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Abstract

Distributional data tells us that a man can swal-
low candy, but not that a man can swallow a
paintball, since this is never attested. How-
ever both are physically plausible events. This
paper introduces the task of semantic plau-
sibility: recognizing plausible but possibly
novel events. We present a new crowdsourced
dataset of semantic plausibility judgments of
single events such as “man swallow paintball”.
Simple models based on distributional repre-
sentations perform poorly on this task, despite
doing well on selection preference, but inject-
ing manually elicited knowledge about entity
properties provides a substantial performance
boost. Our error analysis shows that our new
dataset is a great testbed for semantic plausi-
bility models: more sophisticated knowledge
representation and propagation could address
many of the remaining errors.

1 Introduction

Intuitively, a man can swallow a candy or paint-
ball but not a desk. Equally so, one cannot plau-
sibly eat a cake and then hold it. What kinds
of semantic knowledge are necessary for distin-
guishing a physically plausible event (or event se-
quence) from an implausible one? Semantic plau-
sibility stands in stark contrast from the familiar
selectional preference (Erk and Padó, 2010; Van
de Cruys, 2014) which is concerned with the typ-
icality of event(s) (Table 1). For example, candy
is a typical entity for man-swallow-* but paintball
is not, even though both events are plausible phys-
ically. Also, some events are physically plausible
but are never stated because humans avoid stat-
ing the obvious. Critically, semantic plausibility
is sensitive to certain properties such as relative
object size that are not explicitly encoded by se-
lectional preferences (Bagherinezhad et al., 2016).
Therefore, it is crucial that we learn to model these

man-swallow-* PREFERRED? PLAUSIBLE?

-candy 3 3

-paintball 7 3

-desk 7 7

Table 1: Distinguishing Semantic Plausibility from
Selectional Preference. candy is selectionally pre-
ferred because it is distributionally common patient in
the event man-swallow-*, as opposed to the bizarre
and rarely seen (if at all) patient paintball. However
both are semantically plausible according to our world
knowledge: they are small-sized objects that are swal-
lowable by a man. desk is both distributionally unlikely
and implausible (i.e. oversized for swallowing).

dimensions in addition to using classical distribu-
tional signals.

Semantic plausibility is pertinent and crucial in
a multitude of interesting NLP tasks put forth
previously, such as narrative schema (Chambers,
2013), narrative interpolation (Bowman et al.,
2016), story understanding (Mostafazadeh et al.,
2016), and paragraph reconstruction (Li and Ju-
rafsky, 2017). Existing methods for these tasks,
however, draw predominantly (if not only) on dis-
tributional data and produce rather weak perfor-
mance. Semantic plausibility over subject-verb-
object triples, while simpler than these other tasks,
is a key building block that requires many of
the same signals and encapsulates complex world
knowledge in a binary prediction problem.

In this work, we show that world knowledge in-
jection is necessary and effective for the seman-
tic plausibility task, for which we create a ro-
bust, high-agreement dataset (details in section 3).
Employing methods inspired by the recent work
on world knowledge propagation through distribu-
tional context (Forbes and Choi, 2017; Wang et al.,
2017), we accomplish the goal with minimal effort
in manual annotation. Finally, we perform an in-



depth error analysis to point to future directions of
work on semantic plausibility.

2 Related Work

Simple events (i.e. S-V-O) have seen thor-
ough investigation from the angle of selectional
preference. While early works are resource-
based (Resnik, 1996; Clark and Weir, 2001),
later work shows that unsupervised learning
with distributional data yields strong performance
(O’Seaghdha, 2010; Erk and Padó, 2010), which
has recently been further improved upon with neu-
ral approaches (Van de Cruys, 2014; Tilk et al.,
2016). Distribution-only models however, as will
be shown, fail on the semantic plausibility task we
propose.

Physical world knowledge modeling appears
frequently in more closely related work. Bagher-
inezhad et al. (2016) combine computer vision and
text-based information extraction to learn the rel-
ative sizes of objects; Forbes and Choi (2017)
crowdsource physical knowledge along specified
dimensions and employ belief propagation to learn
relative physical attributes of object pairs. Wang
et al. (2017) propose a multimodal LDA to learn
the definitional properties (e.g. animal, four-
legged) of entities. However, no prior work han-
dles the semantic plausibility task and even related
efforts do not necessarily adapt well to this task, as
we will show, suggesting that new approaches are
needed.

