Recall: Computation Graphs

```
x = tf.placeholder("x")
y = tf.placeholder("y")
z = tf.placeholder("z")
a = tf.add(x, y)
b = tf.multiply(a, z)
c = tf.add(b, a)

with tf.Session() as sess:
    output = sess.run([a, c],
                      dict_of_input_values)
```

Recall: Training Tips

- Glorot initializer:
 \[U \left(-\sqrt{\frac{6}{\text{fan-in} + \text{fan-out}}} + \frac{6}{\text{fan-in} + \text{fan-out}} \right) \]

- Use dropout for regularization

- Think about your optimizer: Adam or tuned SGD work well

Recall: Word Vectors

- [Finch and Chater 92, Shuetze 93, many others]

\begin{align*}
\text{president} & \quad \text{the} \\
\text{president} & \quad \text{of} \\
\text{governor} & \quad \text{the} \\
\text{governor} & \quad \text{appointed} \\
\text{said} & \quad \text{source} \\
\text{said} & \quad \text{reported} \\
\text{president} & \quad \text{that} \\
\text{reported} & \quad \text{source} \\
\end{align*}
Recall: Word Vectors

- Predict word from context:
 - the dog bit the man
 - Mikolov et al. (2013)

- Maximize likelihood of gold labels (no manual labeling required!)

This Lecture

- Recurrent neural networks
- Vanishing gradient problem
- LSTMs / GRUs
- Applications / visualizations

RNN Basics

- Feedforward NNs can’t handle variable length input: each position in the feature vector has fixed semantics

- Instead, we need to:
 1) Process each element in a uniform way
 2) ...while still exploiting the context that that token occurs in
RNN Abstraction
- Cell that takes some input x, has some hidden state h, and updates that hidden state and produces output y (all vector-valued)

```
<box>(previous $h$)  next $h$
  ^       \\
  \downarrow \downarrow
  output $y$

prev $h$  (previous $c$)
```

RNN Uses
- Transducer: make some prediction for each element in a sequence
 - DT NN VBD JJ
 - `the movie was great`

- Acceptor/encoder: encode a sequence into a fixed-sized vector and use that for some purpose
 - `predict sentiment`
 - `translate`
 - `paraphrase/compress`

Elman Networks
- $h_t = \tanh(Wx + Vh_{t-1} + b_h)$
 - Updates hidden state based on input and current hidden state
 - $y_t = \tanh(Uh_t + b_y)$
 - Computes output from hidden state

```
<box>(prev hidden state $h_{t-1}$)  $h_t$
  ^       \\
  \downarrow \downarrow
  output $y_t$

input $x_t$
```

- Long history! (invented in the 1980s)

Training Elman Networks
- Need to backpropagate through the whole network from the end
- RNN potentially needs to learn how to “remember” information for a long time!
- `it was my favorite movie of 2016, though it wasn’t without problems -> +`
- “Correct” parameter update is to do a better job of remembering the sentiment of `favorite`
Vanishing Gradient

- Gradient diminishes going through tanh; if not in [-2, 2], gradient is almost 0

LSTMs

- Designed to fix "vanishing gradient" problem
- "Cell" \(c \) in addition to hidden state \(h \)
- \(c_t = c_{t-1} \odot f + \text{func}(x_t, h_{t-1}) \)
- Vector-valued forget gate \(f \) computed based on input and hidden state
- \(f = \sigma(W^xf_t + W^hf_{t-1}) \)
- Sigmoid: elements of \(f \) are in [0, 1]. If \(f = 1 \), we simply sum up a function of all inputs — gradient doesn't vanish!

LSTMs

- \(f, i, o \) are gates that control output
- \(g \) reflects the main computation of the cell
- Gradient still diminishes, but in a controlled way and generally by less — usually initialize forget gate = 1 to remember everything to start
Understanding LSTM Parameters

- Initialize hidden layer randomly
- Need to learn how the gates work: what do we forget/remember?
- h and x affect i and f: based on state and input, do we remember the current state or incorporate new input?
- g uses an arbitrary nonlinearity, this is the “layer” of the cell

What do LSTMs produce?

- Encoding of the sentence — can pass this to a decoder or make a classification decision about the sentence
- Encoding of each word — can pass this to another layer to make a prediction (can also pool these to get a different sentence encoding)
- LSTM can be viewed as a transformation of a sequence of vectors into a sequence of context-dependent vectors

Multilayer Bidirectional LSTM

- Sentence classification based on concatenation of both final outputs
- Token classification based on concatenation of both directions’ token representations

Training LSTMs

- Loss = negative log likelihood of probability of gold label (or use SVM or other loss)
- Backpropagate through entire network
- Example: sentiment analysis
Training LSTMs

\[P(t_i | x) \]

- Loss = negative log likelihood of probability of gold predictions, summed over the tags
- Loss terms filter back through network
- Example: language modeling (predict next word given context)

GRUs

- Also solves the vanishing gradient problem, simpler than LSTM
- \[h_t = (1 - z) \odot h_{t-1} + z \odot \text{func}(x_t, h_{j-1}) \]
- \[z = \sigma(W x_t + U h_{t-1}) \]
- \(z \) controls mixing of hidden state \(h \) with new input \(x \)
- Faster to train and often works better — consider using these for the project!

