CS388: Natural Language Processing

Lecture 15:
Semantics
Il / Seq2seq |

-
Corporate needs you to find the difference:
between this pictufe and this pict

Greg Durrett
TEXAS

The University of Texas at Austin

They're the same picture.

credit: Nawaphonlsarathanachaikul on imgflip

: Administrivia
» Project 2 out today
» Mini 2 graded by tomorrow

» Final project feedback soon

: Recall: Parses to Logical Forms
sings(e470) A dances(e470)
S
T
e470 NP VP Ay. sings(y) A dances(y)
PN
NNP NNP VP cC VP
Lady Gaga | and |
VBP VBP
sings dances

Ay. sings(y) Ay. dances(y)

VP: Ay. a(y) A b(y) ->VP: Ay. a(y) CCVP: Ay. b(y)
S: f(x) -> NP: x VP: f

» General rules:

: Recall: CCG

» Steedman+Szabolcsi 1980s: formalism bridging syntax and semantics
» Syntactic categories (for this lecture): S, NP, “slash” categories

» S\NP: “if | combine with an NP on my left side, | form a sentence” — verb

» (S\NP)/NP: “I need an NP on my right and then on my left” — verb
with a direct object S

borders(el01,e89)

S S\NP
sings(e728) Ay borders(y,e89)
NP S\NP NP (S\NP)/NP NP
e728 Ay. sings(y) el01 ||ax.\y borders(y,x)|| €89
Eminem sings Oklahoma borders Texas

This Lecture

» Seq2seq models

» Seq2seq models for semantic parsing

» Intro to attention

Encoder-Decoder Models

Motivation

» Parsers have been pretty hard to build...
» Constituency/graph-based: complex dynamic programs

» Transition-based: complex transition systems

» CCG/semantic parsers: complex syntax/semantics interface, challenging
inference, challenging learning

» For semantic parsing in particular: bridging the syntax-semantics divide
results in structural weirdnesses in parsers, hard to learn the right
semantic grammar

» Encoder-decoder models can (in principle) predict any linearized
sequence of tokens

Encoder-Decoder
» Semantic parsing:

What states border Texas — N x state(X) A borders(x , e89)

» Syntactic parsing

Thedogran —— (S (NP (DT the) (NN dog)) (VP (VBD ran)))

(but what if we produce an invalid tree or one with different words?) &

» Machine translation, summarization, dialogue can all be viewed in this
framework as well

Encoder-Decoder

» Encode a sequence into a fixed-sized vector

le film était bon [STOP]

L HHHOHOHH]

the movie was great

» Now use that vector to produce a series of tokens as output from a
separate LSTM decoder

Sutskever et al. (2014)

Encoder-Decoder

Edward Grefenstette Ve

It’s not an ACL tutorial on vector

AP MIMIMR 11 the words of Ray Mooney .|
least one Ray Mooney quote. In the words of Ray Mooney

“You can't cram the meaning of a whole %&'Slng sentence into a single

$&!*ing vector!” Yo, the cansored-out swearing Is capled verhethn

» Is this true? Sort of...we’ll come back to
this later

12:27 AM - 11 0ul 2017

Breness @i @BO SOOI S

Model

» Generate next word conditioned on previous word as well as hidden state

» W size is |vocab| x | hidden state|, softmax over entire vocabulary

(yl‘x Yty Yi— 1) = SOftmaX(W]TL

HP(yz|x Yy -

Decoder has separate
parameters from encoder, so
<5> this can learn to be a language
model (produce a plausible next
word given current one)

P y‘X :yifl)

the movie was great

Inference

» Generate next word conditioned on previous word as well as hidden state

-

the movie was great <s> i

 film |était| bon |[sTOP]

» During inference: need to compute the argmax over the word predictions
and then feed that to the next RNN state

» Need to actually evaluate computation graph up to this point to form
input for the next state

» Decoder is advanced one state at a time until [STOP] is reached

Implementing seq2seq Models

Encoder Decoder Decoder
le film

the movie was great <s> le

» Encoder: consumes sequence of tokens, produces a vector. Analogous to
encoders for classification/tagging tasks

» Decoder: separate module, single cell. Takes two inputs: hidden state
(vector h or tuple (h, c)) and previous token. Outputs token + new state