3 Data

To study the semantic plausibility of S-V-O events,
specifically physical semantic plausibility, we cre-
ate a dataset1 through Amazon Mechanical Turk
with the following criteria in mind: (i) Robust-
ness: Strong inter-annotator agreement; (ii) Di-
versity: A wide range of typical/atypical, plau-
sible/implausible events; (iii) Balanced: Equal
number of plausible and implausible events.

In creating physical events, we work with a
fixed vocabulary of 150 concrete verbs and 450
concrete nouns from Brysbaert et al. (2014)’s
word list, with a concreteness threshold of 4.95
(scale: 0-5). We take the following steps:
(a) Have Turkers write down plausible or im-

plausible S-V and V-O selections;
1Link: https://github.com/suwangcompling/
Modeling-Semantic-Plausibility-NAACL18/
tree/master/data.

(b) Randomly generate S-V-O triples from col-
lected S-V and V-O pairs;

(c) Send resulting S-V-O triples to Turkers to fil-
ter for ones with high agreement (by majority
vote).

(a) ensures diversity and the cleanness of data
(compared with noisy selectional preference data
collected unsupervised from free text): the Turk-
ers are instructed (with examples) to (i) consider
both typical and atypical selections (e.g. man-
swallow-* with candy or paintball); (ii) disregard
metaphorical uses (e.g. feel-blue or fish-idea).
2,000 pairs are collected in the step, balancing typ-
ical & atypical pairs. In (b), we manually filter
error submissions in triple generation. For (c),
5 Turkers provide labels, and we only keep the
ones that have ≥ 3 majority votes, resulting with
3,062 triples (of 4,000 annotated triples, plausible-
implausible balanced), with 100% ≥ 3 agree-
ment, 95% ≥ 4 agreement, and 90% 5 agree-
ment.

To empirically show the failure of distribution-
only methods, we run Van de Cruys (2014)’s neu-
ral net classifier (hereforth NN), which is one of
the strongest models designed for selectional pref-
erence (Figure 1, left-box). Let x be the concate-
nation of the embeddings of the three words in an
S-V-O. The prediction ŷ is computed as follows:

ŷ = argmax
y

softmax(σ(W2σ(W1x))) (1)

where σ,W are nonlinearity and weights, and we
use 300D pretrained GloVe vectors (Pennington
et al., 2014). The model achieves an accuracy of
68% (logistic regression baseline: 64%) after fine-
tuning, verifying the intuition that distributional
data alone cannot satisfactorily capture the seman-
tics of physical plausibility.

4 World Knowledge Features

Recognizing that a distribution-alone method
lacks necessary information, we collect a set of
world knowledge features. The feature types de-
rive from inspecting the high agreement event
triples for knowledge missing in distributional
selection (e.g. relative sizes in man-swallow-
paintball/desk). Previously, Forbes and Choi
(2017) proposed a three level (3-LEVEL) featur-
ization scheme, where an object-pair can take 3
values for, e.g. relative size: {−1, 0, 1} (i.e. lesser,
similar, greater). This method, however, does not

https://github.com/suwangcompling/Modeling-Semantic-Plausibility-NAACL18/tree/master/data
https://github.com/suwangcompling/Modeling-Semantic-Plausibility-NAACL18/tree/master/data
https://github.com/suwangcompling/Modeling-Semantic-Plausibility-NAACL18/tree/master/data


explain many cases we observed. For instance,
man-hug-cat/ant, man is larger than both cat and
ant, but the latter event is implausible. 3-LEVEL

is also inefficient: k objects incur O(k2) elici-
tations. We thus propose a binning-by-landmark
method, which is sufficiently fine-grained, effi-
cient and easy for the annotator: given an entity
n, the Turker decides to which of the landmarks
n is closest to. E.g., for SIZE, we have the land-
marks {watch, book, cat, person, jeep, stadium},
in ascending sizes. If n = dog, the Turker may put
n in the bin corresponding to cat. The features2

are listed with their landmarks as follows:
• SENTIENCE: rock, tree, ant, cat, chimp, man.
• MASS-COUNT: milk, sand, pebbles, car.
• PHASE: smoke, milk, wood.
• SIZE: watch, book, cat, person, jeep, stadium.
• WEIGHT: watch, book, dumbbell, man, jeep, stadium.
• RIGIDITY: water, skin, leather, wood, metal.

