CCG Parsing
“What” is a very complex type: needs a noun and needs a S\NP to form a sentence. S\NP is basically a verb phrase (border Texas)
What is a very complex type: needs a noun and needs a S\NP to form a sentence. S\NP is basically a verb phrase (border Texas).

What in this case knows that there are two predicates (states and border Texas). This is not a general thing

Zettlemoyer and Collins (2005)
These question are *compositional*: we can build bigger ones out of smaller pieces

What states border Texas?

What states border states bordering Texas?

What states border states bordering states bordering Texas?

In general, answering this does require parsing and not just slot-filling
“to” needs an NP (destination) and N (parent)

“Show me” is a no-op
Many ways to build these parsers

One approach: run a “supertagger” (tags the sentence with complex labels), then run the parser

Parsing is easy once you have the tags, so we’ve reduced it to a (hard) tagging problem

Zettlemoyer and Collins (2005)
Training CCG Parsers

- Training data looks like pairs of sentences and logical forms

\[\text{What states border Texas} \quad \lambda x. \text{state}(x) \land \text{borders}(x, e89) \]
\[\text{What borders Texas} \quad \lambda x. \text{borders}(x, e89) \] ...

- What can we learn from these?

- Problem: we don’t know the derivation
 - \text{Texas} corresponds to NP | e89 in the logical form (easy to figure out)
 - \text{What} corresponds to (S/(S\(\backslash\)NP))/N | \lambda f.\lambda g.\lambda x. f(x) \land g(x)
 - How do we infer that without being told it?
Lexicon

- GENLEX: takes sentence S and logical form L. Break up logical form into chunks $C(L)$, assume any substring of S might map to any chunk.

 \[\text{What states border Texas} \quad \lambda x. \text{state}(x) \land \text{borders}(x, e89) \]

- Chunks inferred from the logic form based on rules:
 - NP: $e89$
 - $(S\backslash NP)/NP: \lambda x. \lambda y. \text{borders}(x, y)$

- Any substring can parse to any of these in the lexicon:
 - Texas -> NP: $e89$ is correct
 - border Texas -> NP: $e89$
 - What states border Texas -> NP: $e89$

... Zettlemoyer and Collins (2005)
Learning

- Unsupervised learning of correspondences, like word alignment

- Iterative procedure: estimate “best” parses that derive each logical form, retrain the parser using these parses with supervised learning

- Eventually we converge on the right parses at the same time that we learn a model to build them

Zettlemoyer and Collins (2005)
Seq2seq Semantic Parsing
Semantic Parsing as Translation

“what states border Texas”

\[\lambda x \ (\text{state} \ (\ x \) \ \text{and} \ \text{border} \ (\ x , \ e89)) \]

- Write down a linearized form of the semantic parse, train seq2seq models to directly translate into this representation.

- What are some benefits of this approach compared to grammar-based?

- What might be some concerns about this approach? How do we mitigate them?

Jia and Liang (2016)
Handling Invariances

“What states border Texas” “what states border Ohio”

- Parsing-based approaches handle these the same way
 - Possible divergences: features, different weights in the lexicon
- Can we get seq2seq semantic parsers to handle these the same way?
- Key idea: don’t change the model, change the data
- “Data augmentation”: encode invariances by automatically generating new training examples
Data Augmentation

Jia and Liang (2016)

\[
\text{ROOT} \rightarrow \langle \text{"what states border STATEID ?"}, \\
\quad \text{answer}(\text{NV}, (\text{state}(\text{V0}), \text{next_to}(\text{V0}, \text{NV}), \text{const}(\text{V0}, \text{stateid}(ext{STATEID})))) \rangle \\
\text{STATEID} \rightarrow \langle \text{"texas"}, \text{texas} \rangle \\
\text{STATEID} \rightarrow \langle \text{"ohio"}, \text{ohio} \rangle \\
\]

- Lets us synthesize a “what states border ohio ?” example
- Abstract out entities: now we can “remix” examples and encode invariance to entity ID. More complicated remixes too
Semantic Parsing as Translation

- **Prolog**
- **Lambda calculus**
- **Other DSLs**

- Handle all of these with uniform machinery!

Jia and Liang (2016)
Semantic Parsing as Translation

<table>
<thead>
<tr>
<th>Previous Work</th>
<th>GEO</th>
<th>ATIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zettlemoyer and Collins (2007)</td>
<td></td>
<td>84.6</td>
</tr>
<tr>
<td>Kwiatkowski et al. (2010)</td>
<td>88.9</td>
<td></td>
</tr>
<tr>
<td>Liang et al. (2011)</td>
<td>91.1</td>
<td></td>
</tr>
<tr>
<td>Kwiatkowski et al. (2011)</td>
<td>88.6</td>
<td>82.8</td>
</tr>
<tr>
<td>Poon (2013)</td>
<td></td>
<td>83.5</td>
</tr>
<tr>
<td>Zhao and Huang (2015)</td>
<td>88.9</td>
<td>84.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Our Model</th>
<th>GEO</th>
<th>ATIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Recombination</td>
<td>85.0</td>
<td>76.3</td>
</tr>
<tr>
<td>AbsEntities</td>
<td>85.4</td>
<td>79.9</td>
</tr>
<tr>
<td>AbsWholePhrases</td>
<td>87.5</td>
<td></td>
</tr>
<tr>
<td>CONCAT-2</td>
<td>84.6</td>
<td>79.0</td>
</tr>
<tr>
<td>CONCAT-3</td>
<td></td>
<td>77.5</td>
</tr>
<tr>
<td>AWP + AE</td>
<td>88.9</td>
<td></td>
</tr>
<tr>
<td>AE + C2</td>
<td></td>
<td>78.8</td>
</tr>
<tr>
<td>AWP + AE + C2</td>
<td>89.3</td>
<td>83.3</td>
</tr>
<tr>
<td>AE + C3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Three forms of data augmentation all help
- Results on these tasks are still not as strong as hand-tuned systems from 10 years ago, but the same simple model can do well at all problems

Jia and Liang (2016)
Applications

- GeoQuery (Zelle and Mooney, 1996): answering questions about states (~80% accuracy)
- Jobs: answering questions about job postings (~80% accuracy)
- ATIS: flight search
- Can do well on all of these tasks if you handcraft systems and use plenty of training data: these domains aren’t that rich
Can use for other semantic parsing-like tasks

Predict regex from text

Problem: requires a lot of data: 10,000 examples needed to get ~60% accuracy on pretty simple regexes

Locascio et al. (2016)
SQL Generation

- Convert natural language description into a SQL query against some DB

- How to ensure that well-formed SQL is generated?
 - Three seq2seq models

- How to capture column names + constants?
 - Pointer mechanisms

Question:
How many CFL teams are from York College?

SQL:
SELECT COUNT CFL Team FROM CFLDraft WHERE College = "York"

Zhong et al. (2017)