This Lecture

- Linear classification fundamentals
- Naive Bayes, maximum likelihood in generative models
- Three discriminative models: logistic regression, perceptron, SVM
 - Different motivations but very similar update rules / inference!

Classification

- Datapoint x with label $y \in \{0, 1\}$
- Embed datapoint in a feature space $f(x) \in \mathbb{R}^n$
 - but in this lecture $f(x)$ and x are interchangeable
- Linear decision rule: $w^T f(x) + b > 0$
 - $w^T f(x) > 0$
- Can delete bias if we augment feature space:
 - $f(x) = [0.5, 1.6, 0.3]$
 - $[0.5, 1.6, 0.3, 1]$
Linear functions are powerful!

\[f(x) = [x_1^2, x_2^2] \]

"Kernel trick" does this for "free," but is too expensive to use in NLP applications, training is \(O(n^2) \) instead of \(O(n \cdot (\text{num feats})) \)

Classification: Sentiment Analysis

- Doing well at this is going to require structure, but let's start with simple approaches

 This movie was great! would watch again Positive
 This movie was not really very enjoyable Negative

Text Classification: Ham or Spam

- Machine learning is good at this! Lots of data, simple pattern recognition task, hard to write rules by hand

 Hi, I just wanted to send over the latest results from training the LSTM model. In the attachment. What do you think of the performance?

 hi i have very valuable business proposition for you. you make lots of $$$ i just need you to send a small amount of funds

 Surface cues can basically tell you what’s going on here

 Ham Spam
Naive Bayes

- Data point $x = (x_1, ..., x_n)$, label $y \in \{0, 1\}$
- Formulate a probabilistic model that places a distribution $P(x, y)$
- Compute $P(y|x)$ and then label an example with $\text{argmax}_y P(y|x)$
- $P(y|x) = \frac{P(y)P(x|y)}{P(x)}$ Bayes’ Rule
- $\propto P(y)P(x|y)$ constant: irrelevant for finding the max
- $= P(y) \prod_{i=1}^{n} P(x_i|y)$ “Naive” assumption:
- $\text{argmax}_y P(y|x) = \text{argmax}_y \log P(y|x) = \text{argmax}_y \left[\log P(y) + \sum_{i=1}^{n} \log P(x_i|y) \right]$ linear model!

Note that this is not $P(y|x)$ — not the probability of ham given the word spam gets more points in the final posterior
Maximum Likelihood Estimation

- Data points \((x_j, y_j)\) provided (\(j\) indexes over examples)
- Find values of \(P(y)\), \(P(x_i|y)\) that maximize data likelihood (generative):
 \[
 \prod_{j=1}^{m} P(y_j, x_j) = \prod_{j=1}^{m} P(y_j) \prod_{i=1}^{n} P(x_{ji}|y_j)
 \]
 (data points \(j\), features \(i\), \(i\)th feature of \(j\)th example)
- Equivalent to maximizing logarithm of data likelihood:
 \[
 \sum_{j=1}^{m} \log P(y_j, x_j) = \sum_{j=1}^{m} \log P(y_j) + \sum_{i=1}^{n} \log P(x_{ji}|y_j)
 \]

Maximum Likelihood for Naive Bayes

- Imagine a coin flip which is heads with probability \(p\)
- Observe (H, H, H, T) and maximize log likelihood
 \[
 \sum_{j=1}^{m} \log P(y_j) = 3 \log p + \log (1 - p)
 \]
- Maximum likelihood parameters for multinomial = read counts off of the data

Naive Bayes: Summary

- Model
 \[
 P(x, y) = P(y) \prod_{i=1}^{n} P(x_i|y)
 \]
- Inference
 \[
 \argmax_y \log P(y|x) = \argmax_y \left[\log P(y) + \sum_{i=1}^{n} \log P(x_i|y) \right]
 \]
- Alternatively:
 \[
 \log P(y = \text{spam}|x) - \log P(y = \text{ham}|x) > 0
 \leftrightarrow \log \frac{P(y = \text{spam}|x)}{P(y = \text{ham}|x)} + \sum_{i=1}^{n} \log \frac{P(x_i|y = \text{spam})}{P(x_i|y = \text{ham})} > 0
 \]
- Learning: maximize \(P(x, y)\) by reading counts off the data

Hi, I just wanted to send over the latest results from training the LSTM model. In the attachment. What do you think of the performance?

