This Lecture

- Linear classification fundamentals
- Three discriminative models: logistic regression, perceptron, SVM
 - Different motivations but very similar update rules / inference!
- Optimization
- Sentiment analysis
Classification

- Datapoint \(x \) with label \(y \in \{0, 1\} \)
- Embed datapoint in a feature space \(f(x) \in \mathbb{R}^n \)
 but in this lecture \(f(x) \) and \(x \) are interchangeable
- Linear decision rule: \(w^T f(x) + b > 0 \)
 \[w^T f(x) > 0 \]
- Can delete bias if we augment feature space:
 \(f(x) = [0.5, 1.6, 0.3] \)
 \[[0.5, 1.6, 0.3, 1] \]

Classification: Sentiment Analysis

- "Kernel trick" does this for "free," but is too expensive to use in NLP applications, training is \(O(n^2) \) instead of \(O(n \cdot (\text{num feats})) \)

Feature Representation

- Convert this example to a vector using bag-of-words features
- [contains the] position 0
- [contains a] position 1
- [contains was] position 2
- [contains movie] position 3
- [contains film] position 4
- \(f(x) = [0, 0, 1, 1, 0, \ldots] \)
- Very large vector space (size of vocabulary), sparse features (how many?)
- Requires indexing the features (mapping them to axes)
- More sophisticated feature mappings possible (tf-idf), as well as lots of other features: n-grams, character n-grams, parts of speech, lemmas, …
Generative vs. Discriminative Modeling

- Data point $x = (x_1, \ldots, x_n)$, label $y \in \{0, 1\}$
- Generative models: probabilistic models of $P(x, y)$
 - Compute $P(y|x)$, predict $\arg\max_y P(y|x)$ to classify
 \[P(y|x) = \frac{P(y)P(x|y)}{P(x)} \propto P(y)P(x|y) \]
- Discriminative models model $P(y|x)$ directly, compute $\arg\max_y P(y|x)$
 - Examples: Naive Bayes (see textbook), Hidden Markov Models
 - Examples: logistic regression
- Cannot draw samples of x, but typically better classifiers

Logistic Regression

- $P(y = +|x) = \text{logistic}(w^T x)$
- $P(y = +|x) = \frac{\exp(\sum_{i=1}^n w_i x_i)}{1 + \exp(\sum_{i=1}^n w_i x_i)}$
- To learn weights: maximize discriminative log likelihood of data ($\log P(y|x)$)
 \[\mathcal{L}(x, y) = \sum_j \log P(y_j|x_j) \quad \text{corpus-level LL} \]
 \[\mathcal{L}(x_j, y_j = +) = \log P(y_j = +|x_j) = \sum_{i=1}^n w_i x_{ji} - \log \left(1 + \exp \left(\sum_{i=1}^n w_i x_{ji} \right) \right) \quad \text{sum over features} \]
- Log likelihood of one (positive) example LL
- To learn weights: maximize $\mathcal{L}(x_j, y_j = +)$
- Derivative of $\mathcal{L}(x_j, y_j = +)$
 \[\frac{\partial \mathcal{L}(x_j, y_j = +)}{\partial w_i} = x_{ji} - \frac{1}{1 + \exp(\sum_{i=1}^n w_i x_{ji})} \frac{\partial}{\partial w_i} \left(1 + \exp(\sum_{i=1}^n w_i x_{ji}) \right) \]
 \[= x_{ji} \frac{1}{1 + \exp(\sum_{i=1}^n w_i x_{ji})} \exp(\sum_{i=1}^n w_i x_{ji}) \]
 \[= x_{ji} - x_{ji} \frac{\exp(\sum_{i=1}^n w_i x_{ji})}{1 + \exp(\sum_{i=1}^n w_i x_{ji})} = x_{ji} (1 - P(y_j = +|x_j)) \]
Logistic Regression

