CS395T: Structured Models for NLP
Lecture 1: Introduction

Greg Durrett
Administivia

- Lecture: Tuesdays and Thursdays 9:30am - 10:50am
- Piazza: https://piazza.com/utexas/fall2017/cs395t/home
- My office hours: Wednesday 10am-noon, GDC 3.420
- TA: Ye Zhang; Office hours:
 - Tuesday 2pm-3pm GDC 1.302 Desk 2
 - Thursday 2pm-3pm, GDC 1.302 Desk 1 (until 2:30), Desk 4 (2:30 onwards)
Course Requirements

- 391L Machine Learning (or equivalent)
- 311 or 311H Discrete Math for Computer Science (or equivalent)
- Python experience
- Additional prior exposure to probability, linear algebra, optimization, linguistics, and NLP useful but not required
Enrollment

▫ I want everyone to be able to take this class!

▫ Priority ordering:
 ▫ CS grad students
 ▫ Other grad students
 ▫ CS undergrads who have satisfied the prerequisites
 ▫ Other undergrads who have satisfied the prerequisites
 ▫ Other undergrads
What’s the goal of NLP?

- Be able to solve problems that require deep understanding of text
- Example: dialogue systems

Siri, what’s the most valuable American company?

Apple

Who is its CEO?

Tim Cook

recognize marketCap is the target value

resolve references

do computation

disambiguate entity
One of New America’s writers posted a statement critical of Google. Eric Schmidt, Google’s CEO, was displeased.

The writer and his team were dismissed.

Ms. Slaughter told Mr. Lynn that “the time has come for Open Markets and New America to part ways,” according to an email from Ms. Slaughter to Mr. Lynn. The email suggested that the entire Open Markets team — nearly 10 full-time employees and unpaid fellows — would be exiled from New America.

But not long after one of New America’s scholars posted a statement on the think tank’s website praising the European Union’s penalty against Google, Mr. Schmidt, who had been chairman of New America until 2016, communicated his displeasure with the statement to the group’s president, Anne-Marie Slaughter, according to the scholar.

WASHINGTON — In the hours after European antitrust regulators levied a record $2.7 billion fine against Google in late June, an influential Washington think tank learned what can happen when a tech giant that shapes public policy debates with its enormous wealth is criticized.

...
Trump Pope family watch a hundred years a year in the White House balcony
Textual Entailment

- Text is connected to intelligence and knowledge in a fundamental way!
- Goal of NLP (solving problems with text) requires *analyzing* and *understanding* text
- What makes this analysis hard?
Hector Levesque (2011): “Winograd schema challenge” (named after Terry Winograd, the creator of SHRDLU)

The city council refused the demonstrators a permit because they ______ violence

This is so complicated that it’s an AI challenge problem! (AI-complete)

Can try to use the web to learn pragmatics, but that’s not giving us a deep understanding of text
Language is Ambiguous!

- Headlines
 - Teacher Strikes Idle Kids
 - Hospitals Sued by 7 Foot Doctors
 - Ban on Nude Dancing on Governor’s Desk
 - Iraqi Head Seeks Arms
 - Stolen Painting Found by Tree
 - Kids Make Nutritious Snacks
 - Local HS Dropouts Cut in Half

- Why are these funny?

- Pragmatics can resolve this...right?
Language is **Really** Ambiguous!

- There aren’t just one or two possibilities which are resolved pragmatically.
- Combinatorially many possibilities, many you won’t even register as ambiguities, but systems still have to resolve them!
- So our goal (analyze text) is harder than we thought...how do we do it?
A brief history of (modern) NLP

1980
“AI winter” rule-based, expert systems
earliest stat MT work at IBM

1990
Penn treebank
S
NP VP
Ratnaparkhi tagger
NNP VBZ

2000
Collins vs. Charniak parsers

2010
Unsup: topic models, grammar induction
Sup: SVMs, CRFs, NER, Sentiment
Semi-sup, structured prediction

2017
Neural
Structured Prediction

- All of these techniques are data-driven! Some data is naturally occurring, but may need to label.

- Supervised techniques work well on very little data.

- Even neural nets can do pretty well!

- Balance tradeoff of data/algorithms/compute

Garrette and Baldridge (2013)
Less Manual Structure?

The yield on the benchmark issue rose to 10% from 5%

(S (NP (NP (DT The)) (NN yield ...)

Sutskever et al. (2015), Bahdanau et al. (2014)
Less Manual Structure?

(a) example word alignment

(b) example phrase alignment

DeNero et al. (2008)

Bahdanau et al. (2014)
Less Manual Structure?

Trump Pope family watch a hundred years a year in the White House balcony

- Maybe manual structure would help...
Does manual structure have a place?

- Neural nets don’t always work out of domain!

- Coreference: rule-based systems are still about as good as deep learning out-of-domain

- LORELEI: transition point below which phrase-based systems are better

- Why is this? Inductive bias!

- Can multi-task learning help?

<table>
<thead>
<tr>
<th></th>
<th>Newswire</th>
<th>Wikipedia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg. F_1</td>
<td></td>
</tr>
<tr>
<td>rule-based</td>
<td>55.60</td>
<td>51.77</td>
</tr>
<tr>
<td>berkeley</td>
<td>61.24</td>
<td>51.01</td>
</tr>
<tr>
<td>cort</td>
<td>63.37</td>
<td>49.94</td>
</tr>
<tr>
<td>deep-coref [conll]</td>
<td>65.39</td>
<td>52.65</td>
</tr>
<tr>
<td>deep-coref [lea]</td>
<td>65.60</td>
<td>53.14</td>
</tr>
</tbody>
</table>

Moosavi and Strube (2017)
Where are we?

