices:
 - PP attachment is better modeled under dependency
 - Coordination is better modeled under constituency
- Dependency parsers are easier to build: no “grammar engineering”, no unaries, easier to get structured discriminative models working well
- Dependency parsers are usually faster
- Dependencies are more universal cross-lingually

Universal Dependencies

- Annotate dependencies with the same representation in many languages

Projectivity

- Any subtree is a contiguous span of the sentence <-> tree is projective

Projectivity

- Projective <-> no “crossing” arcs
- Crossing arcs:
 - dogs in houses and cats
 - the dog ran to the house

credit: Language Log
Projectivity in other languages

- Swiss German example

- (Swiss German also has famous non-context-free constructions)

credit: Pitler et al. (2013)

Projectivity

- Many trees in other languages are nonprojective

Some other formalisms (that are harder to parse in), most useful one is 1-Endpoint-Crossing

credit: Pitler et al. (2013)

Graph-Based Parsing

- Number of trees produceable under different formalisms

<table>
<thead>
<tr>
<th></th>
<th>Arabic</th>
<th>Czech</th>
<th>Danish</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Endpoint-Crossing</td>
<td>1457 (99.8)</td>
<td>71810 (98.8)</td>
<td>5144 (99.1)</td>
</tr>
<tr>
<td>Well-nested, block degree 2</td>
<td>1458 (99.9)</td>
<td>72321 (99.5)</td>
<td>5175 (99.7)</td>
</tr>
<tr>
<td>Gap-Minding</td>
<td>1394 (95.5)</td>
<td>70695 (97.2)</td>
<td>4985 (96.1)</td>
</tr>
<tr>
<td>Projective</td>
<td>1297 (88.8)</td>
<td>55872 (76.8)</td>
<td>4379 (84.4)</td>
</tr>
<tr>
<td>Sentences</td>
<td>1460</td>
<td>72703</td>
<td>5190</td>
</tr>
</tbody>
</table>

Pitler et al. (2013)
Defining Dependency Graphs

- Words in sentence x, tree T is a collection of directed edges $(\text{parent}(i), i)$ for each word i.
 - Parsing = identify $\text{parent}(i)$ for each word
 - Each word has exactly one parent. Edges must form a projective tree
- Log-linear CRF (discriminative): $P(T|x) = \exp \left(\sum_i w^T f(i, \text{parent}(i), x) \right)$
- Example of a feature = $l[\text{head} = \text{to} \& \text{modifier} = \text{house}]$ (more in a few slides)

```
ROOT the dog ran to the house
```

Generalizing CKY

- DP chart with three dimensions: start, end, and head, $\text{start} \leq \text{head} < \text{end}$
- New score = $\text{chart}(2, 5, 4) + \text{chart}(5, 7, 5) + \text{edge score}(4 \rightarrow 5)$
- $\text{score}(2, 7, 4) = \max(\text{score}(2, 7, 4), \text{new score})$
- Time complexity of this?
- Many spurious derivations: can build the same tree in many ways...need a better algorithm

```
4 = report
5 = on
```

Eisner’s Algorithm: $O(n^3)$

- Cubic-time algorithm
- Maintain two dynamic programming charts with dimension $[n, n, 2]$:
 - Complete items: head is at “tall end”, may be missing children on tall side
 - Incomplete items: arc from “tall” to “short” end, word on short end may also be missing children

```
ROOT DT NN VBD TO DT NN
```

