CS395T: Structured Models for NLP
Lecture 14: Neural Network Implementation

Greg Durrett

Administtrivia

- Project 2 due today
- Project 3 out today
- Sentiment analysis using feedforward neural networks plus your choice of RNNs or CNNs
- Project zip contains sample Tensorflow code demonstrating what’s in today’s lecture

Recall: Feedforward NNs

\[
P(y|x) = \text{softmax}(Wg(Vf(x)))
\]

Recall: Backpropagation

\[
P(y|x) = \text{softmax}(Wg(Vf(x)))
\]
This Lecture

- Implementation details
- Training
- Word representations

Implementation Details

Computation Graphs

- Computing gradients is hard!
- Automatic differentiation: instrument code to keep track of derivatives
 \[x = x \cdot x \quad \rightarrow \quad (x, dx) = (x \cdot x, 2 \cdot x \cdot dx) \]
- In practice: need other operations, want more control -> use an external computation graph library

Disadvantage: higher-level specification, so hard to control memory allocation and low-level implementation details
Tensorflow

```python
x = tf.placeholder("x")
y = tf.placeholder("y")
z = tf.placeholder("z")
a = tf.add(x, y)
b = tf.multiply(a, z)
c = tf.add(b, a)
with tf.Session() as sess:
    output = sess.run([a, c],
                      dict_of_input_values)
```

Computation Graph: FFNN

P(y|x) = softmax(Wg(Vf(x)))

```python
fx = tf.placeholder(tf.float32, feat_vec_size)
V = tf.get_variable("V", [hidden_size, feat_vec_size])
z = tf.sigmoid(tf.tensordot(V, fx, 1))
W = tf.get_variable("W", [num_classes, hidden_size])
probs = tf.nn.softmax(tf.tensordot(W, z, 1))
```

- **placeholder**: input to the system; **variable**: parameter to learn

Computation Graph: FFNN

P(y|x) = softmax(Wg(Vf(x)))

```python
fx = tf.placeholder(tf.float32, feat_vec_size)
V = tf.get_variable("V", [hidden_size, feat_vec_size])
z = tf.sigmoid(tf.tensordot(V, fx, 1))
W = tf.get_variable("W", [num_classes, hidden_size])
probs = tf.nn.softmax(tf.tensordot(W, z, 1))
```

Training a Model

1. **Define a computation graph**
2. **Define an operator that updates the parameters based on an example**
 - For each epoch:
 - For each example:
 - Evaluate the training operator on the example
3. **Decode test set**
Batching

- Batching data gives speedups due to more efficient matrix operations, leads to better learning outcomes too.
- Need to make the computation graph process a batch at the same time.

```python
fx = tf.placeholder(tf.float32, [batch_size, feat_vec_size])
V = tf.get_variable("V", [hidden_size, feat_vec_size])
z = tf.sigmoid(tf.tensordot(V, fx, [1,1])) # batch_size x hidden_size
...  # loss = [sum over losses from batch]
```

Batch Training a Model

Define a computation graph to process a **batch of data**

Define an operator that updates the parameters based on a **batch**.

For each epoch:

- **For each batch:**

 Evaluate the training operator on the **batch**.

Decode test set in **batches**

Training Basics

- **Basic formula:** compute gradients on batch, use first-order opt. method.
- How to initialize? How to regularize? What optimizer to use?
- This lecture: some practical tricks. Take deep learning or optimization courses to understand this further.

Training Tips

- **Basic formula:** compute gradients on batch, use first-order opt. method.
- How to initialize? How to regularize? What optimizer to use?
- This lecture: some practical tricks. Take deep learning or optimization courses to understand this further.
How does initialization affect learning?

\[P(y|x) = \text{softmax}(W g(V f(x))) \]

- How do we initialize \(V \) and \(W \)? What consequences does this have?
- Why is it important to have small activations?
- If cell activations are too large in absolute value, gradients are small too.
- ReLU: larger dynamic range (all positive numbers), but can produce big values, can break down if everything is too negative.

Initialization

1) Can’t use zeroes for parameters to produce hidden layers: all values in that hidden layer are always 0 and have gradients of 0, never change.
2) Initialize too large and cells are saturated.
 - Can do random uniform / normal initialization with appropriate scale.
 - Glorot initializer: \[U \left(-\sqrt{\frac{6}{\text{fan-in} + \text{fan-out}}} , +\sqrt{\frac{6}{\text{fan-in} + \text{fan-out}}} \right) \]
 - Want variance of inputs and gradients for each layer to be the same.
 - Batch normalization (Ioffe and Szegedy, 2015): periodically shift+rescale each layer to have mean 0 and variance 1 over a batch (useful if net is deep).

Dropout

- Probabilistically zero out parts of the network during training to prevent overfitting, use whole network at test time.
- Form of stochastic regularization.
- Similar to benefits of ensembling: network needs to be robust to missing signals, so it has redundancy.

