Recall: RNNs

- Cell that takes some input x, has some hidden state h, and updates that hidden state and produces output y (all vector-valued).

Recall: LSTMs

- Forget gate f controls how cell state changes, i/o control input/output
- g reflects the main computation of the cell

Administrivia

- Project 2 grades will be up tomorrow morning
- Final project guidelines posted on the website (proposals due Nov 9, presentations Dec 5+7, project due Dec 15)
- Includes some pointers to datasets, etc.
- Be thinking about what you want to do!
Recall: Alignments in NLI

- Two statements often have a natural alignment between them
- Process the hypothesis with knowledge of the premise
- Seeing the alignment lets you make entailment judgments as you're reading the sentence

Attention Mechanism

- Learned notion of alignment to some input
- Compare hidden state to encoded input vectors to compute alignment, use that to compute an input to further processing
- Attention models: 85-86% on SNLI, SOTA = 88%

This Lecture

- Encoder-decoder models for machine translation
- Attention
- Handling rare words in machine translation
- Other applications

Encoder-Decoder Models
Encoder-Decoder

- Encode a sequence into a fixed-sized vector

- Now use that vector to produce a sentence as output from a separate LSTM decoder

Inference

- Generate next word conditioned on previous word as well as hidden state

- W size is $|\text{vocab}| \times |\text{hidden state}|$, softmax over entire vocabulary

$$P(w_i|x, w_{i-1}) = \text{softmax}(W\bar{h})$$

- Decoder has separate parameters, so this can learn to be a language model (produce a plausible next word given current one)

- During inference: need to compute the argmax over the word predictions and then feed that to the next RNN state

- Need to actually evaluate computation graph up to this point to form input for the next state

- Decoder is advanced one state at a time until [STOP] is reached
Training

- Objective: maximize $\log P(w^*_i|x, w^*_{i-1})$
- One loss term for each target-sentence word, feed the correct word regardless of model's prediction
- Length of gold sequence is known, can run the whole encoder-decoder in one computation graph and compute losses

Scheduled Sampling

- Model needs to do the right thing even with its own predictions
- Scheduled sampling: with probability p, take the gold as input, else take the model's prediction
- Starting with $p = 1$ and decaying it works best

Implementation Details

- Sentence lengths vary for both encoder and decoder:
 - Dynamic computation graphs framework (PyTorch, DyNet) build graphs of the correct length for a batch on-the-fly
 - Otherwise, pad everything to the right length and use a mask or indexing to access a subset of terms
- Beam search: when decoding, can use beam search rather than taking the one-best word each time
- Ensembling: these models are nonconvex, almost always works better to train several and ensemble their predictions

Machine Translation Results

WMT English-French: 12M sentence pairs, 80,000 word target vocab

- Classic phrase-based system: ~33 BLEU, uses additional target-language data
- Rerank with LSTMs: 36.5 BLEU (long line of work here; Devlin+ 2014)
- Sutskever+ (2014) seq2seq single: 30.6 BLEU
- Sutskever+ (2014) seq2seq ensemble: 34.8 BLEU

- But English-French is a really easy language pair and there's tons of data for it! Does this approach work for anything harder?
Machine Translation Results

WMT English-German: 4.5M sentence pairs, 50,000 word target vocab
Classic phrase-based system: 20.7 BLEU
Luong+ (2014) seq2seq: 14 BLEU

- Not nearly as good...

Problems with Neural MT Models

- Encoder-decoder models like to repeat themselves:

 Un garçon joue dans la neige → A boy plays in the snow **boy plays boy plays**

- Often a byproduct of training these models poorly

- Solution: include coverage in the model so we don’t repeat stuff: Haitao Mi et al. (2016) for MT, See and Manning (2017) for summarization

Problems with Neural MT Models

- Unknown words:

 en: The **écotax** portico in **Pont-de-Buis** … [truncated] …, was taken down on Thursday morning

 fr: Le **portique écotaxe** de **Pont-de-Buis**, … [truncated] …, a été **démonté** jeudi matin

 nn: Le **unk** de **unk** à **unk**, … [truncated] …, a été pris le jeudi matin

- We restricted the target vocabulary to 80,000 — that throws out a lot!
- Fixed vocabulary is too restrictive, especially around named entities
Problems with Neural MT Models

- Bad at long sentences: 1) a fixed-size representation doesn’t scale; 2) LSTMs still have a hard time remembering for really long periods of time.

RNNsearch: introduces attention mechanism to give “variable-sized” representation.

Aligned Inputs

- Suppose we knew the source and target would be purely monotonic.
- Can look at the corresponding input word when translating — this could scale!
- Much less burden on the hidden state.

Attention

- For each decoder state, compute a weighted sum of input states reflecting what’s most important right now.