5 Turkers provide annotations for all 450 nouns,
and we obtained 93% ≥ 3 agreement, 85% ≥ 4
agreement, and 79% 5 agreement.

Our binning is sufficiently granular, which is
crucial for semantic plausibility of an event in
many cases. E.g. for man-hug-cat/ant, man, cat
and ant fall in the 4th, 3rd and 1st bin, which
suffices to explain why man-hug-cat is plausible
while man-hug-ant is not. Compared to past work,
it is efficient (Forbes and Choi, 2017). Each entity
only needs one assignment in comparison to the
landmarks to be located in a “global scale” (e.g.
from the smallest to the largest objects), and even
for extreme granularity, it only takes O(k log k)
comparisons. It is also intuitive: differences in
bins capture the intuition that one can hug smaller
objects as long as those objects are not too small.

5 Models

We answer two questions: (i) Does world knowl-
edge improve the accuracy of semantic plausibil-
ity classification? (ii) Can we minimize effort in
knowledge feature annotation by learning from a
small amount of training data?

For question (i), we experiment with various

2We experimented with numerous feature types, e.g. size,
temperature, shape, etc. and kept the subset that contributes
most substantially to semantic plausibility classification.
More details on the feature types in supplementary ma-
terial (https://github.com/suwangcompling/
Modeling-Semantic-Plausibility-NAACL18/
tree/master/supplementary).

Figure 1: Model architecture (example input: man-
swallow-paintball). Left box: Van de Cruys (2014)’s
neural net (NN, embeddings only); Right box: world
knowledge feature net WK with different modeling
choices (Section 5). Only SIZE, WEIGHT, RIGIDITY
are shown; the rest receive the same treatment. NN +
WK: embedding and world knowledge combined.

methods to incorporate the features on top of the
embedding-only NN (Section 3). Our architecture3

is outlined in Figure 1, where we ensemble the
NN (left-box) and another feedforward net for fea-
tures (WK, right-box) to produce the final predic-
tion. For the feature net, the relative physical at-
tributes of the subject-object pair can be encoded
in 3-LEVEL (Section 4) or the bin difference (BIN-
DIFF) scheme.4 For BIN-DIFF, given the two en-
tities in an S-V-O event (i.e. S, O) ant and man,
which are in the bins of the landmark watch (i.e.
the 1st) and that of person (i.e. the 4th), the pair
ant-man gets a BIN-DIFF value of 1−4 = −3. Ex-
emplifying the featurization function f(s, o) with
SIZE:

f3-L(SIZE(s), SIZE(o)) ∈ {−1, 0, 1} (2)

fBIN(SIZE(s), SIZE(o)) = BIN(s)− BIN(o) (3)

Then, given a featurization scheme, we may feed
raw feature values (RAW VEC, for 3-LEVEL, e.g.
concatenation of -1, 0 or 1 of all feature types,
in that order, and in one-hot format), or feature
embeddings (EMBEDDING, e.g. concatenation of
embeddings looked up with feature values). Fi-
nally, let aNN,aWK be the penultimate-layer vec-
tors of NN and WK (see Figure 1), we affine trans-
form their concatenation to predict label ŷ with
3More configuration details in supplementary material.
4We also tried using bin numbers directly, however it does
not produce ideal results (classification accuracy between 3-
LEVEL and BIN-DIFF). Thus for brevity we drop this setup.

https://github.com/suwangcompling/Modeling-Semantic-Plausibility-NAACL18/tree/master/supplementary
https://github.com/suwangcompling/Modeling-Semantic-Plausibility-NAACL18/tree/master/supplementary
https://github.com/suwangcompling/Modeling-Semantic-Plausibility-NAACL18/tree/master/supplementary


MODELS 5% 20%

Label Spreading (Zhu et al., 2004) 0.56 0.59
Factor Graph (Forbes and Choi, 2017) 0.69 0.71
Multi-LDA (Wang et al., 2017) 0.64 0.72

Logistic Regression 0.72 0.83
Factor Graph (initialized with our LR) 0.72 0.84
Ordinal-LR 0.76 0.88

MODELS
5% 20%

3-L BIN 3-L BIN

Logistic Regression 0.61 0.21 0.68 0.26
Ordinal-LR 0.66 0.32 0.76 0.40

Table 2: Feature Propagation. Top-table: results
on Forbes and Choi (2017)’s 2.5k object-pair data;
Bottom-table: results on our 10k object-pair data.

argmax on the final softmax layer:

ŷ = argmax
y

softmax(σ(W [aNN;aWK] + b)) (4)

where σ is a ReLU nonlinearity. We will only re-
port the results from the best-performing model
configuration, which has BIN-DIFF + EMBED-
DING. The model will be listed below as NN
+ WK-GOLD (i.e. with GOLD, Turker-annotated
World Knowledge features).

