
CS388:	Natural	Language	Processing

Greg	Durre8

Lecture	13:	
Dependency	II



Recall:	Dependencies

DT NNTOVBDDT NN
the housetoranthe dog

‣ Dependency	syntax:	syntacEc	structure	is	defined	by	dependencies	
‣ Head	(parent,	governor)	connected	to	dependent	(child,	modifier)	
‣ Each	word	has	exactly	one	parent	except	for	the	ROOT	symbol	
‣ Dependencies	must	form	a	directed	acyclic	graph

ROOT



Recall:	ProjecEvity
‣ ProjecEve	<->	no	“crossing”	arcs

dogs	in	houses	and	cats the	dog	ran	to	the	house

credit:	Language	Log

‣ Crossing	arcs:



Recall:	Eisner’s	Algorithm
‣ LeY	and	right	children	are	built	independently,	heads	are	edges	of	spans
‣ Complete	item:	all	children	are	a8ached,	head	is	at	the	“tall	end”

‣ Incomplete	item:	arc	from	“tall	end”	to	“short	end”,	may	sEll	expect	children

DT NNTOVBDDT NN
the housetoranthe dog

ROOT



Recall:	Biaffine	Neural	Parsing
‣ Neural	CRFs	for	dependency	parsing:	let	c	=	LSTM	embedding	of	i,	p	=	
LSTM	embedding	of	parent(i).	score(i,	parent(i),	x)	=	pTUc

Dozat	and	Manning	(2017)

(num	words	x	hidden	size) (num	words	x	
num	words)

LSTM	looks	at	words	and	POS

score(tree)	=	sum	of	edge	scores



EvaluaEng	Dependency	Parsing
‣ UAS:	unlabeled	a8achment	score.	Accuracy	of	choosing	each	word’s	
parent	(n	decisions	per	sentence)

‣ Log-linear	CRF	parser,	decoding	with	Eisner	algorithm:	91	UAS

‣ LAS:	addiEonally	consider	label	for	each	edge

‣ Higher-order	features	from	Koo	parser:	93	UAS

‣ Best	English	results	with	neural	CRFs	(Dozat	and	Manning):	95-96	UAS



HPSG

Pollard	and	Sag	(1994),	Zhou	and	Zhao	(2019)

‣ Head-driven	phrase	structure	
grammar	(HPSG):	very	complex	
grammar	formalism	which	
annotates	large	feature	structures	
over	tree

‣ Very	li8le	work	on	HPSG	in	NLP	
since	no	real	treebank	exists



Parsing	with	“HPSG”

Zhou	and	Zhao	(2019)

‣ Joint	model	of	consEtuency	and	dependency	combining	ideas	from	
Dozat	+	Manning	and	Stern	et	al.



Parsing	with	“HPSG”

Zhou	and	Zhao	(2019)

‣ Slightly	stronger	results	
than	Dozat	+	Manning,	
significantly	be8er	
results	on	Chinese



This	Lecture

‣ TransiEon-based	(shiY-reduce)	dependency	parsing

‣ Approximate,	greedy	inference	—	fast,	but	a	li8le	bit	weird!



ShiY-Reduce	Parsing



ShiY-Reduce	Parsing

‣ Similar	to	determinisEc	parsers	for	compilers

‣ A	tree	is	built	from	a	sequence	of	incremental	decisions	moving	
leY	to	right	through	the	sentence

‣ ShiYs	consume	the	buffer,	reduces	build	a	tree	on	the	stack

‣ Stack	containing	parEally-built	tree,	buffer	containing	rest	of	
sentence

‣ Also	called	transiEon-based	parsing



ShiY-Reduce	Parsing

I	ate	some	spagheq	bolognese

ROOT

‣ ShiY	1:	Stack:		[ROOT	I]				Buffer:		[ate	some	spagheq	bolognese]

‣ ShiY:	top	of	buffer	->	top	of	stack

‣ IniEal	state:	Stack:		[ROOT]				Buffer:		[I	ate	some	spagheq	bolognese]

