CS395T: Structured Models for NLP
Lecture 1: Introduction

Greg Durrett

Administrivia

› Lecture: Tuesdays and Thursdays 9:30am - 10:50am
› Course website: http://www.cs.utexas.edu/~gdurrett/courses/fa2017-cs395t.shtml
› Piazza: https://piazza.com/utexas/fall2017/cs395t/home
› My office hours: Wednesday 10am-noon, GDC 3.420
› TA: Ye Zhang; Office hours:
 › Tuesday 2pm-3pm GDC 1.302 Desk 2
 › Thursday 2pm-3pm, GDC 1.302 Desk 1 (until 2:30), Desk 4 (2:30 onwards)

Course Requirements

› 391L Machine Learning (or equivalent)
› 311 or 311H Discrete Math for Computer Science (or equivalent)
› Python experience
› Additional prior exposure to probability, linear algebra, optimization, linguistics, and NLP useful but not required

Enrollment

› I want everyone to be able to take this class!
› Priority ordering:
 › CS grad students
 › Other grad students
 › CS undergrads who have satisfied the prerequisites
 › Other undergrads who have satisfied the prerequisites
 › Other undergrads
What’s the goal of NLP?

- Be able to solve problems that require deep understanding of text
- Example: dialogue systems

Automatic Summarization

- Compress text
- Provide missing context
- One of New America’s writers posted a statement critical of Google. Eric Schmidt, Google’s CEO, was displeased.
- The writer and his team were dismissed.
- Paraphrase to provide clarity

Machine Translation

- Trump, Pope family watch a hundred years a year in the White House balcony

Textual Entailment

- Text is connected to intelligence and knowledge in a fundamental way!
- Goal of NLP (solving problems with text) requires analyzing and understanding text
- What makes this analysis hard?
Language is Ambiguous!

- Hector Levesque (2011): “Winograd schema challenge” (named after Terry Winograd, the creator of SHRDLU)

 They advocated
 The city council refused the demonstrators a permit because they feared violence
 They feared

- This is so complicated that it’s an AI challenge problem! (AI-complete)
- Can try to use the web to learn pragmatics, but that’s not giving us a deep understanding of text

Language is Really Ambiguous!

- There aren’t just one or two possibilities which are resolved pragmatically

 Sentence Syntactic parser Exponential number
 “fish” fish gh as in tough
 Phish o as in women ti as in motion

- Combinatorially many possibilities, many you won’t even register as ambiguities, but systems still have to resolve them!
- So our goal (analyze text) is harder than we thought…how do we do it?

A brief history of (modern) NLP

- “AI winter” rule-based, expert systems
- “AI winter” worked at IBM
- “AI winter” tagger
- Ratnaparkhi parser
- Ratnaparkhi tagger
- Earliest stat MT
- Earliest stat MT
- Ratnaparkhi tagger
- Ratnaparkhi tagger
- “AI winter” tagger
- “AI winter” tagger
- Earliest stat MT

- Unsup: topic models, grammar induction
- Sup: SVMs, CRFs, NER, sentiment
- Semi-sup, structured prediction
- Neural
Structured Prediction

- All of these techniques are data-driven! Some data is naturally occurring, but may need to label.
- Supervised techniques work well on very little data.

 [Image of a head with annotation (two hours!)]

- Unsupervised learning.

 [Image of a head with a better system!]

- Even neural nets can do pretty well!
- Balance tradeoff of data/algorithms/compute

Garrette and Baldridge (2013)

Less Manual Structure?

The yield on the benchmark issue rose to 10% from 5%

[Diagram of LSTM]

(S (NP (NP (DT The) (NN yield ...)]

Sutskever et al. (2015), Bahdanau et al. (2014)

Less Manual Structure?

Bahdanau et al. (2014)

(a) example word alignment

(b) example phrase alignment

DeNero et al. (2008)
Less Manual Structure?

Translate

| English | French | Spanish | Chinese - detected |

特朗普通家人在白宫阳台观看百年一遇日全食

Trump Pope family watch a hundred years a year in the White House balcony

Maybe manual structure would help...

Does manual structure have a place?

- Neural nets don’t always work out of domain!
- Coreference: rule-based systems are still about as good as deep learning out-of-domain
- LORELEI: transition point below which phrase-based systems are better
- Why is this? Inductive bias!
- Can multi-task learning help?

Moosavi and Strube (2017)

Where are we?

- Solving problems with text requires analyzing text
- Many possibilities: rule-based systems, CRFs, neural networks, ...
- Knowing which of these to use requires understanding dataset size, problem complexity, and a lot of tricks!
- What do all of these models have in common? What do they need to capture in order to be successful?

Break!

What’s important?