- Gradient of w_i on positive example $= x_{ji}(1 - P(y_j = + | x_j))$
 If $P(+) \approx 1$, make very little update. Otherwise make w_i look more like x_{ji}, which will increase $P(+)$.
- Gradient of w_i on negative example $= x_{ji}(-P(y_j = + | x_j))$
 If $P(+) \approx 0$, make very little update. Otherwise make w_i look less like x_{ji}, which will decrease $P(+)$.
- Let $y_j = 1$ for positive instances, $y_j = 0$ for negative instances.
- Can combine these gradients as $x_j(y_j - P(y_j = 1 | x_j))$

Example

- (1) this movie was great! would watch again + $f(x_1) = [1 \ 1]
- (2) I expected a great movie and left happy + $f(x_2) = [1 \ 1]
- (3) great potential but ended up being a flop - $f(x_3) = [1 \ 0]

$[\text{contains great}]$ $[\text{contains movie}]$

$w = [0, 0] \rightarrow P(y = 1 | x_1) = \exp(0)/(1 + \exp(0)) = 0.5 \rightarrow g = [0.5, 0.5]$

$w = [0.5, 0.5] \rightarrow P(y = 1 | x_2) = \text{logistic}(1) = 0.75 \rightarrow g = [0.25, 0.25]$

$w = [0.75, 0.75] \rightarrow P(y = 1 | x_3) = \text{logistic}(0.75) = 0.67 \rightarrow g = [-0.67, 0]$

$w = [0.08, 0.75] \ldots$

$\begin{align*}
 x_j(y_j - P(y_j = 1 | x_j))
\end{align*}$

Regularization

- Regularizing an objective can mean many things, including an L2-norm penalty to the weights:
 $$\sum_{j=1}^{n} L(x_j, y_j) - \lambda \|w\|^2_2$$
- Keeping weights small can prevent overfitting.
- For most of the NLP models we build, explicit regularization isn’t necessary.
- Early stopping.
- Large numbers of sparse features are hard to overfit in a really bad way.
- For neural networks: dropout and gradient clipping.

Logistic Regression: Summary

- Model
 $$P(y = +|x) = \frac{\exp(\sum_{i=1}^{n} w_i x_i)}{1 + \exp(\sum_{i=1}^{n} w_i x_i)}$$
- Inference
 $$\text{argmax}_y P(y|x)$$
 $$P(y = 1|x) \geq 0.5 \iff w^\top x \geq 0$$
- Learning: gradient ascent on the (regularized) discriminative log-likelihood.
Perceptron/SVM

Perceptron

- Simple error-driven learning approach similar to logistic regression
- Decision rule: $w^T x > 0$
 - If incorrect: if positive, $w \leftarrow w + x$
 - if negative, $w \leftarrow w - x$
- Guaranteed to eventually separate the data if the data are separable

Logistic Regression

$w \leftarrow w + x(1 - P(y = 1|x))$
$w \leftarrow w - xP(y = 1|x)$

Support Vector Machines

- Many separating hyperplanes — is there a best one?

Support Vector Machines

- Many separating hyperplanes — is there a best one?
Support Vector Machines

- Constraint formulation: find w via following quadratic program:

\[
\begin{align*}
\text{Minimize} & \quad \|w\|_2^2 \\
\text{s.t.} & \quad \forall j \quad w^T x_j \geq 1 \text{ if } y_j = 1 \\
& \quad w^T x_j \leq -1 \text{ if } y_j = 0
\end{align*}
\]

- As a single constraint:

\[
\forall j \quad (2y_j - 1)(w^T x_j) \geq 1
\]

- Generally no solution (data is generally non-separable) — need slack!