For question (ii), we select a data-efficient fea-
ture learning model. Following Forbes and Choi
(2017) we evaluate the models with 5% or 20%
of training data. We experiment with several pre-
viously proposed techniques: (a) label spreading;
(b) factor graph; (c) multi-LDA. As a baseline
we employ a simple but well-tuned logistic re-
gressor (LR). We also initialize the factor graph
with this LR, on account of its unexpectedly strong
performance.5 Finally, observing that the feature
types are inherently ordinal (e.g. SIZE from small
to large), we also run ordinal logistic regression
(Adeleke and Adepoju, 2010). For model selec-
tion we first evaluate the object-pair attribute data
collected by Forbes and Choi (2017), 2.5k pairs
labeled in the 3-LEVEL scheme. We then com-
pared the the LR and Ordinal-LR (our strongest
models6 in this experiment) on 10k randomly gen-
erated object-pairs from our annotated nouns. The
results are summarized in Table 2, where we see
(i) 3-LEVEL propagation is much easier; (ii) our
object-pairs are more challenging, likely due to
sparsity with larger vocabulary size; (iii) ordinal-

5We verified our setup with the authors and they attributed the
higher performance of our LR to hyperparameter choices.

6Because the factor graph + LR gives very slight improve-
ment, for simplicity we choose LR instead.

MODELS ACCURACY

Random 0.50
LR baseline 0.64
NN (Van de Cruys, 2014) 0.68
NN + WK-GOLD 0.76

NN + WK-PROP
5% 20%

3-L BIN 3-L BIN

0.69 0.70 0.71 0.74

Table 3: Semantic Plausibility (binary) Classification.
The average of 10-fold CV (splitting on the total 3,062
entries). The neural classifier injected with full an-
notation of world knowledge (i.e. NN + WK-GOLD)
performs substantially better, and the performance re-
tainment is rather strong with propagated features (by
Ordinal-LR) from small fractions of gold annotation
(i.e. in NN + WK-PROP).

ity information contributes substantially to perfor-
mance. The model that uses propagated features
(w/ Ordinal-LR) will be listed as NN + WK-PROP.

6 Semantic Plausibility Results

We evaluate the models on the task of classifying
our 3,062 S-V-O triples by semantic plausibility
(10-fold CV, taking the average over 20 runs with
the same random seed). We compare our three
models in the 3-LEVEL and BIN-DIFF schemes,
with NN + WK-PROP evaluated in 5% and 20%
training conditions. The results are outlined in
Table 3. Summarizing our findings: (i) world
knowledge undoubtedly leads to strong perfor-
mance boost (∼8%); (ii) BIN-DIFF scheme works
much better than 3-LEVEL — it manages to out-
perform the latter even with much weaker propa-
gation accuracy; (iii) the accuracy loss with propa-
gated features seems rather mild with 20% labeled
training and the best scheme.

7 Error Analysis

To understand the still-low 76% accuracy, we run
the models above 200 times (10-fold CV, random
shuffle at each run), and inspect the top 200 most
frequently misclassified cases. The percentage
statistics below are from counting the error cases.

In the cases where NN misclassifies while NN +
WK-GOLD correctly classifies, ∼60% relates to
SIZE and WEIGHT (e.g. missing man-hug-ant
(bad) or dog-pull-paper (good)). PHASE takes up
∼18% (e.g. missing monkey-puff-smoke (good)).
This validates the intuition that distributional con-
texts do not encode the types of world knowledge.



For cases often misclassified by all the models, we
observe two main types of errors: (i) data sparsity;
(ii) highly-specific attributes.

