CS378: Natural Language Processing
Lecture 6: NN Implementation

Greg Durrett

Announcements

» Al due today at 5pm
» A2 out late tonight

» Goldberg reading link fixed

Recall: Feedforward NNs

P(y|x) = softmax(Wg(V f(x)))

num classes

d hidden units probs
H
g

d X n matrix nonlinearity num classes x d
n features (tanh, relu, ...) matrix

Recall: Training Feedforward NNs

P(y|x) = softmax(Wg(V f(x)))
» Maximize log likelihood of training data. For one point:

L(x,7") =log P(y = 1"|x) = log (softmax(Wz) - e;+)

» How to compute the gradient with respect to W and V?

Recall: Backpropagation

P(y|x) = softmax(Wg(V f(x)))

d hidden units

H .
g
8W

Z
0z err(z) err(root)

N

This Lecture

» Neural net implementation / PyTorch 101
» Neural net training

» Word representations

Implementing Neural Networks:
PyTorch 101

Computation Graphs

» Computing gradients is hard!

» Automatic differentiation: instrument code to keep track of derivatives

y = X * X — (y,dy) = (x * x, 2 * x * dx)
codegen

» Computation is now something we need to reason about symbolically

» Use a library like Pytorch or Tensorflow. This class: Pytorch

» Ensuing code examples are on the course website: ffnn _example.py
under “Readings”

PyTorch

» Framework for defining computations that provides easy access to
derivatives

» Module: defines a neural [torch.nn.Module
network (can use wrap
other modules which
implement predefined
layers)

Takes an example x and computes result
forward(x):

Computes gradient after forward() is called

» If forward() uses crazy
stuff, you have to write
backward yourself

Computation Graphs in Pytorch

» Define forward pass for P(y|x) = softmax(Wg(V f(x)))

class FFNN(nn.Module):
def 1nit (self, 1nput size, hidden size, out size):
super (FFNN, self). 1nit ()
self.V = nn.Linear(input size, hidden size)
self.g = nn.Tanh() # or nn.ReLU(), sigmoid()...
self.W = nn.Linear(hidden size, out size)
self.softmax = nn.Softmax(dim=0)

def forward(self, x):
return self.softmax(self.W(self.g(self.V(x))))

apply is syntactic sugar for forward

Input to Network

» Whatever you define with torch.nn needs its input as some sort of
tensor, whether it’s integer word indices or real-valued vectors

def form input(x) -> torch.Tensor:
Index words/embed words/etc.
return torch.from numpy(x).float()

» More on this later

Training and Optimization

onhe-hot vector

P(y|x) = softmax(Wg(V f(x))) of the label

_ . . (e'g'l [OI 1I O])
ffnn = FFNN(inp, hid, out)

optim.Adam(ffnn.garameters(), lr=1lr)

optimizer
for epoch i1n range(0, num &pochs):
for (input, gold label) in training data:
ffnn.zero grad() # clear gradient variables
probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold label)
loss.backward() ™~

D negative log-likelihood of correct answer
optimizer.step() 2 5

Optimization in Pytorch

optimizer optim.SGD(network.parameters(), 1lr=0.01)

optimizer = optim.Adam(network.parameters(), 1lr=0.001)

» Learning rates for deep learning are often tiny! (0.01 or lower)

» Adam: adaptive method, incorporates momentum (gradient is smoothed
with running average of past gradients). We will discuss a bit more but
it’s outside the scope of this class.

