Lecture 2: Binary Classification

credit: Machine Learning Memes on Facebook

Some slides adapted from Vivek Srikumar, University of Utah
Course enrollment

Course website: slides, readings, office hours, syllabus

Mini 1 out, due Tuesday

Greg’s office hours on Thursday are rescheduled to 9am-10am
This Lecture

- Linear classification fundamentals
- Three discriminative models: logistic regression, perceptron, SVM
 - Different motivations but very similar update rules / inference!
- Optimization
- Sentiment analysis
Classification
Classification

- Datapoint x with label $y \in \{0, 1\}$

- Embed datapoint in a feature space $f(x) \in \mathbb{R}^n$
 but in this lecture $f(x)$ and x are interchangeable

- Linear decision rule: $w^\top f(x) + b > 0$
 \[w^\top f(x) > 0 \]

- Can delete bias if we augment feature space:
 \[f(x) = [0.5, 1.6, 0.3] \]
 \[\downarrow \]
 \[[0.5, 1.6, 0.3, 1] \]
Linear functions are powerful!

- "Kernel trick" does this for "free," but is too expensive to use in NLP applications, training is $O(n^2)$ instead of $O(n \cdot \text{(num feats)})$
Classification: Sentiment Analysis

- This movie was great! Would watch again
- That film was awful, I’ll never watch again

- Surface cues can basically tell you what’s going on here: presence or absence of certain words (great, awful)

- Steps to classification:
 - Turn examples like this into feature vectors
 - Pick a model / learning algorithm
 - Train weights on data to get our classifier
Feature Representation

\textit{this movie was} great! would \textit{watch again} \hspace{1cm} \text{Positive}

- Convert this example to a vector using \textit{bag-of-words features}

\begin{align*}
\text{[contains the]} & \quad \text{position 0} \\
\text{[contains a]} & \quad \text{position 1} \\
\text{[contains was]} & \quad \text{position 2} \\
\text{[contains movie]} & \quad \text{position 3} \\
\text{[contains film]} & \quad \text{position 4}
\end{align*}

\[f(x) = [0 \quad 0 \quad 1 \quad 1 \quad 0] \ldots \]

- Very large vector space (size of vocabulary), sparse features (how many?)

- Requires \textit{indexing} the features (mapping them to axes)

- More sophisticated feature mappings possible (tf-idf), as well as lots of other features: n-grams, character n-grams, parts of speech, lemmas, ...
Generative vs. Discriminative Modeling

- Data point $x = (x_1, ..., x_n)$, label $y \in \{0, 1\}$

- Generative models: probabilistic models of $P(x,y)$
 - Compute $P(y|x)$, predict $\arg\max_y P(y|x)$ to classify

 $$P(y|x) = \frac{P(y)P(x|y)}{P(x)} \propto P(y)P(x|y)$$

 “proportional to”

 - Examples: Naive Bayes (see textbook), Hidden Markov Models

- Discriminative models model $P(y|x)$ directly, compute $\arg\max_y P(y|x)$
 - Examples: logistic regression

- Cannot draw samples of x, but typically better classifiers
Logistic Regression
Logistic Regression

\[P(y = + | x) = \text{logistic}(w^\top x) \]

\[P(y = + | x) = \frac{\exp(\sum_{i=1}^{n} w_i x_i)}{1 + \exp(\sum_{i=1}^{n} w_i x_i)} \]

- To learn weights: maximize discriminative log likelihood of data (\(\log P(y|x) \))

\[\mathcal{L}(\{x_j, y_j\}_{j=1,...,n}) = \sum_j \log P(y_j | x_j) \] corpus-level LL

\[\mathcal{L}(x_j, y_j = +) = \log P(y_j = + | x_j) \] one (positive) example LL

sum over features \[= \sum_{i=1}^{n} w_i x_{ji} - \log \left(1 + \exp \left(\sum_{i=1}^{n} w_i x_{ji} \right) \right) \]
Logistic Regression

\[L(x_j, y_j = +) = \log P(y_j = + | x_j) = \sum_{i=1}^{n} w_i x_{ji} - \log \left(1 + \exp \left(\sum_{i=1}^{n} w_i x_{ji} \right) \right) \]

\[\frac{\partial L(x_j, y_j)}{\partial w_i} = x_{ji} - \frac{\partial}{\partial w_i} \log \left(1 + \exp \left(\sum_{i=1}^{n} w_i x_{ji} \right) \right) \]

\[= x_{ji} - \frac{1}{1 + \exp \left(\sum_{i=1}^{n} w_i x_{ji} \right)} \frac{\partial}{\partial w_i} \left(1 + \exp \left(\sum_{i=1}^{n} w_i x_{ji} \right) \right) x_{ji} \exp \left(\sum_{i=1}^{n} w_i x_{ji} \right) \]

\[= x_{ji} - x_{ji} \frac{\exp \left(\sum_{i=1}^{n} w_i x_{ji} \right)}{1 + \exp \left(\sum_{i=1}^{n} w_i x_{ji} \right)} = x_{ji} (1 - P(y_j = + | x_j)) \]
Logistic Regression