‣ ShiY	2:	Stack:		[ROOT	I	ate]				Buffer:		[some	spagheq	bolognese]



ShiY-Reduce	Parsing

I	ate	some	spagheq	bolognese

ROOT

‣ State:	Stack:		[ROOT	I	ate]				Buffer:		[some	spagheq	bolognese]

‣ LeY-arc	(reduce):	Let					denote	the	stack,															=	stack	ending	in	w-1�
‣ “Pop	two	elements,	add	an	arc,	put	them	back	on	the	stack”

‣ State:	Stack:		[ROOT	ate]				Buffer:		[some	spagheq	bolognese]

I

�|w�2, w�1 ! �|w�1 w�1w�2 is	now	a	child	of

�|w�2, w�1 ! �|w�1



Arc-Standard	Parsing

‣ Start:	stack	contains	[ROOT],	buffer	contains	[I	ate	some	spagheq	bolognese]

‣ ShiY:	top	of	buffer	->	top	of	stack
‣ LeY-Arc: �|w�2, w�1 ! �|w�1 w�1w�2

‣ Right-Arc �|w�2, w�1 ! �|w�2

is	now	a	child	of,

w�1 w�2,

I	ate	some	spagheq	bolognese

‣ End:	stack	contains	[ROOT],	buffer	is	empty	[]

‣ How	many	transiEons	do	we	need	if	we	have	n	words	in	a	sentence?

is	now	a	child	of

ROOT

‣ Arc-standard	system:	three	operaEons



Arc-Standard	Parsing

[I	ate	some	spagheq	bolognese][ROOT]

[ROOT	I]

[ROOT	I	ate]

[ROOT	ate]

I

S

S

L

‣ Could	do	the	leY	arc	later!	But	no	reason	to	wait
‣ Can’t	a8ach	ROOT	<-	ate	yet	even	though	this	is	a	correct	dependency!

S					top	of	buffer	->	top	of	stack
LA
RA

[ate	some	spagheq	bolognese]

[some	spagheq	bolognese]

[some	spagheq	bolognese]

I	ate	some	spagheq	bolognese

ROOT
pop	two,	leY	arc	between	them
pop	two,	right	arc	between	them



Arc-Standard	Parsing

[ROOT	ate]

I

[some	spagheq	bolognese]

[ROOT	ate	some	spagheq]

I

[bolognese]

[ROOT	ate	spagheq]

I some

[bolognese]

S

L

I	ate	some	spagheq	bolognese

S

ROOT

S

S					top	of	buffer	->	top	of	stack
LA
RA

pop	two,	leY	arc	between	them
pop	two,	right	arc	between	them



Arc-Standard	Parsing

[ROOT	ate	spagheq	bolognese]

I some

[ROOT	ate	spagheq]

I some bolognese
[ROOT	ate]

I
some bolognese

spagheq

‣ Stack	consists	of	all	words	that	are	
sEll	waiEng	for	right	children,	end	
with	a	bunch	of	right-arc	ops

[ROOT]

I
some bolognese
spagheq

ate

[]

I	ate	some	spagheq	bolognese

ROOT

[]

[]
[]

Final	state:

R

R

S					top	of	buffer	->	top	of	stack
LA
RA

pop	two,	leY	arc	between	them
pop	two,	right	arc	between	them



Other	Systems
‣ Arc-eager	(Nivre,	2004):	lets	you	add	right	arcs	sooner	and	keeps	
items	on	stack,	separate	reduce	acEon	that	clears	out	the	stack

‣ Arc-swiY	(Qi	and	Manning,	2017):	explicitly	choose	a	parent	from	
what’s	on	the	stack

‣Many	ways	to	decompose	these,	which	one	works	best	depends	on	
the	language	and	features	(nonprojecEve	variants	too!)