N-Slack SVMs

\[
\begin{align*}
\text{Minimize} & \quad \lambda \|w\|_2^2 + \sum_{j=1}^{m} \xi_j \\
\text{s.t.} & \quad \forall j \quad (2y_j - 1)(w^T x_j) \geq 1 - \xi_j \quad \forall j \quad \xi_j \geq 0
\end{align*}
\]

- The ξ_j are a “fudge factor” to make all constraints satisfied

- Take the gradient of the objective:

\[
\frac{\partial}{\partial w_i} \xi_j = 0 \text{ if } \xi_j = 0 \\
\frac{\partial}{\partial w_i} \xi_j = (2y_j - 1)x_{ji} \text{ if } \xi_j > 0
\]

\[
= x_{ji} \text{ if } y_j = 1, \quad -x_{ji} \text{ if } y_j = 0
\]

- Looks like the perceptron! But updates more frequently

Gradients on Positive Examples

- Logistic regression

\[
x(1 - \text{logistic}(w^T x))
\]

- Perceptron

\[
x \text{ if } w^T x < 0, \quad \text{else } 0
\]

- SVM (ignoring regularizer)

\[
x \text{ if } w^T x < 1, \quad \text{else } 0
\]

*gradients are for maximizing things, which is why they are flipped

Comparing Gradient Updates (Reference)

- Logistic regression (unregularized)

\[
x(y - P(y = 1|x)) = x(y - \text{logistic}(w^T x))
\]

- Perceptron

\[
(2y - 1)x \text{ if classified incorrectly} \\
0 \text{ else}
\]

- SVM

\[
(2y - 1)x \text{ if not classified correctly with margin of } 1 \\
0 \text{ else}
\]

y = 1 for pos, 0 for neg
Structured Prediction

- Four elements of a structured machine learning method:
 - Model: probabilistic, max-margin, deep neural network
 - Objective
 - Inference: just maxes and simple expectations so far, but will get harder
 - Training: gradient descent?

Optimization

- Stochastic gradient ascent
 - $w \leftarrow w + \alpha g$, $g = \frac{\partial}{\partial w} \mathcal{L}$
 - Very simple to code up
 - "First-order" technique: only relies on having gradient
 - Can avg gradient over a few examples and apply update once (minibatch)
 - Setting step size is hard (decrease when held-out performance worsens?)
- Newton’s method
 - Second-order technique
 - Optimizes quadratic instantly
 - Inverse Hessian: $n \times n$ mat, expensive!
- Quasi-Newton methods: L-BFGS, etc. approximate inverse Hessian

AdaGrad

- Optimized for problems with sparse features
- Per-parameter learning rate: smaller updates are made to parameters that get updated frequently
 $$w_i \leftarrow w_i + \alpha \frac{1}{\sqrt{\epsilon + \sum_{t=1}^{t} g_{t,i}^2}} g_{t,i} \quad \text{(smoothed) sum of squared gradients from all updates}$$
 - Generally more robust than SGD, requires less tuning of learning rate
 - Other techniques for optimizing deep models — more later!

Duchi et al. (2011)
Implementation

- Supposing k active features on an instance, gradient is only nonzero on k dimensions
 \[w \leftarrow w + \alpha g, \quad g = \frac{\partial}{\partial w} L \]
- $k < 100$, total num features = 1M+ on many problems
- Be smart about applying updates!
- In PyTorch: applying sparse gradients only works for certain optimizers and sparse updates are very slow. The code we give you is much faster

Sentiment Analysis

this movie was great! would watch again

the movie was gross and overwrought, but I liked it

this movie was not really very enjoyable

- Bag-of-words doesn’t seem sufficient (discourse structure, negation)
- There are some ways around this: extract bigram feature for “not X” for all X following the not