Srivastava et al. (2014)
Dropout

- In tensorflow: implemented as an additional layer in a network

 \[
 \text{hidden_dropped_out} = \text{tf.nn.dropout}(\text{hidden, dropout_keep_prob})
 \]
- Often use low dropout (keep a value with probability 0.8) at the input and moderate dropout (keep with probability 0.5) internally in feedforward networks (not in RNNs)

Optimizer

- Adam (Kingma and Ba, ICLR 2015) is very widely used
- Adaptive step size like Adagrad, incorporates momentum

Wilson et al. NIPS 2017: adaptive methods can actually perform badly at test time (Adam is in pink, SGD in black)
- Check dev set periodically, decrease learning rate if not making progress

Visualization with Tensorboard

- Visualize the computation graph and logs of the objective over time

![Dropout Diagram](image1)

![Optimizer Diagram](image2)

![Visualization Diagram](image3)
Structured Prediction

- Four elements of a structured machine learning method:
 - Model: feedforward, RNNs, CNNs can be defined in a uniform framework
 - Objective: many loss functions look similar, just changes the last layer of the neural network
 - Inference: define the network, Tensorflow takes care of it (mostly...)
 - Training: lots of choices for optimization/hyperparameters

Word Representations

- Neural networks work very well at continuous data, but words are discrete
- Continuous model <-> expects continuous semantics from input

Word Embeddings

- Part-of-speech tagging with FFNNs
 \[f(x) \]
 \[Fed \rightarrow \text{raises interest rates in order to ...} \]
 \[\text{previous word} \]
 \[\text{curr word} \]
 \[\text{next word} \]
 \[\text{other words, feats, etc.} \]

Botha et al. (2017)
Word Embeddings

- Want a vector space where similar words have similar embeddings

 \[
 \begin{align*}
 &\text{the movie was great} \\
 \Rightarrow &\text{the movie was good}
 \end{align*}
 \]

Word Representations

- Neural networks work very well at continuous data, but words are discrete
- Continuous model <-> expects continuous semantics from input
- “Can tell a word by the company it keeps” Firth 1957

Continuous Bag-of-Words

- Predict word from context

Skip-Gram

- Predict one word of context from word

 \[
 P(w|w_{-1}, w_{+1})
 \]

- Another training example: \(\text{bit} \) -> \(\text{the} \)
- Parameters: \(d \times |V| \) vectors, \(|V| \times d \) output parameters (W)
- Maximize likelihood of gold labels (no manual labeling required!)
Skip-Gram with Negative Sampling

- Problem: want to train on 1B+ words, multiplying by $|V| \times d$ matrix for each is too expensive
- Solution: take (word, context) pairs and classify them as “real” or not. Create random negative examples by sampling

 $(\text{bit, the}) \rightarrow +1 \quad (\text{bit, a}) \rightarrow -1$
 $(\text{bit, dog}) \rightarrow +1 \quad (\text{bit, fish}) \rightarrow -1$

 $P(\text{pos}|w, c) = \frac{e^{w \cdot c}}{e^{w \cdot c} + 1}$

- $d \times |V|$ vectors, $d \times |V|$ context vectors (same # of params as before)

Mikolov et al. (2013)

Regularities in Vector Space

- $(\text{king - man}) + \text{woman} = \text{queen}$
- $\text{king} + (\text{woman - man}) = \text{queen}$

- Why would this be?
- woman - man captures the difference in the contexts that these occur in
- Dominant change: more “he” with man and “she” with woman — similar to difference between king and queen

GloVe

- Word co-occurrences are what matter directly

<table>
<thead>
<tr>
<th>Probability and Ratio</th>
<th>$k = \text{solid}$</th>
<th>$k = \text{gas}$</th>
<th>$k = \text{water}$</th>
<th>$k = \text{fashion}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(k</td>
<td>\text{ice})$</td>
<td>1.9×10^{-4}</td>
<td>6.6×10^{-5}</td>
<td>3.0×10^{-3}</td>
</tr>
<tr>
<td>$P(k</td>
<td>\text{steam})$</td>
<td>2.2×10^{-5}</td>
<td>7.8×10^{-4}</td>
<td>2.2×10^{-3}</td>
</tr>
<tr>
<td>$P(k</td>
<td>\text{ice})/P(k</td>
<td>\text{steam})$</td>
<td>8.9</td>
<td>8.5</td>
</tr>
</tbody>
</table>

- Weighted least-squares problem to directly predict word co-occurrence matrix (like matrix factorization)

Pennington et al. (2014)

Using Word Embeddings

- Indexed sentence of length sent_len, e.g.: [12, 36, 47, 8]
- input_words = tf.placeholder(tf.int32, [sent_len])
- encoder = tf.get_variable("embed", [voc_size, embedding_size])
- embedded_input_words = tf.nn.embedding_lookup(encoder, input_words)
- # embedded_input_words: sent_len x embedding_size tensor

- Approach 1: learn embeddings as parameters from your data
- Approach 2: initialize using GloVe/CBOW/SGNS, keep fixed
 - Faster because no need to update these parameters
- Approach 3: initialize using GloVe/CBOW/SGNS, fine-tune
 - Typically works best
Takeaways

- Lots to tune with neural networks
 - Training: optimizer, initializer, regularization (dropout), ...
 - Hyperparameters: dimensionality of word embeddings, layers, ...
- Word vectors: various choices of pre-trained vectors work well as initializers
- Next time: RNNs / LSTMs / GRUs