Refining Generative Grammars

Parser Evaluation

- View a parse as a set of labeled brackets / constituents
 - S(0,3)
 - NP(0,1)
 - PRP(0,1) (but standard evaluation *does not count POS tags*)
 - VP(1,3), VBD(1,2), NP(2,3), PRP(2,3)

S
 NP
 PRP
 VBP
 NN
 PRP
 She
 saw
 it
 0 1 2 3

¬ Precision: number of correct predictions / number of predictions = 2/3
¬ Recall: number of correct predictions / number of golds = 2/4
¬ F1: harmonic mean of precision and recall = \((1/2 \times ((2/4)^{-1} + (2/3)^{-1}))^{-1} \)
 = 0.57 (closer to min)

Results

- Standard dataset for English: Penn Treebank (Marcus et al., 1993)
- “Vanilla” PCFG: ~75 F1
- Best PCFGs for English: ~90 F1
- State-of-the-art discriminative models (using unlabeled data): 95 F1
- Other languages: results vary widely depending on annotation + complexity of the grammar

Klein and Manning (2003)
PCFG Independence Assumptions

- Language is not context-free: NPs in different contexts rewrite differently
- \([\text{They}]_{NP}\) received \([\text{the package of books}]_{NP}\)

Vertical Markovization

- Basic tree \((v = 0)\)
- \(v = 1\) Markovization

Horizontal Markovization

- Changes amount of context remembered in binarization process

Tag Splits

- Can do some other ad hoc tag splits
- Sentential prepositions behave differently from other prepositions
- 75 F1 with basic PCFG => 86.3 F1 with a highly customized PCFG \((v = 2, h = 2, \text{other hacks like this})\)

Klein and Manning (2003)
Lexicalized Parsers

Even with parent annotation, these trees have the same rules. Need to use the words

- Annotate each grammar symbol with its “head word”: most important word of that constituent
- Rules for identifying headwords (e.g., the last word of an NP before a preposition is typically the head)
- Collins and Charniak (late 90s): ~89 F1 with these

Discriminative Parsers

Score \(w^T f \) with a feature-based model
- Simple version of this model: Train a span classifier to predict type of span or NONE if it’s not in the tree
- CKY: instead of rule probabilities, maximize sum of scores of the spans included in a tree
- Why is CKY still necessary? Why can’t we just independently label spans with our classifier?
- Neural net models get 91-93 F1, 95 F1 with other tricks we’ll see later. Works well for other languages too!