Sentiment Analysis

<table>
<thead>
<tr>
<th>Features</th>
<th># of features</th>
<th>frequency or presence?</th>
<th>NB</th>
<th>ME</th>
<th>SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) unigrams</td>
<td>16165</td>
<td>freq.</td>
<td>78.7</td>
<td>N/A</td>
<td>72.8</td>
</tr>
<tr>
<td>(2) unigrams</td>
<td></td>
<td>pres.</td>
<td>81.0</td>
<td>80.4</td>
<td>82.9</td>
</tr>
<tr>
<td>(3) unigrams+bigrams</td>
<td>32330</td>
<td>pres.</td>
<td>80.6</td>
<td>80.8</td>
<td>82.7</td>
</tr>
<tr>
<td>(4) bigrams</td>
<td>16165</td>
<td>pres.</td>
<td>77.3</td>
<td>77.4</td>
<td>77.1</td>
</tr>
<tr>
<td>(5) unigrams+POS</td>
<td>16055</td>
<td>pres.</td>
<td>81.5</td>
<td>80.4</td>
<td>81.9</td>
</tr>
<tr>
<td>(6) adjectives</td>
<td>2633</td>
<td>pres.</td>
<td>77.0</td>
<td>77.7</td>
<td>75.1</td>
</tr>
<tr>
<td>(7) top 2633 unigrams</td>
<td>2633</td>
<td>pres.</td>
<td>80.3</td>
<td>81.0</td>
<td>81.4</td>
</tr>
<tr>
<td>(8) unigrams+position</td>
<td>22430</td>
<td>pres.</td>
<td>81.0</td>
<td>80.1</td>
<td>81.6</td>
</tr>
</tbody>
</table>

- Simple feature sets can do pretty well!
Sentiment Analysis

<table>
<thead>
<tr>
<th>Method</th>
<th>RT-s</th>
<th>MPQA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNB-uni</td>
<td>77.9</td>
<td>85.3</td>
</tr>
<tr>
<td>MNB-bi</td>
<td>79.0</td>
<td>86.5</td>
</tr>
<tr>
<td>SVM-uni</td>
<td>76.2</td>
<td>86.1</td>
</tr>
<tr>
<td>SVM-bi</td>
<td>77.7</td>
<td>86.7</td>
</tr>
<tr>
<td>NBSVM-uni</td>
<td>78.1</td>
<td>86.3</td>
</tr>
<tr>
<td>NBSVM-bi</td>
<td>79.4</td>
<td>86.3</td>
</tr>
<tr>
<td>RAE</td>
<td>76.8</td>
<td>85.7</td>
</tr>
<tr>
<td>RAE-pretrain</td>
<td>77.7</td>
<td>86.4</td>
</tr>
<tr>
<td>Voting-w/Rev.</td>
<td>63.1</td>
<td>81.7</td>
</tr>
<tr>
<td>Rule</td>
<td>62.9</td>
<td>81.8</td>
</tr>
<tr>
<td>BoF-noDic.</td>
<td>75.7</td>
<td>81.8</td>
</tr>
<tr>
<td>BoF-w/Rev.</td>
<td>76.4</td>
<td>84.1</td>
</tr>
<tr>
<td>Tree-CRF</td>
<td>77.3</td>
<td>86.1</td>
</tr>
<tr>
<td>BoW/SVM</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Kim (2014) CNNs: **81.5 | 89.5**

Recap

- **Logistic regression:**
 \[P(y = 1|x) = \frac{\exp(\sum_{i=1}^{n} w_i x_i)}{1 + \exp(\sum_{i=1}^{n} w_i x_i)} \]

 - Decision rule: \[P(y = 1|x) \geq 0.5 \iff w^T x \geq 0 \]

 - Gradient (unregularized): \[x(y - P(y = 1|x)) \]

- **SVM:**
 Decision rule: \[w^T x \geq 0 \]

 - (Sub)gradient (unregularized): 0 if correct with margin of 1, else \[x(2y - 1) \]

Naive Bayes is doing well!

Ng and Jordan (2002) — NB can be better for small data

Before neural nets had taken off — results weren’t that great

Sentiment Analysis

- Stanford Sentiment Treebank (SST) binary classification
- Best systems now: large pretrained networks
- 90 -> 97 over the last 2 years

Wang and Manning (2012)

https://github.com/sebastianruder/NLP-progress/blob/master/english/sentiment_analysis.md