- Gradient of w_i on positive example $= x_{ji}(1 - P(y_j = +|x_j))$

 If $P(+) \approx 1$, make very little update
 Otherwise make w_i look more like x_{ji}, which will increase $P(+)$

- Gradient of w_i on negative example $= x_{ji}(-P(y_j = +|x_j))$

 If $P(+) \approx 0$, make very little update
 Otherwise make w_i look less like x_{ji}, which will decrease $P(+)$

- Let $y_j = 1$ for positive instances, $y_j = 0$ for negative instances.

- Can combine these gradients as $x_j(y_j - P(y_j = 1|x_j))$
Example

(1) this movie was great! would watch again + \[f(x_1) = [1 \quad 1] \]
(2) I expected a great movie and left happy + \[f(x_2) = [1 \quad 1] \]
(3) great potential but ended up being a flop — \[f(x_3) = [1 \quad 0] \]

[contains great] [contains movie]
position 0 position 1

\[
\begin{align*}
w &= [0, 0] & P(y = 1 \mid x_1) &= \frac{\exp(0)}{1 + \exp(0)} = 0.5 & g &= [0.5, 0.5] \\
w &= [0.5, 0.5] & P(y = 1 \mid x_2) &= \text{logistic}(1) \approx 0.75 & g &= [0.25, 0.25] \\
w &= [0.75, 0.75] & P(y = 1 \mid x_3) &= \text{logistic}(0.75) \approx 0.67 & g &= [-0.67, 0] \\
w &= [0.08, 0.75] & \ldots
\end{align*}
\]

\[
P(y = + \mid x) = \text{logistic}(w^\top x)
\]

\[
x_j(y_j - P(y_j = 1 \mid x_j))
\]
Regularization

- Regularizing an objective can mean many things, including an L2-norm penalty to the weights:

\[
\sum_{j=1}^{m} \mathcal{L}(x_j, y_j) - \lambda \|w\|_2^2
\]

- Keeping weights small can prevent overfitting

- For most of the NLP models we build, explicit regularization isn’t necessary
 - Early stopping
 - Large numbers of sparse features are hard to overfit in a really bad way
 - For neural networks: dropout and gradient clipping
Logistic Regression: Summary

- **Model**

 \[P(y = +|x) = \frac{\exp(\sum_{i=1}^{n} w_i x_i)}{1 + \exp(\sum_{i=1}^{n} w_i x_i)} \]

- **Inference**

 \[\arg\max_y P(y|x) \]

 \[P(y = 1|x) \geq 0.5 \iff w^\top x \geq 0 \]

- **Learning:** gradient ascent on the (regularized) discriminative log-likelihood
Perceptron/SVM
Perceptron

- Simple error-driven learning approach similar to logistic regression

- Decision rule: $\mathbf{w}^\top \mathbf{x} > 0$
 - If incorrect: if positive, $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{x}$
 - if negative, $\mathbf{w} \leftarrow \mathbf{w} - \mathbf{x}$

- Guaranteed to eventually separate the data if the data are separable

Logistic Regression

- $w \leftarrow w + x(1 - P(y = 1|x))$
- $w \leftarrow w - xP(y = 1|x)$
Support Vector Machines

- Many separating hyperplanes — is there a best one?
Many separating hyperplanes — is there a best one?
Support Vector Machines

- Constraint formulation: find \(w \) via following quadratic program:

\[
\begin{align*}
\text{Minimize} & \quad \| w \|_2^2 \\
\text{s.t.} & \quad \forall j \quad w^\top x_j \geq 1 \text{ if } y_j = 1 \\
& \quad w^\top x_j \leq -1 \text{ if } y_j = 0
\end{align*}
\]

As a single constraint:
\[
\forall j \quad (2y_j - 1)(w^\top x_j) \geq 1
\]

- Generally no solution (data is generally non-separable) — need slack!
N-Slack SVMs

Minimize \(\lambda \| w \|_2^2 + \sum_{j=1}^{m} \xi_j \)

s.t. \(\forall j \ (2y_j - 1)(w^\top x_j) \geq 1 - \xi_j \quad \forall j \quad \xi_j \geq 0 \)