\(P(y = \text{ham}) = 0.5\)
\(P(x_{\text{funds}} = 1|\text{spam}) = 1\)
\(P(x_{\text{funds}} = 0|\text{spam}) = 0\)

Smoothing: add very small counts for each entry to avoid zeroes (bias-variance tradeoff)
\(P(x_{\text{funds}} = 1|\text{spam}) = 0.99\)
\(P(x_{\text{funds}} = 0|\text{spam}) = 0.01\)
Problems with Naive Bayes

- Features are correlated
 \[P(x_{\text{funds}} = 1 | \text{spam}) = 0.1 \]
 \[P(x_{\text{funds}} = 1 | \text{ham}) = 0.01 \]
 \[P(x_{\text{transfer}} = 1 | \text{spam}) = 0.1 \]
 \[P(x_{\text{transfer}} = 1 | \text{ham}) = 0.01 \]
- This one sentence will make the probability of spam very high!
- Bad independence assumption in NB: these words are not independent!
- Solution: better model, algorithms that explicitly minimize loss rather than maximizing data likelihood

Generative vs. Discriminative Models

- Generative models: \(P(x, y) \)
 - Bayes nets / graphical models
 - Some of the model capacity goes to explaining the distribution of \(x \); prediction uses Bayes rule post-hoc
 - Can sample new instances \((x, y)\)
- Discriminative models: \(P(y|x) \)
 - SVMs, logistic regression, CRFs, most neural networks
 - Model is trained to be good at prediction, but doesn’t model \(x \)
- We’ll come back to this distinction throughout this class

Break!

Logistic Regression

- \[P(y = \text{spam}|x) = \text{logistic}(w^T x) \]
- \[P(y = \text{spam}|x) = \frac{\exp(\sum_{i=1}^{n} w_i x_i)}{1 + \exp(\sum_{i=1}^{n} w_i x_i)} \]
- How to set the weights \(w \)?
- (Stochastic) gradient ascent to maximize log likelihood

\[\mathcal{L}(x_j, y_j = \text{spam}) = \log P(y_j = \text{spam}|x_j) = \sum_{i=1}^{n} w_i x_{ji} - \log \left(1 + \exp \left(\sum_{i=1}^{n} w_i x_{ji} \right) \right) \]

Logistic Regression

\[\frac{\partial \mathcal{L}(x_j, y_j)}{\partial w_i} = x_{ji} - \frac{\partial}{\partial w_i} \log \left(1 + \exp \left(\sum_{i=1}^{n} w_i x_{ji} \right) \right) \]
\[= x_{ji} - \frac{1}{1 + \exp \left(\sum_{i=1}^{n} w_i x_{ji} \right)} \frac{\partial}{\partial w_i} \left(1 + \exp \left(\sum_{i=1}^{n} w_i x_{ji} \right) \right) \]
\[= x_{ji} - \frac{1}{1 + \exp \left(\sum_{i=1}^{n} w_i x_{ji} \right)} x_{ji} \exp \left(\sum_{i=1}^{n} w_i x_{ji} \right) \]
\[= x_{ji} - \frac{\exp \left(\sum_{i=1}^{n} w_i x_{ji} \right)}{1 + \exp \left(\sum_{i=1}^{n} w_i x_{ji} \right)} = x_{ji} (1 - P(y_j = \text{spam}|x_j)) \]
Logistic Regression

- Gradient of w_i on positive example:
 \[x_{ji}(1 - P(y_j = \text{spam}|x_j)) \]

 If $P(\text{spam})$ is close to 1, make very little update.
 Otherwise make w_i look more like x_{ji}, which will increase $P(\text{spam})$.

- Gradient of w_i on negative example:
 \[x_{ji}(-P(y_j = \text{spam}|x_j)) \]

 If $P(\text{spam})$ is close to 0, make very little update.
 Otherwise make w_i look less like x_{ji}, which will decrease $P(\text{spam})$.

- Final gradient:
 \[x_j(y_j - P(y_j = 1|x_j)) \]

Regularization

- Can end up making extreme updates to fit the training data.

 \[w_{\text{funds}} = +1000, \quad w_{\text{transfer}} = -900, \quad w_{\text{send}} = +742, \quad w_{\text{the}} = +203 \]

- All examples have $P(\text{correct}) > 0.999$, but classifier does crazy things on new examples.