Building	ShiY-Reduce	Parsers

[ROOT	ate	some	spagheq]

I

[bolognese]

‣MulE-way	classificaEon	problem:	shiY,	leY-arc,	or	right-arc?

[ROOT] [I	ate	some	spagheq	bolognese]

‣ How	do	we	make	the	right	decision	in	this	case?

‣ How	do	we	make	the	right	decision	in	this	case?	(all	three	acEons	legal)

‣ Only	one	legal	move	(shiY)

argmaxa2{S,LA,RA}w
>f(stack, bu↵er, a)



Features	for	ShiY-Reduce	Parsing

[ROOT	ate	some	spagheq]

I

[bolognese]

‣ Features	to	know	this	should	leY-arc?

‣ One	of	the	harder	feature	design	tasks!

‣ In	this	case:	the	stack	tag	sequence	VBD	-	DT	-	NN	is	pre8y	informaEve	
—	looks	like	a	verb	taking	a	direct	object	which	has	a	determiner	in	it

‣ Things	to	look	at:	top	words/POS	of	buffer,	top	words/POS	of	stack,	
leYmost	and	rightmost	children	of	top	items	on	the	stack



Training	a	Greedy	Model

[ROOT	ate	some	spagheq]

I

[bolognese]

‣ Train	a	classifier	to	predict	the	right	decision	using	these	as	training	data
‣ Can	turn	a	tree	into	a	decision	sequence	a	by	building	an	oracle

‣ Training	data	assumes	you	made	correct	decisions	up	to	this	point	
and	teaches	you	to	make	the	correct	decision,	but	what	if	you	
screwed	up…

argmaxa2{S,LA,RA}w
>f(stack, bu↵er, a)



Greedy	training

‣ Greedy:	2n	local	training	examples

State	space

Gold	end	stateStart	state

‣ Non-gold	states	unobserved	during	training:	consider 
making	bad	decisions	but	don’t	condi,on	on	bad	decisions



Speed	Tradeoffs

UnopEmized	S-R{
{
{
{

Chen	and	Manning	(2014)

OpEmized	S-R

Graph-based

Neural	S-R

‣Many	early-2000s	consEtuency	parsers	were	~5	sentences/sec

‣ Using	S-R	used	to	mean	taking	a	performance	hit	compared	to	
graph-based,	that’s	no	longer	(quite	as)	true



Global	Decoding



Global	Decoding

[ROOT	gave	him]

I

[dinner]

‣ Correct:	Right-arc,	ShiY,	Right-arc,	Right-arc

I	gave	him	dinner

ROOT

[ROOT	gave]

I

[dinner]

him

[ROOT	gave	dinner]

I

[]

him

[ROOT	gave]

I

[]

him dinner

‣ Is	it	a	problem	that	we	make	decisions	greedily?



Global	Decoding:	A	Cartoon

S

LA

RA

‣ Both	wrong!	Also	
both	probably	
low	scoring!

RA
S

‣ Correct,	high	
scoring	opEon

[ROOT	gave	him]

I

[dinner]
I	gave	him	dinner

ROOT

[ROOT	gave	him	dinner]

I

[]

LA

[ROOT	gave]

I him

[dinner]



Global	Decoding:	A	Cartoon

[ROOT	gave	him]

I

[dinner]
I	gave	him	dinner

ROOT

‣ Lookahead	can	help	us	avoid	geqng	stuck	in	bad	spots

‣ Global	model:	maximize	sum	of	scores	over	all	decisions

‣ Similar	to	how	Viterbi	works:	we	maintain	uncertainty	over	the	current	
state	so	that	if	another	one	looks	more	opEmal	going	forward,	we	can	
use	that	one



Global	ShiY-Reduce	Parsing

[ROOT	gave	him]

I

[dinner]
I	gave	him	dinner

ROOT

‣ Global:

‣ Can	we	do	search	exactly?	How	many	states	s	are	there?