Training
était [STOP]
the movie was great le film était bon

n
» Objective: maximize Z ZlogP(yﬂx, Yo Yio1)
(xy) i=1

» One loss term for each target-sentence word, feed the correct word
regardless of model’s prediction (called “teacher forcing”)

Training: Scheduled Sampling

» Model needs to do the right thing even with its own predictions

L]

the movie was great

bon [STOP]

» Scheduled sampling: with probability p, take the gold as input, else take
the model’s prediction

» Starting with p = 1 (teacher forcing) and decaying it works best

» “Right” thing: train with reinforcement learning Bengio et al. (2015)

Implementation Details

» Sentence lengths vary for both encoder and decoder:

» Typically pad everything to the right length and use a mask or indexing
to access a subset of terms

» Encoder: looks like what you did in Mini 2

» Decoder: execute one step of computation at a time, so computation
graph is formulated as taking one input + hidden state

» Test time: do this until you generate the stop token

» Training: do this until you reach the gold stopping point

Implementation Details (cont’d)

» Batching is pretty tricky: decoder is across time steps, so you probably
want your label vectors to look like [num timesteps x batch size x num
labels], iterate upwards by time steps

» Beam search: can help with lookahead. Finds the (approximate) highest
scoring sequence: n
argmax, [[P(vilx,v1,. . ,vi-1)
i=1

Beam Search

» Maintain decoder state, token history in beam film: 0.4

la:0.4
le:0.3
les: 0.1

the movie was great <s>

les

[
(T0)301 /(€0)30] (V'C\(EOI

» Keep both film states! Hidden state vectors are different

(#°0)801+(y°0)80] (8°0)801+(€°0)30]

Other Architectures

» What’s the basic abstraction here?
» Encoder: sentence -> vector

» Decoder: hidden state, output prefix -> new hidden state, new output
» OR: sentence, output prefix -> new output (more general)

» Wide variety of models can apply here: CNN encoders, decoders can be
any autoregressive model including certain types of CNNs

» Transformer: another model discussed next lecture

Seq2seq Semantic Parsing

Semantic Parsing as Translation

“what states border Texas”

'

lambda x (state(x) and border(x , e89)))

» Write down a linearized form of the semantic parse, train seq2seq models
to directly translate into this representation

» What are some benefits of this approach compared to grammar-based?

» What might be some concerns about this approach? How do we mitigate
them?

Jia and Liang (2016)

Handling Invariances

“what states border Texas” “what states border Ohio”

» Parsing-based approaches handle these the same way

» Possible divergences: features, different weights in the lexicon
» Can we get seq2seq semantic parsers to handle these the same way?
» Key idea: don’t change the model, change the data

» “Data augmentation”: encode invariances by automatically generating
new training examples

Data Augmentation

Examples Jia and Liang (2016)
(“what states border texas ?”,
answer (NV, (state(V0), next_to(V0, NV), const(V0, stateid(texas)))))

Rules created by ABSENTITIES
ROOT — (“what states border STATEID ?”,

answer (NV, (state(V0), next_to(V0, NV), const(V0, stateid(STATEID)))))
STATEID — (“texas”, texas)

STATEID — (“ohio”, ohio)

» Lets us synthesize a “what states border ohio ?” example

» Abstract out entities: now we can “remix” examples and encode
invariance to entity ID. More complicated remixes too

Semantic Parsing as Translation

GEO
x: “what is the population of iowa ?”
y: _answer (NV , (

» Prolog

_population (NV , V1) , _const (
V0 , _stateid (iowa))))

ATIS
x: “can you list all flights from chicago to milwaukee” » Lambda calculus
y: (_lambda $0 e (_and

(_flight $0)

(_from $0 chicago : _ci)

(_to $0 milwaukee : _ci)))
Overnight

z: “when is the weekly standup”

y: (call listvalue (call
getProperty meeting.weekly_standup
(string start_time)))

» Other DSLs

» Handle all of these with uniform machinery! Jia and Liang (2016)

