State-of-the-art Parsers

- **2012:** Transition-based MultiPaser achieved good results (~90 UAS)
- **2010:** Better graph-based parsers using “parent annotation” (~93 UAS)
- **2012:** Transition-based MultiPaser achieved good results (~90 UAS)
- **2014:** Stanford neural dependency parser (Chen and Manning) got 92 UAS with transition-based neural model
- **2016:** Improvements to Chen and Manning

Unlabeled attachment score: fraction of words with correct parent
Labeled attachment score: have to label each edge correctly (but this isn’t that hard — noun before verb -> nsubj in most contexts)

2005: Eisner algorithm graph-based parser was SOTA (~91 UAS)

- Stanford Dependency Parser

Feedforward neural network on top of feature vector extracted from stack and buffer

1st in stack 2nd in stack 1st in buf ... POS of leftmost child of 1st in stack ...

Configuration

- **Stack:**
 - ROOT
 - has.VBZ
 - good.JJ
 - He.PRP
 - nsubj

- **Buffer:**
 - control.NN
 - ...

Chen and Manning (2014)
Stanford Dependency Parser

<table>
<thead>
<tr>
<th>Parser</th>
<th>Dev UAS</th>
<th>Dev LAS</th>
<th>Test UAS</th>
<th>Test LAS</th>
<th>Speed (sent/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard</td>
<td>90.2</td>
<td>87.8</td>
<td>89.4</td>
<td>87.3</td>
<td>26</td>
</tr>
<tr>
<td>eager</td>
<td>89.8</td>
<td>87.4</td>
<td>89.6</td>
<td>87.4</td>
<td>34</td>
</tr>
<tr>
<td>Malt:sp</td>
<td>89.8</td>
<td>87.2</td>
<td>89.3</td>
<td>86.9</td>
<td>469</td>
</tr>
<tr>
<td>Malt:eager</td>
<td>89.6</td>
<td>86.9</td>
<td>89.4</td>
<td>86.8</td>
<td>448</td>
</tr>
<tr>
<td>MSTParser</td>
<td>91.4</td>
<td>88.1</td>
<td>90.7</td>
<td>87.6</td>
<td>10</td>
</tr>
<tr>
<td>Our parser</td>
<td>92.0</td>
<td>89.7</td>
<td>91.8</td>
<td>89.6</td>
<td>654</td>
</tr>
</tbody>
</table>

MSTParser: “graph-based” parser (like CKY) from 2005 — so Chen+Manning’s parser isn’t much better but is much faster!

Chen and Manning (2014)

Parsey McParseFace (a.k.a. SyntaxNet)

- Close to state-of-the-art, released by Google publicly
- 94.61 UAS on the Penn Treebank using a transition-based system
- Additional data harvested via “tri-training”, form of self-training
- Same feature set as Chen and Manning (2014), Google fine-tuned it

https://github.com/tensorflow/models/tree/master/research/syntaxnet

Andor et al. (2016)

AllenNLP

- Reimplementation of graph-based, state-of-the-art parser
- Some fancy tricks we haven’t discussed yet
- Very nice and usable web demo

https://demo.allennlp.org/dependency-parsing

Other languages

- Annotate dependencies with the same representation in many languages

English

Bulgarian

Czech

Swiss

http://universaldependencies.org/
Semantic Role Labeling

- Performing event
- Subject: Lady Gaga
- Object: a concert
- Audience: students

A concert was performed by Lady Gaga for students

Same event described but the representation looks different

VerbNet

- Defines the semantics of verbs, arguments for every verb in English

verbs.colorado.edu

Semantic Roles

- “Postprocessing” layer on top of dependency parsing that exposes useful information, canonicalizes across grammatical constructions

- Related to theta roles in linguistics

- Agent (~ subject), patient/theme (~ object), goal (~ indirect object)

ARG0 ARG1 ARG2+ (semantics vary)
Semantic Role Labeling

- Identify predicate, disambiguate it, identify that predicate’s arguments
- Verb roles from Propbank (Palmer et al., 2005)

<table>
<thead>
<tr>
<th>Gold</th>
<th>V</th>
<th>ARG1</th>
<th>ARG2</th>
<th>ARG3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing starts</td>
<td>are expected to quicken</td>
<td>a bit</td>
<td>from August's pace</td>
<td></td>
</tr>
</tbody>
</table>

quicken:
- Arg0-PAG: causer of speed-up
- Arg1-PPT: thing becoming faster (vrole: 45.4-patient)
- Arg2-EXT: EXT
- Arg3-DIR: old speed
- Arg4-PRD: new speed

SRL for QA

- Question and several answer candidates

Q: Who discovered prions?

AC1: In 1997, Stanley B. Prusiner, a scientist in the United States, discovered prions...

AC2: Prions were researched by...

Score by matching expected answer phrase (EAP) against answer candidate (AC)

Figure from He et al. (2017)

More on SRL

- Even complex neural network models for SRL benefit from dependency information
- Emma Strubell from UMass Amherst: “Neural Network Architectures for Fast and Robust NLP”
 - Tuesday, 11am GDC main auditorium
 - Includes discussion of work on neural SRL system

Relation Extraction
Relation Extraction

- Tim Cook is the CEO of Apple.
- Apple CEO Tim Cook said that...
- Apple shares have taken a beating, much to the chagrin of its CEO, Tim Cook
- Cook’s tenure as CEO of Apple ...
- Wozniak’s desire to be CEO ...