‣ No!	Use	beam	search

‣ Greedy:	repeatedly	execute

s abest(s)

abest  argmaxaw
>f(s, a)

si+1 = ai(si)

argmaxs,aw
>f(s,a) =

2nX

i=1

w>f(si, ai)



Beam	Search
‣Maintain	a	beam	of	k	plausible	states	at	the	current	Emestep,	expand	
each	and	only	keep	top	k	best	new	ones

Fed

VBD

VBN

NNP

raises

+1.2

+0.9

+0.7
NN +0.3

VBZ +1.2

VBZ -2.0
NNS -1.0

Not	expanded

… VBZ

DT

NNS

+1.2

-1.0

-5.3

…

…
PRP -5.8

Not	expanded

‣ Beam	size	of	k,	n	words,	s	states,	Eme	complexity

-2.0

O(nks	log(k))

‣Maintain	priority	queue	
to	efficiently	add	things

‣ Example:	POS



How	good	is	beam	search?
‣ k=1:	greedy	search

‣ Choosing	beam	size:

‣ 2	is	usually	be8er	than	1

‣ Usually	don’t	use	larger	than	50

‣ Depends	on	problem	structure



Global	ShiY-Reduce	Parsing

[ROOT	gave	him	dinner]

I

[]

[ROOT	gave]

I him

[dinner]
LA

RA

S

-1.2

+0.9

[ROOT	gave	him]

I

[]
-3.0

dinner

[ROOT	gave	dinner]

I

[]
-2.0

him

[ROOT	gave	dinner]

I him
+2.0

[]

‣ Beam	search	gave	us	the 
lookahead	to	make	the	right 
decision



Global	Training
‣ If	using	global	inference,	should	train	the	parser	in	a	global	fashion	as	
well:	use	structured	perceptron	/	structured	SVM

‣Model	treats	an	enEre	derivaEon	as	something	to	featurize

‣ No	algorithm	like	Viterbi	for	doing	efficient	parsing,	so	use	beam	search



State-of-the-art	TransiEon-Based	
Parsers



Dependency	Parsers

‣ 2012:	Maltparser	was	SOTA	was	for	transiEon-based	(~90	UAS)

‣ 2010:	Koo’s	3rd-order	parser	was	SOTA	for	graph-based	(~93	UAS)

‣ 2014:	Chen	and	Manning	got	92	UAS	with	transiEon-based	neural	
model

‣ 2005:	Eisner	algorithm	graph-based	parser	was	SOTA	(~91	UAS)

‣ 2016:	Improvements	to	Chen	and	Manning



State-of-the-art	Parsers

Chen	and	Manning	(2014)



Parsey	McParseFace

Andor	et	al.	(2016)

‣ Close	to	state-of-the-art,	released	by	Google	publicly

‣ 94.61	UAS	on	the	Penn	Treebank	using	a	global	transiEon-based	system	
with	early	updaEng	(compared	to	95.8	for	Dozat,	93.7	for	Koo	in	2009)

‣ Feedforward	neural	nets	looking	at	words	and	POS	associated	with	
words	in	the	stack	/	those	words’	children	/	words	in	the	buffer

‣ Feature	set	pioneered	by	Chen	and	Manning	(2014),	Google	fine-tuned	it

‣ AddiEonal	data	harvested	via	“tri-training”,	form	of	self-training

(a.k.a.	SyntaxNet)

‣ ShiY-reduce	parsers	are	oYen	playing	“catch-up”,	hard	to	really	push	
the	SOTA	with	shiY-reduce	because	it’s	harder	to	design	models



ShiY-Reduce	ConsEtuency

Cross	and	Huang	(2016)

‣ Can	do	shiY-reduce	for	consEtuency	as	well,	reduce	operaEon	
builds	consEtuents

combine	with	no	label	for	ternary	rules



Recap

‣ ShiY-reduce	parsing	can	work	nearly	as	well	as	graph-based

‣ Arc-standard	system	for	transiEon-based	parsing

‣ Purely	greedy	or	more	“global”	approaches

‣ Next	Eme:	semanEc	parsing


