CS378: Natural Language Processing
Lecture 6: NN Implementation

Greg Durrett
Announcements

- A1 due today at 5pm
- A2 out late tonight
- Goldberg reading link fixed
Recall: Feedforward NNs

\[P(y|x) = \text{softmax}(Wg(Vf(x))) \]
Recall: Training Feedforward NNs

\[P(y|x) = \text{softmax}(Wg(Vf(x))) \]

‣ Maximize log likelihood of training data. For one point:

\[\mathcal{L}(x, i^*) = \log P(y = i^*|x) = \log (\text{softmax}(Wz) \cdot e_{i^*}) \]

‣ How to compute the gradient with respect to \(W \) and \(V \)?
Recall: Backpropagation

\[P(y|x) = \text{softmax}(Wg(Vf(x))) \]
This Lecture

- Neural net implementation / PyTorch 101
- Neural net training
- Word representations
Implementing Neural Networks: PyTorch 101
Computation Graphs

- Computing gradients is hard!
- Automatic differentiation: instrument code to keep track of derivatives
 \[y = x \times x \quad \rightarrow \quad (y, dy) = (x \times x, 2 \times x \times dx) \]
- Computation is now something we need to reason about symbolically
- Use a library like Pytorch or Tensorflow. This class: Pytorch
- Ensuing code examples are on the course website: ffnn_example.py under “Readings”
PyTorch

- Framework for defining computations that provides easy access to derivatives

- Module: defines a neural network (can use wrap other modules which implement predefined layers)

- If forward() uses crazy stuff, you have to write backward yourself

```python
torch.nn.Module
    # Takes an example x and computes result
    forward(x):
        ...
    # Computes gradient after forward() is called
    backward(): # produced automatically
        ...
```
Define forward pass for \(P(y|x) = \text{softmax}(Wg(Vf(x))) \)

class FFNN(nn.Module):
 def __init__(self, input_size, hidden_size, out_size):
 super(FFNN, self).__init__()
 self.V = nn.Linear(input_size, hidden_size)
 self.g = nn.Tanh() # or nn.ReLU(), sigmoid()...
 self.W = nn.Linear(hidden_size, out_size)
 self.softmax = nn.Softmax(dim=0)

 def forward(self, x):
 return self.softmax(self.W(self.g(self.V(x))))

 apply is syntactic sugar for forward
Whatever you define with torch.nn needs its input as some sort of tensor, whether it’s integer word indices or real-valued vectors

def form_input(x) -> torch.Tensor:
 # Index words/embed words/etc.
 return torch.from_numpy(x).float()

More on this later
Training and Optimization

\[P(y|x) = \text{softmax}(Wg(Vf(x))) \]

\[
\text{ffnn} = \text{FFNN}(\text{inp}, \text{hid}, \text{out}) \\
\text{optimizer} = \text{optim.Adam(}\text{ffnn.parameters()}, \text{lr=lr}) \\
\text{for epoch in range(0, num_epochs):} \\
\text{\hspace{1em}for (input, gold_label) in training_data:} \\
\text{\hspace{2em}ffnn.zero_grad()} # clear gradient variables \\
\text{\hspace{2em}probs = ffnn.forward(input)} \\
\text{\hspace{2em}loss = torch.neg(torch.log(probs)).dot(gold_label)} \\
\text{\hspace{2em}loss.backward()} \\
\text{\hspace{2em}optimizer.step()}\]

one-hot vector of the label (e.g., [0, 1, 0])

negative log-likelihood of correct answer
Op = miza = on in Pytorch

```
optimizer = optim.SGD(network.parameters(), lr=0.01)
optimizer = optim.Adam(network.parameters(), lr=0.001)
```

- Learning rates for deep learning are often tiny! (0.01 or lower)
- Adam: adaptive method, incorporates momentum (gradient is smoothed with running average of past gradients). We will discuss a bit more but it’s outside the scope of this class.
Initialization in Pytorch

class FFNN(nn.Module):
 def __init__(self, inp, hid, out):
 super(FFNN, self).__init__()
 self.V = nn.Linear(inp, hid)
 self.g = nn.Tanh()
 self.W = nn.Linear(hid, out)
 self.softmax = nn.Softmax(dim=0)
 nn.init.uniform(self.V.weight)

- Initializing to a nonzero value is critical, more in a bit
Define a computation graph
Initialize weights and optimizer
For each epoch:
 For each batch of data:
 Zero out gradient
 Compute loss on batch
 Autograd to compute gradients and take step
Decode test set
Batching

- Batching data gives speedups due to more efficient matrix operations

- Need to make the computation graph process a batch at the same time

  ```python
  # input is [batch_size, num_feats]
  # gold_label is [batch_size, num_classes]
  def make_update(input, gold_label)
      ...
      probs = ffnn.forward(input)  # [batch_size, num_classes]
      loss = torch.sum(torch.neg(torch.log(probs)).dot(gold_label))
      ...
  ```

- Batch sizes from 1-100 often work well
Optimization Redux
Nonconvex Optimization

- For logistic regression, there is a global optimum: sum of log probabilities is a convex function in the weights.
- Neural networks are much harder to optimize!
How does initialization affect learning?

\[P(y|x) = \text{softmax}(Wg(Vf(x))) \]

- How do we initialize \(V\) and \(W\)? What consequences does this have?
- Nonconvex problem, so initialization matters!
Nonlinear model...how does this affect things?

If cell activations are too large in absolute value, gradients are small

ReLU: larger dynamic range (all positive numbers), but can produce big values, can break down if everything is too negative
Initialization

1) Can’t use zeroes for parameters to produce hidden layers: all values in that hidden layer are always 0 and have gradients of 0, never change

2) Initialize too large and cells are saturated

- Can do random uniform / normal initialization with appropriate scale
- Fancier initializers (Xavier Glorot initializer, Kaiming He) to match variances across layers
Adam (Kingma and Ba, ICLR 2015) is very widely used

- Adaptive step size, incorporates momentum
Wilson et al. NIPS 2017: adaptive methods can actually perform badly at test time (Adam is in pink, SGD in black)

Check dev set periodically, decrease learning rate if not making progress
Dropout

- Probabilistically zero out parts of the network during training to prevent overfitting, use whole network at test time
- Form of stochastic regularization
- Similar to benefits of ensembling: network needs to be robust to missing signals, so it has redundancy
- Dropout layers exist in PyTorch

Srivastava et al. (2014)
Nonconvex Optimization

- For logistic regression, there is a global optimum: sum of log probabilities is a convex function in the weights
- Neural networks are hard to optimize

Big Points

- Basic recipe (take gradients + apply update) is still the same
- Neural networks need to be initialized to nonzero values
- Optimizer choice is very important; use Adam unless you know what you’re doing