Relation Extraction

- Extract entity-relation-entity triples from a fixed inventory
 - Located_In
 - Nationality

 During the war in Iraq, American journalists were sometimes caught in the line of fire

- Use NER-like system to identify entity spans, classify relations between entity pairs with a classifier
- Systems can be feature-based or neural, look at surface words, dependency path features, semantic roles
- Problem: limited data for scaling to big ontologies

Distant Supervision

- Lots of relations in our knowledge base already (e.g., 23,000 film-director relations); use these to bootstrap more training data
- If two entities in a relation appear in the same sentence, assume the sentence expresses the relation

Lots of relations in our knowledge base already (e.g., 23,000 film-director relations); use these to bootstrap more training data

- Learn decently accurate classifiers for ~100 Freebase relations
- Could be used to crawl the web and expand our knowledge base

<table>
<thead>
<tr>
<th>Relation name</th>
<th>100 instances</th>
<th>1000 instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>/film/director/film</td>
<td>0.49 0.43 0.44</td>
<td>0.49 0.41 0.46</td>
</tr>
<tr>
<td>/film/writer/film</td>
<td>0.78 0.60 0.65</td>
<td>0.71 0.61 0.69</td>
</tr>
<tr>
<td>/geography/river basia_countries</td>
<td>0.65 0.64 0.67</td>
<td>0.73 0.71 0.64</td>
</tr>
<tr>
<td>/location/country/administrative_divisions</td>
<td>0.68 0.59 0.70</td>
<td>0.72 0.68 0.72</td>
</tr>
<tr>
<td>/location/us_county/city</td>
<td>0.81 0.80 0.84</td>
<td>0.85 0.83 0.84</td>
</tr>
<tr>
<td>/location/us_county/county seat</td>
<td>0.51 0.51 0.53</td>
<td>0.47 0.57 0.42</td>
</tr>
<tr>
<td>/music/artist/origin</td>
<td>0.64 0.66 0.71</td>
<td>0.61 0.63 0.60</td>
</tr>
<tr>
<td>/people/deceased_person/place_of_death</td>
<td>0.80 0.79 0.81</td>
<td>0.80 0.81 0.78</td>
</tr>
<tr>
<td>/people/person/place_of_birth</td>
<td>0.61 0.70 0.72</td>
<td>0.56 0.61 0.63</td>
</tr>
<tr>
<td>/people/person/nationality</td>
<td>0.78 0.77 0.78</td>
<td>0.88 0.85 0.91</td>
</tr>
<tr>
<td>Average</td>
<td>0.67 0.66 0.69</td>
<td>0.68 0.67 0.67</td>
</tr>
</tbody>
</table>

Mintz et al. (2009)
Open IE

Open Information Extraction

- “Open”ness — want to be able to extract all kinds of information from open-domain text
- Acquire commonsense knowledge just from “reading” about it, but need to process lots of text (“machine reading”)
- Typically no fixed relation inventory

TextRunner

- Extract positive examples of (e, r, e) triples via parsing and heuristics
- Train a Naive Bayes classifier to filter triples from raw text: uses features on POS tags, lexical features, stopwords, etc.
 Barack Obama, 44th president of the United States, was born on August 4, 1961 in Honolulu
 => Barack Obama, was born in Honolulu
- 80x faster than running a parser (which was slow in 2007…)
- Use multiple instances of extractions to assign probability to a relation

Banko et al. (2007)

Exploiting Redundancy

- 9M web pages / 133M sentences
- 2.2 tuples extracted per sentence, filter based on probabilities
- Concrete: definitely true
 Abstract: possibly true but underspecified
- Hard to evaluate: can assess precision of extracted facts, but how do we know recall?

Banko et al. (2007)
More constraints: open relations have to begin with verb, end with preposition, be contiguous (e.g., was born on)

Extract more meaningful relations, particularly with light verbs

is is an album by, is the author of, is a city in
has has a population of, has a Ph.D. in, has a cameo in
made made a deal with, made a promise to
took took place in, took control over, took advantage of
gave gave birth to, gave a talk at, gave new meaning to
got got tickets to, got a deal on, got funding from

Fader et al. (2011)

For each verb, identify the longest sequence of words following the verb that satisfy a POS regex (V .* P) and which satisfy heuristic lexical constraints on specificity

Find the nearest arguments on either side of the relation

Annotators labeled relations in 500 documents to assess recall

Fader et al. (2011)

QA from Open IE

Choi et al. (2015)

Takeaways

SRL/AMR: handle a bunch of phenomena, but more or less like syntax++ in terms of what they represent

Relation extraction: can collect data with distant supervision, use this to expand knowledge bases

Open IE: extracts lots of things, but hard to know how good or useful they are

Can combine with standard question answering

Add new facts to knowledge bases

Many, many applications and techniques
Roadmap

- Classification: conventional and neural, word representations (3 weeks)
 - Linear and neural classification
 - How to build effective word vectors
- Text analysis: tagging, parsing, information extraction (3.5 weeks)
 - Structured models for sequences, trees (HMMs, PCFGs), as well as unstructured approaches (transition-based parsing)
 - Lots of NLP tasks can be formulated as tagging

Applications of Tagging

- Extract product occurrences in cybercrime forums, but not everything that looks like a product is a product

 | TITLE: I buy J Backconnect bot |
 | BODY: Looking for a solid backconnect bot... |
 | If you know of anyone who codes them please let me know |

 (a) File 0-initiator4856

 | TITLE: Exploit cleaning ? |
 | BODY: Have some Exploits i need fud... |

 (b) File 0-initiator10815

Not a product in this context

Portnoff et al. (2017), Durrett et al. (2017)