Initialization in Pytorch

class FFNN(nn.Module):
def 1nit (self, 1inp, hid, out):
super (FFNN, self). 1init ()
self.V = nn.Linear(inp, hid)
self.g = nn.Tanh()
self .W = nn.Linear(hid, out)
self.softmax = nn.Softmax(dim=0)

nn.init.uniform(self.V.weight)

» Initializing to a nonzero value is critical, more in a bit

Training a Model

Define a computation graph
Initialize weights and optimizer

For each epoch:
For each batch of data:

Zero out gradient
Compute loss on batch

Autograd to compute gradients and take step

Decode test set

Batching in Neural Networks

Batching
» Batching data gives speedups due to more efficient matrix operations

» Need to make the computation graph process a batch at the same time

input is [batch size, num feats]
gold label is [batch size, num classes]

def make update(input, gold label)

probs = ffnn.forward(input) # [batch size, num classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold label))

» Batch sizes from 1-100 often work well

Optimization Redux

Nonconvex Optimization

» For logistic regression, there is a global optimum: sum of log
probabilities is a convex function in the weights

» Neural networks are much harder to optimize!

How does initialization affect learning?
P(y|x) = softmax(Wg(V f(x)))

d hidden units

H
g

d x n matrix nonlinearity m x d matrix
n features (tanh, relu, ...)

» How do we initialize V and W? What consequences does this have?

» Nonconvex problem, so initialization matters!

How does initialization affect learning?

» Nonlinear model...how does this affect things?

» If cell activations are too large in absolute value, gradients are small

» ReLU: larger dynamic range (all positive numbers), but can produce
big values, can break down if everything is too negative

Initialization
1) Can’t use zeroes for parameters to produce hidden layers: all values in
that hidden layer are always 0 and have gradients of O, never change

2) Initialize too large and cells are saturated

» Can do random uniform / normal initialization with appropriate scale

» Fancier initializers (Xavier Glorot initializer, Kaiming He) to match
variances across layers

Optimizer

» Adam (Kingma and Ba, ICLR 2015) is very widely used

» Adaptive step size, incorporates momentum

training cost

=
o
I

0.3

0.2

MNIST Loglstlc Regressuon

— AdaGrad
§ — SGDNesterov
— Adam

5 10 15 20 25 30 35 40 45
iterations over entire dataset

training cost

0.30+-

0.25

0.20

IMDB BoW feature Loglstlc Regressmn

—— Adagrad+dropout
—— RMSProp+dropout

SGDNesterov+dropout|
Adam+dropout

--

\ l' - - -
WVARA |
LN » L
-\ W X ¥,) Ay
“ '\-. '. q" ' L
R T T \. . P .\‘V‘l"-. o‘r('p - . yq\‘ "ﬁ R 7 iy~)n
- = '.lc ~/
. / e /

60 80 100 120 140 160
iterations over entire dataset

6.0

5.8}
5.6

X
9 5.4}

Q.

Y 3.2t

'@ 4.8}
4.6t
4.4}

-

(e) Generative Parsing (Training Set)

Optimizer

» Wilson et al. NIPS 2017: adaptive methods can actually perform badly at
test time (Adam is in pink, SGD in black)

» Check dev set periodically, decrease learning rate if not making progress

Ry e

/dam: 5.35+0.01
— " =

RMSProp: 5.28+0.00 |

—

1

HB: 5.13+0.01"
-~ y

6.0
l
>
'5 >-8] ‘\ Adam (Default): 5.47+0.02
a
Y 5.6} 3
=
Q
£ 5.4
Q. ——
: O
NS 'a 4
— | 352 AN,
-
— AdaGrad: 5.24+0.02
20 20 60 80 100 U 50 25
Epoch Epoch

SGD: 5.09+0.04
60 80

100

(f) Generative Parsing (Development Set)

Dropout

» Probabilistically zero out parts of the network during training to prevent
overfitting, use whole network at test time

» Form of stochastic
regularization

» Similar to benefits of
ensembling: network
needs to be robust to
missing signals, so it
has redundancy (a) Standard Neural Net

(b) After applying dropout.

» Dropout layers exist in PyTorch Srivastava et al. (2014)

Nonconvex Optimization

» For logistic regression, there is a global optimum: sum of log
probabilities is a convex function in the weights

» Neural networks are hard to optimize
Big Points
» Basic recipe (take gradients + apply update) is still the same

» Neural networks need to be initialized to nonzero values

» Optimizer choice is very important; use Adam unless you know what
you’'re doing