- The \(\xi_j \) are a “fudge factor” to make all constraints satisfied
- Take the gradient of the objective:
 \[
 \frac{\partial}{\partial w_i} \xi_j = 0 \text{ if } \xi_j = 0 \quad \frac{\partial}{\partial w_i} \xi_j = (2y_j - 1)x_{ji} \text{ if } \xi_j > 0 \\
 \quad = x_{ji} \text{ if } y_j = 1, \quad -x_{ji} \text{ if } y_j = 0
 \]
- Looks like the perceptron! But updates more frequently
Gradients on Positive Examples

Logistic regression
\[x(1 - \text{logistic}(w^\top x)) \]

Perceptron
\[x \text{ if } w^\top x < 0, \text{ else } 0 \]

SVM (ignoring regularizer)
\[x \text{ if } w^\top x < 1, \text{ else } 0 \]

gradients are for maximizing things, which is why they are flipped
Comparing Gradient Updates (Reference)

- **Logistic regression (unregularized)**
 \[x(y - P(y = 1|x)) = x(y - \text{logistic}(w^\top x)) \]

- **Perceptron**
 \[(2y - 1)x \quad \text{if classified incorrectly}\]
 \[0 \quad \text{else}\]

- **SVM**
 \[(2y - 1)x \quad \text{if not classified correctly with margin of 1}\]
 \[0 \quad \text{else}\]
Optimization
Structured Prediction

- Four elements of a structured machine learning method:
 - Model: probabilistic, max-margin, deep neural network
 - Objective
 - Inference: just maxes and simple expectations so far, but will get harder
 - Training: gradient descent?
Optimization

- Stochastic gradient *ascent*
 - Very simple to code up
 - “First-order” technique: only relies on having gradient
 - Can avg gradient over a few examples and apply update once (minibatch)
 - Setting step size is hard (decrease when held-out performance worsens?)

- Newton’s method
 - Second-order technique
 - Optimizes quadratic instantly

\[w \leftarrow w + \alpha g, \quad g = \frac{\partial}{\partial w} \mathcal{L} \]

\[w \leftarrow w + \left(\frac{\partial^2}{\partial w^2} \mathcal{L} \right)^{-1} g \]

Inverse Hessian: \(n \times n \) mat, expensive!

- Quasi-Newton methods: L-BFGS, etc. approximate inverse Hessian
AdaGrad

- Optimized for problems with sparse features
- Per-parameter learning rate: smaller updates are made to parameters that get updated frequently
 \[w_i \leftarrow w_i + \alpha \frac{1}{\sqrt{\epsilon + \sum_{\tau=1}^{t} g_{\tau,i}^2}} g_{t,i} \]
 (smoothed) sum of squared gradients from all updates
- Generally more robust than SGD, requires less tuning of learning rate
- Other techniques for optimizing deep models — more later!

Duchi et al. (2011)
Implementation

- Supposing k active features on an instance, gradient is only nonzero on k dimensions
 \[w \leftarrow w + \alpha g, \quad g = \frac{\partial}{\partial w} L \]

- $k < 100$, total num features $= 1M+$ on many problems

- Be smart about applying updates!

- In PyTorch: applying sparse gradients only works for certain optimizers and sparse updates are very slow. The code we give you is much faster
Sentiment Analysis
Sentiment Analysis

- this movie was great! would watch again
 - Bag-of-words doesn’t seem sufficient (discourse structure, negation)
- the movie was gross and overwrought, but I liked it
- this movie was not really very enjoyable
 - There are some ways around this: extract bigram feature for “not X” for all X following the not

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)
Sentiment Analysis

<table>
<thead>
<tr>
<th>Features</th>
<th># of features</th>
<th>frequency or presence?</th>
<th>NB</th>
<th>ME</th>
<th>SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) unigrams</td>
<td>16165</td>
<td>freq.</td>
<td>78.7</td>
<td>N/A</td>
<td>72.8</td>
</tr>
<tr>
<td>(2) unigrams</td>
<td></td>
<td>pres.</td>
<td>81.0</td>
<td>80.4</td>
<td>82.9</td>
</tr>
<tr>
<td>(3) unigrams+bigrams</td>
<td>32330</td>
<td>pres.</td>
<td>80.6</td>
<td>80.8</td>
<td>82.7</td>
</tr>
<tr>
<td>(4) bigrams</td>
<td>16165</td>
<td>pres.</td>
<td>77.3</td>
<td>77.4</td>
<td>77.1</td>
</tr>
<tr>
<td>(5) unigrams+POS</td>
<td>16695</td>
<td>pres.</td>
<td>81.5</td>
<td>80.4</td>
<td>81.9</td>
</tr>
<tr>
<td>(6) adjectives</td>
<td>2633</td>
<td>pres.</td>
<td>77.0</td>
<td>77.7</td>
<td>75.1</td>
</tr>
<tr>
<td>(7) top 2633 unigrams</td>
<td>2633</td>
<td>pres.</td>
<td>80.3</td>
<td>81.0</td>
<td>81.4</td>
</tr>
<tr>
<td>(8) unigrams+position</td>
<td>22430</td>
<td>pres.</td>
<td>81.0</td>
<td>80.1</td>
<td>81.6</td>
</tr>
</tbody>
</table>

- Simple feature sets can do pretty well!