- High-capacity models + data!

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>Cela constituierait une solution transitoire qui permettrait de conclure à terme à une charte à valeur contraignante.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUMAN</td>
<td>That would be an interim solution which would make it possible to work towards a binding charter in the long term.</td>
</tr>
<tr>
<td>1x DATA</td>
<td>[this] [constituera] [solution] [transitoire] [who] [permettra] [licences] [to] [term] [to] [a] [charter] [to] [value] [contrainante]</td>
</tr>
<tr>
<td>10x DATA</td>
<td>[this] [would be] [a transitional solution] [which] [would] [eventually] [lead to] [a] [charter] [legally binding]</td>
</tr>
<tr>
<td>100x DATA</td>
<td>[this] [would be] [a transitional solution] [which] [would] [eventually] [lead to] [a] [binding charter]</td>
</tr>
</tbody>
</table>

slide credit: Dan Klein
What's important?

- World knowledge: have access to information beyond the training data

On Sept. 1, 1715 Louis XIV died in this city, site of a fabulous palace he built.

Answer: What is Versailles?

What's important?

- Grounding: learn what fundamental concepts actually mean in a data-driven way

Question: What object is right of 02?

Golland et al. (2010)

McMahan and Stone (2015)

What's important?

- Multitask interactions: recognize constraints to be more statistically efficient (and humanlike!) in our reasoning

Dell is headquartered just outside Austin. The company...

Durrett and Klein (2014)

What's important?

- Linguistic structure
 - ...but computers probably won’t understand language the same way humans do
 - However, linguistics tells us what phenomena we need to be able to deal with and gives us hints about how language works

a. John has been having a lot of trouble arranging his vacation.
 \(C_0 = \text{John}; C_I = \{\text{John}\} \)

b. He cannot find anyone to take over his responsibilities. (he = John)
 \(C_0 = \text{John}; C_I = \{\text{John, Mike}\} \) (CONTINUE)

c. He called up Mike yesterday to work out a plan. (he = John)
 \(C_0 = \text{John}; C_I = \{\text{John, Mike}\} \) (CONTINUE)

d. Mike has annoyed him a lot recently.
 \(C_0 = \text{John}; C_I = \{\text{Mike, John}\} \) (RETAIN)

e. He called John at 5 AM on Friday last week. (he = Mike)
 \(C_0 = \text{Mike}; C_I = \{\text{Mike, John}\} \) (SHIFT)

Centering Theory
Grosz et al. (1995)
How do we build systems to do all this?

- **Structured statistical models**
- **Structured:** lets us incorporate cross-task constraints, inductive biases from linguistics, knowledge, etc.
- **Statistical:** harness the power of data to do really large-scale pattern recognition and learn from labeled + unlabeled data + interaction with the world

Outline of the Course

- First half: structured prediction
 - Machine learning basics
 - Sequences, trees
 - Inference, learning
- Second half: deep learning
 - RNNs/LSTMs, convolutional networks
 - Word representations
 - Inference, learning

NLP vs. Computational Linguistics

- **NLP:** build systems that deal with language data
- **CL:** use computational tools to study language

Hamilton et al. (2016)

Bamman, O’Connor, Smith (2013)
Course Goals

- Cover structured machine learning approaches to NLP
- Show connections between structured algorithms: generative and discriminative, margin and likelihood, neural and linear, etc.: these are all closely related
- Dissect the pieces of these structured models: modeling, inference, learning
- Make you a “producer” rather than a “consumer” of NLP tools
- Expose you to classic problems in NLP

Assignments

- Three projects (16.6% each = 50%)
 - Implementation-oriented, open-ended component to each
 - First will be out on 9/12
 - 2-page writeup with statement of what you did
 - ~2 weeks per project, 7 “slip days” for automatic extensions
- Grading: 10-point scale
 - 6 points for minimal code completion
 - 1 point for minimal extension
 - 1 point for minimal 2-page writeup
 - 2 points for better extension, better writeup

Assignments

- Final project (50%)
 - Groups of 1-2
 - (Brief!) proposal to be approved by me
 - Written in the style and tone of an ACL paper
 - Same 10-point grading scheme, 8 points for minimal completion of proposed work

Survey

1. Fill in: I am a [CS / linguistics / other] [grad / undergrad] in year [1 2 3 4 5+]
2. Which of the following have you learned in a class?
 1. Bayes’ Rule
 2. SVMs
 3. HMMs
 4. EM
 5. Part-of-speech tagging
3. Which of the following have you used?
 1. Python
 2. numpy/scipy/scikit-learn
 3. Tensorflow/(Py)Torch/Theano
4. Fill in: Assuming I can enroll, my probability of taking this class is X%