CS395T: Structured Models for NLP
Lecture 10: Trees 4

Greg Durrett
Project 1 graded by late week / this weekend
Recall: Eisner’s Algorithm

- Left and right children are built independently, heads are edges of spans
- **Complete item**: all children are attached, head is at the “tall end”
- **Incomplete item**: arc from “tall end” to “short end”, may still expect children
Recall: MST Algorithm

- Eisner: search over the space of projective trees, $O(n^3)$

- MST: find maximum directed spanning tree — finds nonprojective trees as well as projective trees $O(n^2)$

- MST restricted to features on single dependencies, Eisner can be generalized to incorporate higher-order features (grandparents, siblings, etc.) at a time complexity cost, or with beaming
Recall: Transition-Based Parsing

- **Start:** stack contains [ROOT], buffer contains [I ate some spaghetti bolognese]
- Arc-standard system: three operations
 - Shift: top of buffer -> top of stack
 - Left-Arc: $\sigma|w_{-2}, w_{-1} \rightarrow \sigma|w_{-1}$, w_{-2} is now a child of w_{-1}
 - Right-Arc $\sigma|w_{-2}, w_{-1} \rightarrow \sigma|w_{-2}$, w_{-1} is now a child of w_{-2}
- **End:** stack contains [ROOT], buffer is empty []
- Must take $2n$ steps for n words (n shifts, n LA/RA)
Recall: Transition-Based Parsing

I ate some spaghetti bolognese

S top of buffer -> top of stack
LA pop two, left arc between them
RA pop two, right arc between them

[ROOT ate]
[ROOT ate some spaghetti]
[ROOT ate spaghetti]

[some spaghetti bolognese]
[bolognese]
[bolognese]
This Lecture

- Global Decoding
- Early updating
- Connections to reinforcement learning, dynamic oracles
- State-of-the-art dependency parsers, related tasks
Greedy Training: Static States

- Greedy: each box forms a training example \((s, a^*)\)

State space

Start state

Gold end state

\(\downarrow\) = Bad alternative decisions
Global Decoding

- Greedy parser: trained to make the right decision \((S, LA, RA) \) from any gold state we might come to.

- What we optimizing when we decode each sentence?
 - Nothing...we’re executing:
 \[
 a_{\text{best}} \leftarrow \arg\max_a w^\top f(s, a) \\
 s \leftarrow a_{\text{best}}(s)
 \]

- Why might this be bad?
Global Decoding

ROOT
I gave him dinner

[ROOT gave him] [dinner]

Correct: Right-arc, Shift, Right-arc, Right-arc

[ROOT gave] [dinner]

[ROOT gave dinner] [] [ROOT gave] []

I him

I him dinner
Global Decoding: A Cartoon

I gave him dinner

• Both wrong! Also both probably low scoring!

• Correct, high scoring option
Global Decoding: A Cartoon

- Lookahead can help us avoid getting stuck in bad spots
- Global model: maximize sum of scores over all decisions
- Similar to how Viterbi works: we maintain uncertainty over the current state so that if another one looks more optimal going forward, we can use that one.
Global Shift-Reduce Parsing

ROOT
I gave him dinner

[ROOT gave him] [dinner]

- Greedy: repeatedly execute
 \[a_{\text{best}} \leftarrow \text{argmax}_a w^\top f(s, a) \]
 \[s \leftarrow a_{\text{best}}(s) \]

- Can we do search exactly?
 - How many states \(s \) are there?

- Global:
 \[\text{argmax}_{s,a} f(s, a) = \sum_{i=1}^{2n} w^\top f(s_i, a_i) \]
 \[s_{i+1} = a_i(s_i) \]
Beam search gave us the lookahead to make the right decision.
Training Global Parsers

- Can compute approximate maxes with beam search
 \[
 \arg\max_{s,a} f(s, a) = \sum_{i=1}^{2n} w^\top f(s_i, a_i)
 \]

- Structured SVM: do loss-augmented decode, gradient = gold feats - guess feats

- Structured perceptron: normal decode, gradient = gold feats - guess feats

- What happens if we set beam size = 1?
Global Training

For each epoch

For each sentence

For i=1...2*len(sentence) # 2n transitions in arc-standard
 beam[i] = compute_successors(beam[i-1])
prediction = beam[2*len(sentence),0] # argmax = top of last beam
Feats are cumulative over the whole sentence
apply_gradient_update(feats(gold) - feats(prediction))
Global Training

- In global, we keep going if we screw up!
- Learn negative weights for features in these states — greedy training would never see these states
Global vs. Greedy

- Greedy: 2n local training examples
- Global: one global example

- In global, we keep going if we screw up!