Regularization

- Can end up making extreme updates to fit the training data.

- Rather than optimizing likelihood alone, impose a penalty on the norm of the weight vector (can also view as a Gaussian prior).

- Maximize:
 \[
 \sum_{j=1}^{m} \mathcal{L}(x_j, y_j) - \lambda \|w\|^2
 \]

Logistic Regression: Summary

- Model:
 \[
 P(y = \text{spam}|x) = \frac{\exp \left(\sum_{i=1}^{n} w_i x_i \right)}{1 + \exp \left(\sum_{i=1}^{n} w_i x_i \right)}
 \]

- Inference:
 \[
 \arg\max_y P(y|x) \quad \text{similar to Naive Bayes, but different model/learning}
 \]
 \[
 P(y = 1|x) \geq 0.5 \Leftrightarrow w^\top x \geq 0
 \]

- Learning: gradient ascent on the (regularized) discriminative log-likelihood.
Perceptron

- Simple error-driven learning approach similar to logistic regression
- Decision rule: $w^T f(x) > 0$
 - If incorrect: if positive, $w \leftarrow w + x$
 - if negative, $w \leftarrow w - x$
- Guaranteed to eventually separate the data if the data are separable, but does it learn a good boundary?

Logistic Regression

$$w \leftarrow w + x(1 - P(y = 1|x))$$

$$w \leftarrow w - xP(y = 1|x)$$

Support Vector Machines

- Many separating hyperplanes — is there a best one?

Support Vector Machines

- Constraint formulation: find w via following quadratic program:

$$\begin{align*}
\text{Minimize} & \quad \|w\|^2_2 \\
\text{s.t.} & \quad \forall j \quad w^T x_j \geq 1 \text{ if } y_j = 1 \\
& \quad w^T x_j \leq -1 \text{ if } y_j = 0
\end{align*}$$

As a single constraint:

$$\forall j \quad y_j(w^T x_j) + (1 - y_j)(-w^T x_j) \geq 1$$

$$\forall j \quad (2y_j - 1)(w^T x_j) \geq 1$$

- What’s wrong with this quadratic program for real data?
- Data is generally non-separable — need slack!
N-Slack SVMs

\[
\text{Minimize } \lambda \|w\|_2^2 + \sum_{j=1}^{m} \xi_j \\
\text{s.t. } \forall j \ (2y_j - 1)(w^T x_j) \geq 1 - \xi_j \\
\forall j \ \xi_j \geq 0
\]

- The ξ_j are a “fudge factor” to make all constraints satisfied
- (Sub-)gradient descent: focus on second part of objective
 \[
 \frac{\partial}{\partial w_i} \xi_j = 0 \text{ if } \xi_j = 0 \\
 \frac{\partial}{\partial w_i} \xi_j = (2y_j - 1)x_{ji} \text{ if } \xi_j > 0
 \]
 \[= x_{ji} \text{ if } y_j = 1, -x_{ji} \text{ if } y_j = 0\]
- Looks like the perceptron! But updates more frequently

Optimization — next time...

- Haven’t talked about optimization at all
- Range of techniques from simple gradient descent (works pretty well) to more complex methods (can work better)

Sentiment Analysis

- Classify sentence as positive or negative sentiment
 - this movie was great! would watch again
 - the movie was gross and overwrought, but I liked it
 - this movie was not really very enjoyable

- Bag-of-words doesn’t seem sufficient (discourse structure, negation)
- There are some ways around this: extract bigram feature for “not X” for all X following the not

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)
Sentiment Analysis

Simple feature sets can do pretty well!