Unnormalized scalar weight

\[e_{ij} = f(h_i, h_j) \]

Normalized scalar weight

\[\alpha_{ij} = \frac{e_{ij}}{\sum_j e_{ij}'} \]

Weighted sum of input hidden states (vector)

\[c_i = \sum_j \alpha_{ij} h_j \]

Bahdanau+ (2014): additive

\[f(h_i, h_j) = \tanh(W_h[h_i, h_j]) \]

Luong+ (2015): dot product

\[f(h_i, h_j) = h_i \cdot h_j \]

Luong+ (2015): bilinear

\[f(h_i, h_j) = h_i^T W h_j \]

Can also use attention weights from previous timestep as input to current attention computation; captures monotonicity.

Bahdanau et al. (2014)

Luong et al. (2015)
Attention

- Encoder hidden states capture contextual source word identity
- Decoder hidden states are now mostly responsible for selecting what to attend to
- Doesn’t take a complex hidden state to walk monotonically through a sentence and spit out word-by-word translations

Machine Translation Results

WMT English-French: 12M sentence pairs, 80,000 word target vocab
Classic phrase-based system: ~33 BLEU, uses additional target-language data
- Rerank with LSTMs: 36.5 BLEU (long line of work here; Devlin+ 2014)
- Sutskever+ (2014) seq2seq single: 30.6 BLEU
- Sutskever+ (2014) seq2seq ensemble: 34.8 BLEU
- Bahdanau+ (2014) seq2seq with attention: 28.5 BLEU
 - But English-French is a really easy language pair!

Results from Luong et al. (ACL 2015)

WMT English-German: 4.5M sentence pairs, 50,000 word target vocab
Classic phrase-based system: 20.7 BLEU
- Basic seq2seq: 14 BLEU
- seq2seq with attention: 16.8 BLEU
- seq2seq with attention aware of previous attention: 18.1 BLEU
 - ensemble + rare word handling: 23.0 BLEU
- Attention more critical for the harder English-German task

Results from Luong et al. (EMNLP 2015)

Dealing with Rare Words
Unknown Words

1) Named entities: copy (and maybe transliterate)
2) Rare concepts: may be able to get from transliteration, generally hard

- Neural MT models have to generate from a fixed vocabulary, but we at least want to be able to copy named entities

Jean et al. (2015), Luong et al. (2015)

Copying

- Predict an unk token with a pointer to a source word to copy
- Input en: The unk1 portico in unk2 ...
- Output fr: Le unk0 unk1 de unk2 ...
- Easy to do and helps a lot! (+ a few BLEU points, typically)
- Similar to pointer networks, which we’ll see later

Jean et al. (2015), Luong et al. (2015)

Rare Words: Character Models

- If we predict an unk token, generate the results from a character LSTM
- Can potentially transliterate new concepts, but architecture is more complicated and slower to train
- Models like this in part contributed to dynamic computation graph frameworks becoming popular

Luong et al. (2016)

Rare Words: Word Piece Models

- Use Huffman encoding on a corpus, keep most common k (~10,000) character sequences for source and target
- Input: _the _eco tax _port i co _in _Po nt - de - Bu is ...
- Output: _le _port ique _éco taxe _de _Po nt - de - Bui s
- Captures common words and parts of rare words
- Subword structure may make it easier to translate
- Model balances translating and transliterating without explicit switching

Wu et al. (2016)
Google’s NMT System

8-layer LSTM encoder-decoder with attention, word piece vocabulary of 8k-32k

Google’s NMT System

- English-French:
 - Google’s phrase-based system: 37.0 BLEU
 - Luong+ (2015) seq2seq ensemble with rare word handling: 37.5 BLEU
 - Google’s 32k word pieces: 38.95 BLEU

- English-German:
 - Google’s phrase-based system: 20.7 BLEU
 - Luong+ (2015) seq2seq ensemble with rare word handling: 23.0 BLEU
 - Google’s 32k word pieces: 24.2 BLEU

Human Evaluation (En-Es)

- Similar to human-level performance on English-Spanish

Other Applications
Other Applications

- Parsing: input is a sentence, output is a bracketed sentence

\[(S \ (NP \ (DT \ the \)) \ (NN \ movie \)) \ ... \]

the movie was good

- Attention is essential: <70 F1 without it, 88.3 F1 / 90.5 F1 (ensemble) with it

- The best parsers still use some structure — we’ll come back to these

Vinyals et al. (2014)

Other Applications

- Summarization/compression
 - Input: article/sentence, output: compressed article/sentence

\[\text{On Friday, the U.S. intends to announce...} \]

\[\text{U.S. to lift sanctions Friday} \]

- Long articles, hard to deal with even with attention

- Speech recognition/text-to-speech: neural nets are good at dealing with continuous speech signals!

Takeaways

- RNNs are effective at machine translation, but lots of tricks to get them to work right

- Attention is a critical way to get a better representation of the input

- Handling rare words is important, lots of techniques here

- Encoder-decoder models can be successfully applied to most tasks where you generate language as output