State space

Start state

Gold end state
Early Updating
Early Updataing

This decision was bad, but these might’ve been good! hard to tell

Collins and Roark (2004)
Early Updating

- Wrong state — we already messed up!
- Ideally we don’t want to penalize this decision (update away from it) — instead just penalize the decision that was *obviously* wrong

Collins and Roark (2004)
Early Updating

- Solution: make an update as soon as the gold parse falls off the beam

- gold feats - guess feats *computed up to this point*
Early Updating

- Gold has fallen off beam!
- Update: gold feats - pred feats
Training with Early Updating

For each epoch

For each sentence

For i=1...2*len(sentence) # 2n transitions in arc-standard
 beam[i] = compute_successors(beam[i-1])

If beam[i] does not contain gold:
 # Feats are cumulative up until this point
 apply_gradient_update(feats(gold[0:i]) - feats(beam[i,0]))
 break

Gold survived to the end but may still not be one-best
apply_gradient_update(feats(gold) - feats(beam[2*len(sentence),0])))
Connections to Reinforcement Learning
Motivation

- Part of the benefit is we see states we wouldn’t have seen during greedy decoding
- (Still true even with early updating due to beam search)
Better Greedy Algorithm

For each epoch:

For each sentence:

Parse the sentence with the current weights

For each state s in the parse:

Determine what the right action a^* was

Train on this example (update towards $f(s, a^*)$, away from $f(s, a_{\text{pred}})$)

How do we determine this?
Dynamic Oracles

- When you make some bad decisions, how do you dig yourself out?

- `best_possible_tree(s)`: computes the optimal decision sequence from state `s` to the end resulting the lowest overall loss

- Implemented by a bunch of logic that looks at the tree: “if we put a right-arc from `a -> b`, we can’t give `b` any more children, so lose a point for every unbound child, also lose a point if `a` isn’t `b`’s head…”

- Score of decision `a` in state `s` leading to `s’`:
 \[
 \text{loss}(a) = \text{loss}(\text{best_possible_tree}(s')) - \text{loss}(\text{best_possible_tree}(s))
 \]

- `a* = \text{argmin}_{a} \text{loss}(a)`

Goldberg and Nivre (2012)
Connections to Reinforcement Learning

- Markov Decision Process: states s, actions a, transitions T, rewards r, discount factor γ

- T is deterministic for us, $\gamma = 1$ (no discount)

- Maximize sum of rewards over the parse

- One reward system: $r = 1$ if action is what dynamic oracle says, 0 otherwise

- Using the “better greedy algorithm” corresponds to on-policy learning here

- But dynamic oracles are hard to build :(
Searn

- What if we just had a loss function $l(y, y^*)$ that scored whole predictions? I.e., all reward comes at the end

- Searn: framework for turning structured problems into classification problems

- Take the current policy (= weights), generate states s by running that policy on a given example

- Evaluate action a in state s by taking a, then following your current policy to completion and computing the loss (= best_possible_loss is approximated by current policy)

- DAGGER algorithm from RL literature

Daume et al. (2009)
State s, evaluate actions a ...by computing losses here

$\ell(y_1, y^*)$
$\ell(y_2, y^*)$
$\ell(y_3, y^*)$
Global Models vs. RL

- Structured prediction problems aren’t really “RL” in that the environment dynamics are understood.
- RL techniques are usually not the right thing to do unless you loss function and state space are really complicated.
- Otherwise, best to use dynamic oracles or global models.
- These issues arise far beyond parsing! Coreference, machine translation, dialogue systems, ...
State-of-the-art Parsers
State-of-the-art Parsers

- 2005: MSTParser got solid performance (~91 UAS)
- 2010: Koo’s 3rd-order parser was SOTA for graph-based (~93 UAS)
- 2012: Maltparser was SOTA for transition-based (~90 UAS), similar to what you’ll build
- 2014: Chen and Manning got 92 UAS with transition-based neural model
State-of-the-art Parsers

Softmax layer:
\[p = \text{softmax}(W_2 h) \]

Hidden layer:
\[h = (W_1^w x^w + W_1^t x^t + W_1^l x^l + b_1)^3 \]

Input layer: \([x^w, x^t, x^l]\)

Configuration
Root has VBZ good JJ
nsubj He PRP
control NN ...

Chen and Manning (2014)
Current state-of-the-art, released by Google publicly

94.61 UAS on the Penn Treebank using a global transition-based system with early updating

Additional data harvested via “tri-training”

Feedforward neural nets looking at words and POS associated with

Words at the top of the stack

Those words’ children

Words in the buffer

Feature set pioneered by Chen and Manning (2014), Google fine-tuned it
Stack LSTMs

- Use LSTMs over stack, buffer, past action sequence. Trained greedily
- Slightly less good than Parsey

Dyer et al. (2015)
Another kind of tree-structured annotation, like a subset of dependency
Verb roles from Propbank (Palmer et al., 2005), nominal predicates too

quicken:

Arg0-PAG: *causer of speed-up*
Arg1-PPT: *thing becoming faster* (vnrole: 45.4-patient)
Arg2-EXT: *EXT*
Arg3-DIR: *old speed*
Arg4-PRD: *new speed*

Figure from He et al. (2017)
Graph-structured annotation

Superset of SRL: full sentence analyses, contains coreference and multi-word expressions as well

F1 scores in the 60s: hard!

So comprehensive that it’s hard to predict, but still doesn’t handle tense or some other things...

The boy wants to go
Takeaways

- Global training is an alternative to greedy training

- Use beam search for inference combined with early updating for best results

- Dynamic oracles + following the predicted path in the state space looks like reinforcement learning
Survey

- Pace of last lecture + this lecture: [too slow] [just right] [too fast]
- Pace of class overall: [too slow] [just right] [too fast]
- Write one thing you like about the class
- Write one thing you don’t like about the class