CS388: Natural Language Processing

Lecture 17: Machine Translation 1

Greg Durrett

Star Wars The Third Gathers: The Backstroke of the West (subtitles machine translated from Chinese)

Some slides adapted from Dan Klein, UC Berkeley

This Lecture

- MT basics, evaluation
- Word alignment
- ▶ Language models
- ▶ Phrase-based decoders
- > Syntax-based decoders (probably next time)

MT Basics

MT Ideally

- - May need information you didn't think about in your representation
 - ▶ Hard for semantic representations to cover everything
- Fiveryone has a friend => $\exists x \forall y \text{ friend}(x,y) \\ \forall x \exists y \text{ friend}(x,y)$ => Tous a un ami
 - ▶ Can often get away without doing all disambiguation same ambiguities may exist in both languages

MT in Practice

▶ Bitext: this is what we learn translation systems from

Je fais un bureau I'm making a desk

Je fais une soupe I'm making soup

Je fais un bureau I make a desk

Qu'est-ce que tu fais? What are you making?

- ▶ What are some translation pairs you can identify? How do you know?
- ▶ What makes this hard? Not word-to-word translation

Multiple translations of a single source (ambiguous)

Phrase-Based MT

- ▶ Key idea: translation works better the bigger chunks you use
- ▶ Remember phrases from training data, translate piece-by-piece and stitch those pieces together to translate
- ▶ How to identify phrases? Word alignment over source-target bitext
- ▶ How to stitch together? Language model over target language
- Decoder takes phrases and a language model and searches over possible translations
- NOT like standard discriminative models (take a bunch of translation pairs, learn a ton of parameters in an end-to-end way)

Evaluating MT

- ▶ Fluency: does it sound good in the target language?
- ▶ Fidelity/adequacy: does it capture the meaning of the original?
- ▶ BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram *precision* vs. a reference, multiplied by brevity penalty (penalizes short translations)

BLEU= BP · exp
$$\left(\sum_{n=1}^{N} w_n \log p_n\right)$$
. Typically $n = 4$, $w_i = 1/4$

$$\mathrm{BP} = \left\{ egin{array}{ll} 1 & \mathrm{if} \ \ c > r \\ e^{(1-r/c)} & \mathrm{if} \ \ c \leq r \end{array}
ight. \qquad \mbox{r = length of reference} \\ \mathrm{c = length of prediction} \end{array}
ight.$$

▶ Does this capture fluency and adequacy?

Word Alignment

Word Alignment

- ▶ Models P(f|e): probability of "French" sentence being generated from "English" sentence according to a model
- $\textbf{ Latent variable model: } P(\mathbf{f}|\mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f},\mathbf{a}|\mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f}|\mathbf{a},\mathbf{e}) P(\mathbf{a})$
- Correct alignments should lead to higher-likelihood generations, so by optimizing this objective we will learn correct alignments

IBM Model 1

▶ Each French word is aligned to at most one English word

- ▶ Set P(a) uniformly (no prior over good alignments)
- $ightharpoonup P(f_i|e_{a_i})$: word translation probability table

Brown et al. (1993)

HMM for Alignment

▶ Sequential dependence between a's to capture monotonicity

$$P(\mathbf{f},\mathbf{a}|\mathbf{e}) = \prod_{i=1} P(f_i|e_{a_i})P(a_i|a_{i-1})$$

$$\mathbf{e} \quad \text{Thank you} \quad , \quad \text{I} \quad \text{shall} \quad \text{decomposition}$$

e Thank you , I shall do so gladly

- Alignment dist parameterized by jump size: $P(a_j a_{j-1})$ -
- $P(f_i|e_{a_i})$: same as before

Vogel et al. (1996)

HMM Model

- ▶ Which direction is this?
- Alignments are generally monotonic (along diagonal)
- Some mistakes, especially when you have rare words (*garbage collection*)

Evaluating Word Alignment

• "Alignment error rate": use labeled alignments on small corpus

Model	AER
Model 1 INT	19.5
HMM E→F	11.4
HMM F→E	10.8
HMM AND	7.1
HMM INT	4.7
GIZA M4 AND	6.9

- Run Model 1 in both directions and intersect "intelligently"
- Run HMM model in both directions and intersect "intelligently"

Phrase Extraction

 Find contiguous sets of aligned words in the two languages that don't have alignments to other words

d'assister à la reunion et ||| to attend the meeting and assister à la reunion ||| attend the meeting la reunion and ||| the meeting and nous ||| we

 Lots of phrases possible, count across all sentences and score by frequency

Decoding

Recall: *n*-gram Language Models

$$P(\mathbf{w}) = P(w_1)P(w_2|w_1)P(w_3|w_1, w_2)\dots$$

• n-gram models: distribution of next word is a multinomial conditioned on previous n-1 words $P(w_i|w_1,\ldots,w_{i-1})=P(w_i|w_{i-n+1},\ldots,w_{i-1})$

I visited San _____ put a distribution over the next word

$$P(w|\text{visited San}) = \frac{\text{count}(\text{visited San}, w)}{\text{count}(\text{visited San})}$$

Maximum likelihood estimate of this 3gram probability from a corpus

▶ Typically use ~5-gram language models for translation

Phrase-Based Decoding

- ▶ Inputs:
 - ▶ n-gram language model: $P(e_i|e_1,\ldots,e_{i-1}) \approx P(e_i|e_{i-n-1},\ldots,e_{i-1})$
 - ▶ Phrase table: set of phrase pairs (e, f) with probabilities P(f|e)
- ▶ What we want to find: **e** produced by a series of phrase-by-phrase translations from an input **f**, possibly with reordering:

Moses

- ▶ Toolkit for machine translation due to Philipp Koehn + Hieu Hoang
 - ▶ Pharaoh (Koehn, 2004) is the decoder from Koehn's thesis
- Moses implements word alignment, language models, and this decoder, plus *a ton* more stuff
 - ▶ Highly optimized and heavily engineered, could more or less build SOTA translation systems with this from 2007-2015
- Next time: results on these and comparisons to neural methods

Syntax

Syntactic MT

s VP ADV lo haré de muy buen grado .

- Use lexicalized rules, look like "syntactic phrases"
- ▶ Leads to HUGE grammars, parsing is slow

Grammar

```
s \rightarrow \langle VP.; IVP. \rangle OR s \rightarrow \langle VP.; you VP. \rangle
VP \rightarrow \langle Io haré ADV; will do it ADV \rangle
s \rightarrow \langle Io haré ADV.; I will do it ADV. \rangle
ADV \rightarrow \langle Io haré ADV.; I will do it ADV. \rangle
Slide credit: Dan Klein
```


Takeaways

- ▶ Phrase-based systems consist of 3 pieces: aligner, language model, decoder
 - ▶ HMMs work well for alignment
 - N-gram language models are scalable and historically worked well
 - ▶ Decoder requires searching through a complex state space
- ▶ Lots of system variants incorporating syntax
- ▶ Next time: neural MT