What can LSTMs model?

- Sentiment
- Encode one sentence, predict
- Language models
- Move left-to-right, per-token prediction
- Translation
- Encode sentence + then decode, use token predictions for attention weights (next lecture)

Cho et al. (2014)
Visualizing LSTMs

- Train character LSTM language model (predict next character based on history) over two datasets: War and Peace and Linux kernel source code
- Counter: know when to generate
- Visualize activations of specific cells to see what they track
- Stack: activation based on indentation

The sole importance of the crossing of the Berezina lies in the fact that it plainly and indubitably proved the fallacy of all the plans for cutting off the enemy's retreat and the soundness of the only possible line of action—the one Kutuzov and the general mass of the army demanded—namely, simply to follow the enemy up. The French army filed at a continually increasing speed and all its energy was directed to reaching its goal. It fled like a wounded animal and it was impossible to block its path. This was shown not so much by the arrangements it made for crossing as by what took place at the bridges. When the bridges broke down, unarmed soldiers, people from Moscow and women with children who were with the French transport, all carried on by misguided ... surrender.

Karpathy et al. (2015)

Visualizing LSTMs

- Train character LSTM language model (predict next character based on history) over two datasets: War and Peace and Linux kernel source code
- Visualize activations of specific cells to see what they track
- Binary switch: know when to generate
- Stack: activation based on indentation

The purpose of understanding the role of the crossing of the Berezina lies in the fact that it plainly and indubitably proved the fallacy of all the plans for cutting off the enemy’s retreat and the soundness of the only possible line of action—the one Kutuzov and the general mass of the army demanded—namely, simply to follow the enemy up. The French army filed at a continually increasing speed and all its energy was directed to reaching its goal. It fled like a wounded animal and it was impossible to block its path. This was shown not so much by the arrangements it made for crossing as by what took place at the bridges. When the bridges broke down, unarmed soldiers, people from Moscow and women with children who were with the French transport, all carried on by misguided ... surrender.

Karpathy et al. (2015)
What can LSTMs model?

- Sentiment
 - Encode one sentence, predict
- Language models
 - Move left-to-right, per-token prediction
- Translation
 - Encode sentence + then decode, use token predictions for attention weights (next lecture)
- Textual entailment
 - Encode two sentences, predict

Natural Language Inference

<table>
<thead>
<tr>
<th>Premise</th>
<th>Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A boy plays in the snow</td>
<td>entails A boy is outside</td>
</tr>
<tr>
<td>A man inspects the uniform of a figure</td>
<td>neutral The man is sleeping</td>
</tr>
<tr>
<td>An older and younger man smiling</td>
<td>contradicts Two men are smiling and laughing at cats playing</td>
</tr>
</tbody>
</table>

- Long history of this task: “Recognizing Textual Entailment” challenge in 2006 (Dagan, Glickman, Magnini)
- Early datasets: small (hundreds of pairs), very ambitious (lots of world knowledge, temporal reasoning, etc.)

SNLI Dataset

- Show people captions for (unseen) images and solicit entailed / neural / contradictory statements
- >500,000 sentence pairs
- Encode each sentence and process
- 100D LSTM: 78% accuracy
 (Bowman et al., 2016)
- 300D LSTM: 80% accuracy
 (Bowman et al., 2015)
- 300D BiLSTM: 83% accuracy
 (Liu et al., 2016)

Aligned Inputs

- Two statements often have a natural alignment between them
- Process the hypothesis with knowledge of the premise
- Seeing the alignment lets you make entailment judgments as you’re reading the sentence

Bowman et al. (2015)
Attention Mechanism

- *Learned* notion of alignment to some input

 A boy plays in the snow

 A boy is outside

- Compare hidden state to encoded input vectors to compute alignment, use that to compute an input to further processing

- Attention models: 85-86% on SNLI, SOTA = 88%

Takeaways

- RNNs can transduce inputs (produce one output for each input) or compress the whole input into a vector

- Useful for a range of tasks with sequential input: sentiment analysis, language modeling, natural language inference, machine translation

- Next time: encoder-decoder (seq2seq) models, machine translation

- Attention: critical idea that really makes it work!