Using RNNs

What do RNNs produce?
[I[I[I[RN
II::]II::]II I[|

the movie was great

» Encoding of the sentence — can pass this a decoder or make a
classification decision about the sentence

» Encoding of each word — can pass this to another layer to make a
prediction (can also pool these to get a different sentence encoding)

» RNN can be viewed as a transformation of a sequence of vectors into a
sequence of context-dependent vectors

RNN Uses

» Transducer: make some prediction for each element in a sequence
NN VBD J

DT J
f I_—L| f f output y = score for each tag, then softmax
t t t ot

the movie was great

» Acceptor/encoder: encode a sequence into a fixed-sized vector and use
that for some purpose

K

the movie was great

predict sentiment (matmul + softmax)

translate
paraphrase/compress

Multilayer Bidirectional RNN
ooool] (oog
[FRrrera i I yuys

the movie was great the movie was great

» Token classification based on
concatenation of both directions’

token representations

I |

» Sentence classification
based on concatenation

of both final outputs |:|

Training RNNs

Cakaiali il

the movie was great

» Loss = negative log likelihood of probability of gold label (or use SVM
or other loss)

» Backpropagate through entire network

» Example: sentiment analysis

Training RNNs

| — | P(t;|x)
I — — -

I I[I[| |
the movie was great

» Loss = negative log likelihood of probability of gold predictions,
summed over the tags

» Loss terms filter back through network

» Example: language modeling (predict next word given context)

RNN Language Modeling

RNN Language Modeling

word probs exp(w - hy)

> exp(W’ - hy)

| P(w|context) =

hi N

|;|_.|;| equivalent to

[[l [l]! |
| saw the dog P(w|context) = softmax(WWh;)

» Wis a (vocab size) x (hidden size) matrix; linear layer in PyTorch (rows
are word embeddings)

Training RNNLMs

| saw the dog running

Eﬁbﬂﬁﬁ

saw the dog

» Input is a sequence of words, output is those words shifted by one,

» Allows us to efficiently batch up training across time (one run of the RNN)

Training RNNLMs

l — P(w/|context)

, “Joss = — log P(w* | context)

I saw the dog

» Total loss = sum of negative log likelihoods at each position

» In PyTorch: simply add the losses together and call .backward()

Batched LM Training

batch dim / (looked very excited to be)
6 in the park and it)

.' iﬁ%ﬁ l

L <s> in the park and jJ

(| saw the dog running\

t t+ t t 1
| | —— —

[
[I I I[I[|
| <s> | saw the dog

» Why not one long chain?

Batched LM Training

» torch.nn.LSTM / torch.nn.GRU: expect input in [seq len, batch, word dim]
format

executed in parallel) |nput: [4, 2, dim]

» Cannot parallelize across timesteps
of RNN since output depends on
| previous timesteps

» Using larger batches is necessary to
achieve maximum parallelism

Other Implementation Details

» torch.nn.Embedding: maps sequence of word indices to vectors

» [126, 285] -> [[0.1, -0.07, 1.2],
[-2.3,0.2, 1.4]]

» Moves from [sequence length] vector of indices -> [seq len, dim] tensor
or [batch, sequence length] matrix -> [batch, seq len, dim tensor]

LM Evaluation

» Accuracy doesn’t make sense — predicting the next word is generally
impossible so accuracy values would be very low

» Evaluate LMs on the likelihood of held-out data (averaged to
normalize for length)

n

— ZlogP(wl\wl, ce. ,’LUi_l)
n

i=1
» Perplexity: exp(average negative log likelihood). Lower is better
» Suppose we have probs 1/4, 1/3, 1/4, 1/3 for 4 predictions

» Avg NLL (base e) =1.242 Perplexity = 3.464

Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells (components of c) to understand them

C

Plot this value over timesteps,
blue is smaller, red is larger

Eatatt

T h e

Karpathy et al. (2015

Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells (components of c) to understand them

» Counter: know when to generate \n

The sole importance of the crossing of the Berezina lies in the fact

that it plainly and indubitably proved the fallacy of all the plans for

cutting off the enemy's retreat and the soundness of e only possible

line of action--the one Kutuzov and the general mass the army

demanded--name ench crowd fled
s

increasing speed and all its energy directed to

It fled like a wounded animal and was impossible
This was shown not so much by the arrangements it

he bridges

th

of

1 simply to follow the enemy up. The Fr

at a continuall wa

reaching its go it
to block its a

made for cro s by what took place at the bridges. When

ssi a t
broke down, una ed soldiers, people from Moscow and women with children
who were with t French transport, all--carried on by vis inertiae- -
pressed forward nto boats and into the ice-covered water and did not)

surrender .

Karpathy et al. (2015

: Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track

» Binary switch: tells us if we’re in a quote or not

@) Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track
» Stack: activation based on indentation

#ifdef CONFIG_AUDITSYSCALL
static inline int audit_match_class_bits(int class, u32 *mask)

(=

b i‘..;kiil‘.‘:i!ﬁil.?él!éihiﬁ‘; —
)}_
Karpathy et al. (2015 Karpathy et al. (2015
o) Visualizing LSTMs o) State-of-the-art LMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track

» Uninterpretable: probably doing double-duty, or only makes sense in the
context of another activation

DECI‘MIT-EU’_“'!"G representation firom User-space
t pack_string(Velid *®bufp, size_ 't HMremain, size_t| Len)

ES —n))

urrentl p i nted tring filelds, PATHIHAX
nge st il i Er H

Karpathy et al. (2015

» Good LSTM LMs have ~27M parames, 4-5 layers
» Kneser-Ney 5-gram model with cache: PPL = 125.7

» LSTM: PPL ~ 60-80 (depending on how much you optimize it)
» LSTM character-level: PPL ~1.5 (205 character vocab)

» Better language models using transformers (will discuss after MT)

Melis et al. (2017)