Data sparsity (32%). man-choke-ant, e.g., is a
singleton big-object-choke-small-object instance,
and there are no distributionally similar verbs that
can help (e.g. suffocate); For sun-heat-water, be-
cause the majority of the actions in the data are
limited to solid objects, the models tend to predict
implausible for whenever a gas/liquid appears as
the object.

Highly-specific attributes (68%). “long-tailed”
physical attributes which are absent from our fea-
ture set are required. To exemplify a few:7

• edibility (21%). *-fry-egg (plausible) and
*-fry-cup (implausible) are hard to distin-
guish because egg and cup are similar in
SIZE/WEIGHT/..., however introducing large
free-text data to help learn edibility mis-
guides our model to mind selectional prefer-
ence, causing mislabeling of other events.
• natural vs. artificial (18%). Turkers of-

ten think creating natural objects like moon
or mountain is implausible but creating
an equally big (but artificial) object like
skyscraper is plausible.
• hollow objects (15%). plane-contain-shell

and purse-contain-scissors are plausible,
but the hollow-object-can-contain-things at-
tribute is failed to be captured.
• forefoot dexterity (5%). horse-hug-man is

implausible but bear-hug-man is plausible;
For *-snatch-watch, girl is a plausible sub-
ject, but not pig. Obviously the dexterity of
the forefoot of the agent matters here.

The analysis shows that the task and the dataset
highlights the necessity for more sophisticated
knowledge featurization and cleverer learning
techniques (e.g. features from computer vision,
propagation methods with stronger capacity to
generalize) to reduce the cost of manual annota-
tion.

8 Conclusion

We present the novel task of semantic plausibil-
ity, which forms the foundation of various inter-
7Percentages calculated with the 68% as the denominator.
Full list in supplementary material.

esting and complex NLP tasks in event seman-
tics (Bowman et al., 2016; Mostafazadeh et al.,
2016; Li and Jurafsky, 2017). We collected a
high-quality dedicated dataset, showed empiri-
cally that the conventional, distribution data only
model fails on the task, and that clever world
knowledge injection can help substantially with
little annotation cost, which lends initial empiri-
cal support for the scalability of our approach in
practical applications, i.e. labeling little but prop-
agating well approximates performance with full
annotation. Granted that annotation-based injec-
tion method does not cover the full spectrum of
leverageable world knowledge information (alter-
native/complementary sources being images and
videos, e.g. Bagherinezhad et al. 2016), it is in-
deed irreplaceable in some cases (e.g. features
such as WEIGHT or RIGIDITY are not easily learn-
able through visual modality), and in other cases
presents a low-cost and effective option. Finally,
we also discovered the limitation of existing meth-
ods through a detailed error analysis, and thereby
invite cross-area effort (e.g. multimodal knowl-
edge features) in the future exploration in auto-
mated methods for semantic plausibility learning.
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Models for Word Meaning in Context. In Proceed-
ings of ACL.

Maxwell Forbes and Yejin Choi. 2017. VERB
PHYSICS: Relative Physical Knowledge of Actions
and Objects. In Proceedings of ACL.

Jiwei Li and Daniel Jurafsky. 2017. Neural Net Models
of Open-domain Discourse Coherence. In Proceed-
ings of EMNLP.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A Corpus
and Cloze Evaluation for Deeper Understanding of
Commonsense Stories. In Proceedings of NAACL.

Diarmiuid O’Seaghdha. 2010. Latent variable models
of selectional preference. In Proceedings of ACL.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global Vectors for
Word Embeddings. In Proceedings of EMNLP.

Philip Resnik. 1996. Selectional Constraints: An
Information-Theoretic Model and Its Computational
Realization. Cognition 61:127–159.

Ottokar Tilk, Vera Demberg, Asad Sayeed, Dietrich
Klakow, and Stefan Thater. 2016. Event Participant
Modeling with Neural Networks. In Proceedings of
EMNLP.

Tim Van de Cruys. 2014. A Neural Network Approach
to Selectional Preference Acquisition. In Proceed-
ings of EMNLP.

Su Wang, Stephen Roller, and Katrin Erk. 2017. Distri-
butional Modeling on a Diet: Learning Word Prop-
erties from Text Only. In Proceedings of IJCNLP.

Dengyong Zhu, Olivier Bousquet, Thomas Navin
Lal, Jason Weston, and Bernhard Schölkopf. 2004.
Learning with Local and Global Consistency. In
Proceedings of NIPS.