Eisner’s Algorithm: $O(n^3)$

- Complete item: all children are attached, head is at the “tall end”
- Incomplete item: arc from “tall end” to “short end”, may still expect children
- Take two adjacent complete items, add arc and build incomplete item
- Take an incomplete item, complete it

```
ROOT DT NN VBD TO DT NN
```

```
**Eisner's Algorithm: \(O(n^3)\)**

1. Build incomplete span
2. Promote to complete
3. Build incomplete span

\[
\begin{align*}
\text{ROOT} & \quad \text{DT} \quad \text{NN} \quad \text{VBD} \quad \text{TO} \quad \text{DT} \quad \text{NN} \\
\text{the} & \quad \text{dog} \quad \text{ran} \quad \text{to} \quad \text{the} \quad \text{house}
\end{align*}
\]

**Eisner’s Algorithm: \(O(n^3)\)**

4. Promote to complete

\[
\begin{align*}
\text{ROOT} & \quad \text{DT} \quad \text{NN} \quad \text{VBD} \\
\text{the} & \quad \text{dog} \quad \text{ran} \quad \text{to} \quad \text{the} \quad \text{house}
\end{align*}
\]

**Eisner’s Algorithm: \(O(n^3)\)**

- Attaching to \(\text{ROOT}\) makes an incomplete item with left children, attaches with right children subsequently to finish the parse.
- We've built left children and right children of \(\text{ran}\) as complete items.

\[
\begin{align*}
\text{ROOT} & \quad \text{DT} \quad \text{NN} \quad \text{VBD} \quad \text{TO} \quad \text{DT} \quad \text{NN} \\
\text{the} & \quad \text{dog} \quad \text{ran} \quad \text{to} \quad \text{the} \quad \text{house}
\end{align*}
\]
**Eisner’s Algorithm**

- Eisner’s algorithm doesn’t have split point ambiguities like CKY does
- Left and right children are built independently, heads are edges of spans
- Charts are $n \times n \times 2$ because we need to track arc direction / left vs right

Eisner:

- $n^5$
- $\text{ROOT}$
  - $\text{DT}$
  - $\text{NN}$
  - $\text{VBD}$
  - $\text{TO}$
  - $\text{DT}$
  - $\text{NN}$

**Building Systems**

- Can implement decoding and marginal computation using Eisner’s algorithm to max/sum over projective trees
- Conceptually the same as inference/learning for sequential CRFs for NER, can also use margin-based methods

**Features in Graph-Based Parsing**

- Dynamic program exposes the parent and child indices
- $f(i, \text{parent}(i), x)$

- McDonald et al. (2005) — conjunctions of parent and child words + POS, POS of words in between, POS of surrounding words
- $\text{HEAD}=\text{TO} & \text{MOD}=\text{NN}$
- $\text{HEAD}=\text{TO} & \text{MOD}=\text{house}$
- $\text{HEAD}=\text{TO} & \text{MOD}=1=\text{the}$
- $\text{ARC}_\text{CROSSES}=\text{DT}$

**Higher-Order Parsing**

- Track additional state during parsing so we can look at “grandparents” (and siblings). $O(n^4)$ dynamic program or use approximate search

Koo and Collins (2009)
Biaffine Neural Parsing

- Neural CRFs for dependency parsing: let \( c = \text{LSTM embedding of } i, p = \text{LSTM embedding of parent}(i) \). \( \text{score}(i, \text{parent}(i), x) = p^T U c \)

\[
\begin{align*}
H_{\text{(src-dep)}} & \odot \ 1 \\
H_{\text{(src-head)}} & \odot \ U_{\text{src}} \\
H_{\text{(arc-dep)}} & \odot \ U_{\text{arc}} \\
H_{\text{(arc-head)}} & \odot \ U_{\text{arc}} \\
S & = (\text{num words x hidden size})
\end{align*}
\]

MLP: \( h_{\text{(arc-dep)}}^i, h_{\text{(arc-head)}}^i \)
BiLSTM: \( r_i \)
Embeddings: \( x_i \)

LSTM looks at words and POS

Dozat and Manning (2017)

Evaluating Dependency Parsing

- UAS: unlabeled attachment score. Accuracy of choosing each word’s parent (\( n \) decisions per sentence)
- LAS: additionally consider label for each edge
- Log-linear CRF parser, decoding with Eisner algorithm: 91 UAS
- Higher-order features from Koo parser: 93 UAS
- Best English results with neural CRFs (Dozat and Manning): 95-96 UAS

HPSG

- Head-driven phrase structure grammar (HPSG): very complex grammar formalism which annotates large feature structures over tree
- Very little work on HPSG in NLP

Joint model of constituency and dependency combining ideas from Dozat + Manning and Stern et al.


Parsing with “HPSG”
Parsing with “HPSG”

- Slightly stronger results than Dozat + Manning, significantly better results on Chinese

<table>
<thead>
<tr>
<th>Model</th>
<th>English</th>
<th>Chinese</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UAS</td>
<td>LAS</td>
</tr>
<tr>
<td>Chen and Manning (2014)</td>
<td>91.8</td>
<td>89.6</td>
</tr>
<tr>
<td>Andor et al. (2016)</td>
<td>94.61</td>
<td>92.79</td>
</tr>
<tr>
<td>Zhang et al. (2016)</td>
<td>93.42</td>
<td>91.29</td>
</tr>
<tr>
<td>Cheng et al. (2016)</td>
<td>94.10</td>
<td>91.49</td>
</tr>
<tr>
<td>Kuncoro et al. (2016)</td>
<td>94.26</td>
<td>92.06</td>
</tr>
<tr>
<td>Ma and Hovy (2017)</td>
<td>94.88</td>
<td>92.98</td>
</tr>
<tr>
<td>Dozat and Manning (2017)</td>
<td>95.74</td>
<td>94.08</td>
</tr>
<tr>
<td>Li et al. (2018a)</td>
<td>94.11</td>
<td>92.08</td>
</tr>
<tr>
<td>Ma et al. (2018)</td>
<td>95.87</td>
<td>94.19</td>
</tr>
<tr>
<td>Our (Division)</td>
<td>94.32</td>
<td>93.09</td>
</tr>
<tr>
<td>Our (Joint)</td>
<td><strong>96.09</strong></td>
<td><strong>94.68</strong></td>
</tr>
<tr>
<td>Our (Division*)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Our (Joint*)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Zhou and Zhao (2019)

Takeaways

- Dependency formalism provides an alternative to constituency, particularly useful in how portable it is across languages
- Dependency parsing also has efficient dynamic programs for inference
- CRFs + neural CRFs (again) work well

Proj 1 Results

- Jiaming Chen: 82.46 F1
  - WordPair features, larger window for POS tag extraction ([{-2}, {2}])
- Po-Yi Chen: 82.02 F1
  - Also larger window and data shuffling in between epochs
- Ting-Yu Yen: 81.57 F1
  - Unregularized Adagrad worked best
- Prakhar Singh: 81.54 F1
  - City gazetteer, generic date recognizer
- All others <81