Using RNNs

What do RNNs produce?
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the movie was great

» Encoding of the sentence — can pass this a decoder or make a
classification decision about the sentence

» Encoding of each word — can pass this to another layer to make a
prediction (can also pool these to get a different sentence encoding)

» RNN can be viewed as a transformation of a sequence of vectors into a
sequence of context-dependent vectors

RNN Uses

» Transducer: make some prediction for each element in a sequence
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» Acceptor/encoder: encode a sequence into a fixed-sized vector and use
that for some purpose
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» Token classification based on
concatenation of both directions’

token representations
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» Sentence classification
based on concatenation

of both final outputs |:|




Training RNNs
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» Loss = negative log likelihood of probability of gold label (or use SVM
or other loss)

» Backpropagate through entire network

» Example: sentiment analysis

Training RNNs
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» Loss = negative log likelihood of probability of gold predictions,
summed over the tags

» Loss terms filter back through network

» Example: language modeling (predict next word given context)

RNN Language Modeling

RNN Language Modeling

word probs exp(w - hy)
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» Wis a (vocab size) x (hidden size) matrix; linear layer in PyTorch (rows
are word embeddings)




Training RNNLMs

| saw the dog running
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» Input is a sequence of words, output is those words shifted by one,

» Allows us to efficiently batch up training across time (one run of the RNN)

Training RNNLMs
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I saw the dog

» Total loss = sum of negative log likelihoods at each position

» In PyTorch: simply add the losses together and call .backward()

Batched LM Training
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» Why not one long chain?

Batched LM Training

» torch.nn.LSTM / torch.nn.GRU: expect input in [seq len, batch, word dim]
format

executed in parallel ) |nput: [4, 2, dim]

» Cannot parallelize across timesteps
of RNN since output depends on
| previous timesteps

» Using larger batches is necessary to
achieve maximum parallelism




Other Implementation Details

» torch.nn.Embedding: maps sequence of word indices to vectors

» [126, 285] -> [[0.1, -0.07, 1.2],
[-2.3,0.2, 1.4]]

» Moves from [sequence length] vector of indices -> [seq len, dim] tensor
or [batch, sequence length] matrix -> [batch, seq len, dim tensor]

LM Evaluation

» Accuracy doesn’t make sense — predicting the next word is generally
impossible so accuracy values would be very low

» Evaluate LMs on the likelihood of held-out data (averaged to
normalize for length)
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» Perplexity: exp(average negative log likelihood). Lower is better
» Suppose we have probs 1/4, 1/3, 1/4, 1/3 for 4 predictions

» Avg NLL (base e) =1.242 Perplexity = 3.464

Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells (components of c) to understand them
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Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells (components of c) to understand them

» Counter: know when to generate \n
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: Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track

» Binary switch: tells us if we’re in a quote or not

@) Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track
» Stack: activation based on indentation

#ifdef CONFIG_AUDITSYSCALL
static inline int audit_match_class_bits(int class, u32 *mask)
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o) Visualizing LSTMs o) State-of-the-art LMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track

» Uninterpretable: probably doing double-duty, or only makes sense in the
context of another activation
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» Good LSTM LMs have ~27M parames, 4-5 layers
» Kneser-Ney 5-gram model with cache: PPL = 125.7

» LSTM: PPL ~ 60-80 (depending on how much you optimize it)
» LSTM character-level: PPL ~1.5 (205 character vocab)

» Better language models using transformers (will discuss after MT)

Melis et al. (2017)