<table>
<thead>
<tr>
<th>Features</th>
<th># of features</th>
<th>frequency or presence?</th>
<th>NB</th>
<th>ME</th>
<th>SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) unigrams</td>
<td>16165</td>
<td>freq.</td>
<td>78.7</td>
<td>N/A</td>
<td>72.8</td>
</tr>
<tr>
<td>(2) unigrams</td>
<td></td>
<td>pres.</td>
<td>81.0</td>
<td>80.4</td>
<td>82.9</td>
</tr>
<tr>
<td>(3) unigrams+bigrams</td>
<td>32330</td>
<td>pres.</td>
<td>80.6</td>
<td>80.8</td>
<td>82.7</td>
</tr>
<tr>
<td>(4) bigrams</td>
<td>16165</td>
<td>pres.</td>
<td>77.3</td>
<td>77.4</td>
<td>77.1</td>
</tr>
<tr>
<td>(5) unigrams+POS</td>
<td>16696</td>
<td>pres.</td>
<td>81.5</td>
<td>80.4</td>
<td>81.9</td>
</tr>
<tr>
<td>(6) adjectives</td>
<td>2633</td>
<td>pres.</td>
<td>77.0</td>
<td>77.7</td>
<td>76.1</td>
</tr>
<tr>
<td>(7) top 2633 unigrams</td>
<td>2633</td>
<td>pres.</td>
<td>80.3</td>
<td>81.0</td>
<td>81.4</td>
</tr>
<tr>
<td>(8) unigrams+position</td>
<td>22430</td>
<td>pres.</td>
<td>81.0</td>
<td>80.1</td>
<td>81.6</td>
</tr>
</tbody>
</table>

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

<table>
<thead>
<tr>
<th>Method</th>
<th>RT+</th>
<th>MPQA</th>
<th>CR</th>
<th>Subj.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNB-uni</td>
<td>77.9</td>
<td>85.3</td>
<td>79.8</td>
<td>92.6</td>
</tr>
<tr>
<td>MNB-bi</td>
<td>79.0</td>
<td>86.3</td>
<td>80.0</td>
<td>93.6</td>
</tr>
<tr>
<td>SVM-uni</td>
<td>76.2</td>
<td>86.1</td>
<td>79.0</td>
<td>90.8</td>
</tr>
<tr>
<td>SVM-bi</td>
<td>77.7</td>
<td>86.7</td>
<td>80.8</td>
<td>91.7</td>
</tr>
<tr>
<td>NBSVM-uni</td>
<td>78.1</td>
<td>85.3</td>
<td>80.5</td>
<td>92.4</td>
</tr>
<tr>
<td>NBSVM-bi</td>
<td>79.4</td>
<td>86.3</td>
<td>81.8</td>
<td>93.2</td>
</tr>
<tr>
<td>RAE</td>
<td>76.8</td>
<td>85.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RAE-pretrain</td>
<td>77.7</td>
<td>86.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Voting-w/Rev.</td>
<td>63.1</td>
<td>81.7</td>
<td>74.3</td>
<td>-</td>
</tr>
<tr>
<td>Rule</td>
<td>62.9</td>
<td>81.8</td>
<td>74.3</td>
<td>-</td>
</tr>
<tr>
<td>BoF-noDic.</td>
<td>75.7</td>
<td>81.8</td>
<td>79.3</td>
<td>-</td>
</tr>
<tr>
<td>BoF-w/Rev.</td>
<td>76.4</td>
<td>84.1</td>
<td>81.4</td>
<td>-</td>
</tr>
<tr>
<td>Tree-CRF</td>
<td>77.3</td>
<td>86.1</td>
<td>81.4</td>
<td>-</td>
</tr>
<tr>
<td>BoWSVM</td>
<td>-</td>
<td>-</td>
<td>90.0</td>
<td>-</td>
</tr>
</tbody>
</table>

Wang and Manning (2012)

Naive Bayes is doing well!

Ng and Jordan (2002) — NB can be better for small data

Before neural nets had taken off — results weren’t that great

Two years later Kim (2014) with neural networks

Recap

- **Logistic regression:**
 \[
 P(y = 1|x) = \frac{\exp(\sum_{i=1}^{n} w_i x_i)}{1 + \exp(\sum_{i=1}^{n} w_i x_i)}
 \]

 Decision rule: \(P(y = 1|x) \geq 0.5 \iff w^\top x \geq 0 \)

 Gradient (unregularized): \(x(y - P(y = 1|x)) \)

- **SVM:**
 Decision rule: \(w^\top x \geq 0 \)

 (Sub)gradient (unregularized): 0 if correct with margin of 1, else
 \[x(2y - 1) \]

Recap

- Logistic regression, SVM, and perceptron are closely related

- SVM and perceptron inference require taking maxes, logistic regression has a similar update but is “softer” due to its probabilistic nature

- All gradient updates: “make it look more like the right thing and less like the wrong thing”