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)
Sentiment Analysis

<table>
<thead>
<tr>
<th>Method</th>
<th>RT-s</th>
<th>MPQA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNB-uni</td>
<td>77.9</td>
<td>85.3</td>
</tr>
<tr>
<td>MNB-bi</td>
<td>79.0</td>
<td>86.3</td>
</tr>
<tr>
<td>SVM-uni</td>
<td>76.2</td>
<td>86.1</td>
</tr>
<tr>
<td>SVM-bi</td>
<td>77.7</td>
<td>86.7</td>
</tr>
<tr>
<td>NBSVM-uni</td>
<td>78.1</td>
<td>85.3</td>
</tr>
<tr>
<td>NBSVM-bi</td>
<td>79.4</td>
<td>86.3</td>
</tr>
<tr>
<td>RAE</td>
<td>76.8</td>
<td>85.7</td>
</tr>
<tr>
<td>RAE-pretrain</td>
<td>77.7</td>
<td>86.4</td>
</tr>
<tr>
<td>Voting-w/Rev.</td>
<td>63.1</td>
<td>81.7</td>
</tr>
<tr>
<td>Rule</td>
<td>62.9</td>
<td>81.8</td>
</tr>
<tr>
<td>BoF-noDic.</td>
<td>75.7</td>
<td>81.8</td>
</tr>
<tr>
<td>BoF-w/Rev.</td>
<td>76.4</td>
<td>84.1</td>
</tr>
<tr>
<td>Tree-CRF</td>
<td>77.3</td>
<td>86.1</td>
</tr>
<tr>
<td>BoWSVM</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Kim (2014) CNNs</td>
<td>81.5</td>
<td>89.5</td>
</tr>
</tbody>
</table>

Naive Bayes is doing well!

Ng and Jordan (2002) — NB can be better for small data

Before neural nets had taken off — results weren’t that great

Wang and Manning (2012)
Sentiment Analysis

- Stanford Sentiment Treebank (SST) binary classification
- Best systems now: large pretrained networks
- 90 -> 97 over the last 2 years

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy</th>
<th>Paper / Source</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLNet-Large (ensemble) (Yang et al., 2019)</td>
<td>96.8</td>
<td>XLNet: Generalized Autoregressive Pretraining for Language Understanding</td>
<td>Official</td>
</tr>
<tr>
<td>MT-DNN-ensemble (Liu et al., 2019)</td>
<td>96.5</td>
<td>Improving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural Language Understanding</td>
<td>Official</td>
</tr>
<tr>
<td>Snorkel MeTaL(ensemble) (Ratner et al., 2018)</td>
<td>96.2</td>
<td>Training Complex Models with Multi-Task Weak Supervision</td>
<td>Official</td>
</tr>
<tr>
<td>MT-DNN (Liu et al., 2019)</td>
<td>95.6</td>
<td>Multi-Task Deep Neural Networks for Natural Language Understanding</td>
<td>Official</td>
</tr>
<tr>
<td>Bidirectional Encoder Representations from Transformers (Devlin et al., 2018)</td>
<td>94.9</td>
<td>BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding</td>
<td>Official</td>
</tr>
<tr>
<td>Neural Semantic Encoder (Munkhdalai and Yu, 2017)</td>
<td>89.7</td>
<td>Neural Semantic Encoders</td>
<td></td>
</tr>
<tr>
<td>BLSTM-2DCNN (Zhou et al., 2017)</td>
<td>89.5</td>
<td>Text Classification Improved by Integrating Bidirectional LSTM with Two-dimensional Max Pooling</td>
<td></td>
</tr>
</tbody>
</table>
Recap

- **Logistic regression:** \[P(y = 1|x) = \frac{\exp \left(\sum_{i=1}^{n} w_i x_i \right)}{1 + \exp \left(\sum_{i=1}^{n} w_i x_i \right)} \]

 Decision rule: \[P(y = 1|x) \geq 0.5 \Leftrightarrow w^\top x \geq 0 \]

 Gradient (unregularized): \[x(y - P(y = 1|x)) \]

- **SVM:**

 Decision rule: \[w^\top x \geq 0 \]

 (Sub)gradient (unregularized): 0 if correct with margin of 1, else \[x(2y - 1) \]
Recap

- Logistic regression, SVM, and perceptron are closely related

- SVM and perceptron inference require taking maxes, logistic regression has a similar update but is “softer” due to its probabilistic nature

- All gradient updates: “make it look more like the right thing and less like the wrong thing”

- Next time: multiclass classification