- Solving problems with text requires analyzing text
- Many possibilities: rule-based systems, CRFs, neural networks, ...
- Knowing which of these to use requires understanding dataset size, problem complexity, and a lot of tricks!
- What do all of these models have in common? What do they need to capture in order to be successful?

Break!
What’s important?

- High-capacity models + data!

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>Cela constituerait une solution transitoire qui permettrait de conduire à terme à une charte à valeur contraignante.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUMAN</td>
<td>That would be an interim solution which would make it possible to work towards a binding charter in the long term.</td>
</tr>
<tr>
<td>1x DATA</td>
<td>[this] [constituerait] [assistance] [transitoire] [who] [permettrait] [licences] [to] [terme] [to] [a] [charter] [to] [value] [contraignante] [.]</td>
</tr>
<tr>
<td>10x DATA</td>
<td>[it] [would] [a solution] [transitional] [which] [would] [of] [lead] [to] [term] [to a] [charter] [to] [value] [binding] [.]</td>
</tr>
<tr>
<td>100x DATA</td>
<td>[this] [would be] [a transitional solution] [which would] [lead to] [a charter] [legally binding] [.]</td>
</tr>
<tr>
<td>1000x DATA</td>
<td>[that would be] [a transitional solution] [which would] [eventually lead to] [a binding charter] [.]</td>
</tr>
</tbody>
</table>

slide credit: Dan Klein
What’s important?

- World knowledge: have access to information beyond the training data

On Sept. 1, 1715 Louis XIV died in this city, site of a fabulous palace he built.

Answer: What is Versailles?
What’s important?

- Grounding: learn what fundamental concepts actually mean in a data-driven way

Question: What object is **right of** O2?

Golland et al. (2010)

McMahan and Stone (2015)
What’s important?

- Multitask interactions: recognize constraints to be more statistically efficient (and humanlike!) in our reasoning

Dell is headquartered just outside Austin. The company...

Durrett and Klein (2014)
What’s important?

- Linguistic structure
- ...but computers probably won’t understand language the same way humans do
- However, linguistics tells us what phenomena we need to be able to deal with and gives us hints about how language works

a. John has been having a lot of trouble arranging his vacation.

b. He cannot find anyone to take over his responsibilities. (he = John)
 \[C_b = \text{John}; C_f = \{\text{John}\} \]

c. He called up Mike yesterday to work out a plan. (he = John)
 \[C_b = \text{John}; C_f = \{\text{John, Mike}\} \text{ (CONTINUE)} \]

d. Mike has annoyed him a lot recently.
 \[C_b = \text{John}; C_f = \{\text{Mike, John}\} \text{ (RETAIN)} \]

e. He called John at 5 AM on Friday last week. (he = Mike)
 \[C_b = \text{Mike}; C_f = \{\text{Mike, John}\} \text{ (SHIFT)} \]

Centering Theory
Grosz et al. (1995)
How do we build systems to do all this?

- Structured statistical models

- **Structured:** lets us incorporate cross-task constraints, inductive biases from linguistics, knowledge, etc.

- **Statistical:** harness the power of data to do really large-scale pattern recognition and learn from labeled + unlabeled data + interaction with the world
Outline of the Course

First half: structured prediction
- Machine learning basics
- Sequences, trees
- Inference, learning

Second half: deep learning
- RNNs/LSTMs, convolutional networks
- Word representations
- Inference, learning
NLP vs. Computational Linguistics

- NLP: build systems that deal with language data
- CL: use computational tools to study language

Hamilton et al. (2016)
Computational tools for other purposes: literary theory, political science...

Bamman, O’Connor, Smith (2013)
Course Goals

- Cover structured machine learning approaches to NLP
- Show connections between structured algorithms: generative and discriminative, margin and likelihood, neural and linear, etc.: these are all closely related!
- Dissect the pieces of these structured models: modeling, inference, learning
- Make you a “producer” rather than a “consumer” of NLP tools
- Expose you to classic problems in NLP
Assignments

- Three projects (16.6% each = 50%)
 - Implementation-oriented, open-ended component to each
 - First will be out on 9/12
 - 2-page writeup with statement of what you did
 - ~2 weeks per project, 7 “slip days” for automatic extensions

- Grading: 10-point scale
 - 6 points for minimal code completion
 - 1 point for minimal extension
 - 1 point for minimal 2-page writeup
 - 2 points for better extension, better writeup

\[8 \text{ points} \sim A- \]
Assignments

- Final project (50%)
 - Groups of 1-2
 - (Brief!) proposal to be approved by me
 - Written in the style and tone of an ACL paper
 - Same 10-point grading scheme, 8 points for minimal completion of proposed work
Survey

1. Fill in: I am a [CS / linguistics / other] [grad / undergrad] in year [1 2 3 4 5+]
2. Which of the following have you learned in a class?
 1. Bayes’ Rule
 2. SVMs
 3. HMMs
 4. EM
 5. Part-of-speech tagging
3. Which of the following have you used?
 1. Python
 2. numpy/scipy/scikit-learn
 3. Tensorflow/(Py)Torch/Theano
4. Fill in: Assuming I can enroll, my probability of taking this class is X%