Evaluating Word Embeddings

» What properties of language should word embeddings capture?

great

good
enjoyable

Word Embedding Evaluation “

dog

tiger
wolf bad was is
Similarity Hypernymy Detection
Method | WordSim WordSim Bruni etal. Radinsky etal. Luongetal. Hilletal. » Hypernyms: detective is a person, dog is a animal
Similarity Relatedness MEN M. Turk Rare Words SimLex
PPMI 755 .697 745 686 462 393 » Do word vectors encode these relationships?
SVD .793 .691 778 .666 514 432
SGNS .793 .685 774 .693 470 438
GloVe 725 604 729 632 403 308 Dataset TM14 | Kotlerman 2010 HypeNet WordNet | Avg (10 datasets)
Random 52.0 30.8 24.5 55.2 232
» SVD = singular value decomposition on PMI matrix Word2Vec +C | 52.1 39.5 20.7 63.0 253
GE+C 53.9 36.0 21.6 58.2 26.1
» GloVe does not appear to be the best when experiments are carefully GE + KL 52.0 39.4 23.7 54.4 25.9
controlled, but it depends on hyperparameters + these distinctions don’t DIVE + C-AS | 57.2 36.6 32.0 60.9 32.7
matter in practice » word2vec (SGNS) works barely better than random guessing here
Levy et al. (2015) Chang et al. (2017)

Analogies
(king - man) + woman = queen
king + (woman - man) = queen
» Why would this be?

» woman - man captures the difference in
the contexts that these occur in

king

- queen

» Dominant change: more “he” with man
and “she” with woman — similar to
difference between king and queen

X woman

Analogies

Google MSR
Method ||\ 14/ Mul Add/Mul
PPMI | 553/.679 306/ .535
SVD | .554/.591 .408/.468
SGNS | .676/.688 618/.645
GloVe | .569/.596 .533/.580

» These methods can perform well on analogies on two different
datasets using two different methods

Maximizing for b: Add = cos(b,as — a; +b;) Mul = c0s(b, ap) cos(bs, b1)
cos(bg,a1) +€

Levy et al. (2015)

Using Word Embeddings

» Approach 1: learn embeddings as parameters from your data

» Often works pretty well, especially if data is large

» Approach 2: initialize using GloVe, keep fixed

» Faster because no need to update these parameters

» Approach 3: initialize using GloVe, fine-tune
» Usually works the best

DANs

Deep Averaging Networks

» Deep Averaging Networks: feedforward neural network on average of
word embeddings from input

softmax
hy = f(Wa - h1 +by)
hlzf(Wl-av+b1)
4
av=y, %
i=1
(T T TP T e ol
Predator is a masterpiece
c 2 €3 Cs lyyer et al. (2015)

Deep Averaging Networks

» Widely-held view: need to
model syntactic structure to
represent language

softmax

= sov [2] +0

softmax .
== f(W m +)

. . softmax s
» Surprising that averaging u=fW [04] +b)
can work as well as this sort

of composition

LT T T I TP 1

Predator is a masterpiece
1 C2 C3 C4

lyyer et al. (2015)

Deep Averaging Networks

» Why should these work?
great
cat go::joyab/e
dog
R
wolf bad was

lyyer et al. (2015)

Sentiment Analysis

Model RT SST SST IMDB Time

No pretrained fine bin ©)

; DAN-ROOT — 469 857 — 31
embeddings ™~ DANRAND 775 454 832 888 136
[DAN 803 477 863 894 136] |yyer etal. (2015)
NBOW-RAND 762 423 814 889 91
B ¢ q NBOW 790 436 836 890 91
ag-or-words BiNB — 419 831 — — Wang and
[NBSVM-bi 794 — — 912 —| Manming (2012
RecNN* 777 432 824 — — anning ()
RecNTN* — 457 854 —
DRecNN — 498 866 — 431
Tree RNNs / TreeLSTM — 506 869 — —
CNNS / LSTMS DCNN* — 485 869 894 —
PVEC* — 487 818 9.6 —]
[CNN-MC 811 474 881 — 24521 Kim (2014)
WRRBM* — — — 89.2 —

Deep Averaging Networks

Sentence DAN DRecNN Ground Truth
who knows what exactly godard is on about in this film, but positive positive positive
his ‘words and images do @’f have to add up to ‘mesmerize
you.
it’s so [good that its relentless, polished wit can withstand negative positive positive
fiob only @inept school productions), but even ‘oliver parker’s
movie adaptation
too @, but thanks to some (lovely comedic moments and negative negative positive
several fine performances, it’s @6b a fotal loss
this movie was @6b good negative negative negative
this movie was [good positive positive positive
this movie was 6@ negative negative negative
the movie was fiob 6ad negative negative positive

» Will return to compositionality with syntax and LSTMs

lyyer et al. (2015)

Other Applications

Part-of-Speech Tagging

» Text classification: label applies to whole sentence

The movie was great Label = Positive

» Tagging: label each word individually

Fed raises interest rates in order to ...
Label = Noun

» Next class: part-of-speech tagging

» Morphological analysis, named entity recognition, ...

NLP with Feedforward Networks

» Part-of-speech tagging with FFNNs

=
&

??

Fed raises interest rates in order to ... previous word

» Word embeddings for each word form input

» f(x) doesn’t look like a bag-of-words, instead curr word
captures position-sensitive information

next word

| | (sa304)quid ||(Jsa/alu])qwa|| (sasips)quia |

other words, feats, etc.

NLP with Feedforward Networks

1(©000)[0000)0000)OO00): ko

R = A o

@ ®

&)

qu

no

ue

eu

E bigrams

at Emgmms
no queue at

» Botha et al. (2017): small
FFNNs for NLP tasks

» Use character bigram +
trigram embeddings

» Hidden layer mixes these
different signals and learns
feature conjunctions

» Works well on a range of
languages
Botha et al. (2017)

Takeaways

» Continuous bag-of-words, Skip-gram, and Skip-gram with negative
sampling are all similar ways to learn embeddings

» Matrix factorization approaches like GloVe are most standard

» Averaging inputs to feedforward networks can work well, will see other
approaches later

» Later in the class: approaches to create “contextualized” word
embeddings