Semantic Parsing as Translation

Regex Prediction

GEO | ATIS
Previous Work » .
Zettlemoyer and Collins (2007) 84.6 Three form.s Of data » PrEdICt regex from text
Kwiatkowski et al. (2010) 88.9 augmentation all help
Liang et al. (2011) 91.1 Natural Language Encoder N Q <END>
Kwiatkowski et al. (2011) 88.6 | 82.8 - . . .
Poon (2013) 835 |) Results on these tasks are still not he ne ne W, rohpd hd 2 d S
Zhao and Huang (2015) 88.9 | 84.2 tstM | L0 stm st 2| stm | 3 tstm) L0 wstml L) LstM!| .2 Lstm
Our Model as strong as hand-tuned systems : 5
No Recombination 85.0 | 76.3 "o W "2 "3
ABSENTITIES 854 | 79.9 from 10 years ago, but the same lines ending in Q
ABSWHOLEPHRASES 87.5 simple model can do well at all Regular Expression Decoder
CONCAT-2 84.6 | 79.0
CONCAT-3 775 problems .
AWP E?E 88.9 » Problem: requires a lot of data: 10,000 examples needed to get ~60%
AE + 78.8 .
AWP + AE + C2 89.3 accuracy on pretty Slmple regexes
AE +C3 83.3

» Does not scale when regex specifications are more abstract (/ want to
Jia and Liang (2016) recognize a decimal number less than 20) Locascio et al. (2016)
SQL Generation Attention
Question:

» Convert natural language

[How many CFL teams are from York College’?]

description into a SQL

» How to capture column Chassis

. sqQL:

query against some DB
SELECT COUNT CFL Team FROM
[CFLDraft WHERE College = ”York"]

» How to ensure that well-
. How many SELECT

formed SQL is generated? |engine types did ‘
Val Musetti use? [?é%;eﬁg:rtlon COUNT

» Three seq2seq models Entrant e ;
Constructor pointer Engine

names + constants?

WHERE clause WHERE
pointer Driver =

decoder Val Musetti

» Pointer mechanisms, to

be discussed later Zhong et al. (2017)

“what states border Texas” — lambda x (state (x) and border (x, e89)))

» Orange pieces are probably reused across many problems

» Not too hard to learn to generate: start with lambda, always follow with x,

follow that with paren, etc.

» LSTM has to remember the value of Texas for 13 steps!

» Next: attention mechanisms that let us “look back” at the input to avoid
having to remember everything

Attention

Problems with Seq2seq Models

» Encoder-decoder models like to repeat themselves:

Un garcon joue dans la neige - A boy plays in the snow boy plays boy plays

» Why does this happen?

» Models trained poorly
» Input is forgotten by the LSTM so it gets stuck in a “loop” of generating
the same output tokens again and again
» Need some notion of input coverage or what input words we’ve
translated

Problems with Seq2seq Models

» Bad at long sentences: 1) a fixed-size hidden representation doesn’t
scale; 2) LSTMs still have a hard time remembering for really long

periods of time

RNNenc: the model we’ve
discussed so far
RNNsearch: uses attention

BLEU score

10 — RNNsearch-50 \‘_ ;‘».\ o

-~ RNNsearch-30 Tl TN
51 - - RNNenc-50]
- RNNenc-30
0 10 20 30 40 50 60
Sentence length

Bahdanau et al. (2014)

Problems with Seq2seq Models

» Unknown words:

en: The ecotax portico in Pont-de-Buis , ... [truncated] ..., was taken down on Thursday morning
fr: Le portique écotaxe de Pont-de-Buis , ... [truncated] ..., a été démonté jeudi matin

nn: Le unk de unk a unk , ... [truncated] ..., a été pris le jeudi matin

» Encoding these rare words into a vector space is really hard

» In fact, we don’t want to encode them, we want a way of directly
looking back at the input and copying them (Pont-de-Buis)

Aligned Inputs

» Suppose we knew the source and the movie was great

target would be word-by-word / / / /

translated le film était bon

» In that case, we could look at the
corresponding input word when
translating — might improve
handling of long sentences!

le film était bon [STOP]

» How can we achieve this eta bon

without hardcoding it? the movie was great

Attention

E—Eﬁﬁﬁ—ﬁ

the movie was great

» At each decoder state,
compute a distribution over
source inputs based on
current decoder state

» Use the weighted sum of input
tokens to predict output

Takeaways

» Rather than combining syntax and semantics like in CCG, we can either
parse to semantic representations directly or generate them with seq2seq
models

» Seq2seq models are a very flexible framework, some weaknesses can
potentially be patched with more data

» How to fix their shortcomings? Next time: attention, copying, and
transformers

