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Abstract. A firewall is a security guard placed at the point of entry be-
tween a private network and the outside Internet such that all incoming
and outgoing packets have to pass through it. The function of a firewall is
to examine every incoming or outgoing packet and decide whether to ac-
cept or discard it. This function is conventionally specified by a sequence
of rules, where rules often conflict. To resolve conflicts, the decision for
each packet is the decision of the first rule that the packet matches. The
current practice of designing a firewall directly as a sequence of rules
suffers from three types of major problems: (1) the consistency problem,
which means that it is difficult to order the rules correctly; (2) the com-
pleteness problem, which means that it is difficult to ensure thorough
consideration for all types of traffic; (3) the compactness problem, which
means that it is difficult to keep the number of rules small (because some
rules may be redundant and some rules may be combined into one rule).

To achieve consistency, completeness, and compactness, we propose a
new method called Structured Firewall Design, which consists of two
steps. First, one designs a firewall using a Firewall Decision Diagram in-
stead of a sequence of often conflicting rules. Second, a program converts
the firewall decision diagram into a compact, yet functionally equivalent,
sequence of rules. This method addresses the consistency problem be-
cause a firewall decision diagram is conflict-free. It addresses the com-
pleteness problem because the syntactic requirements of a firewall de-
cision diagram force the designer to consider all types of traffic. It also
addresses the compactness problem because in the second step we use two
algorithms (namely FDD reduction and FDD marking) to combine rules
together, and one algorithm (namely Firewall compaction) to remove
redundant rules. Moreover, the techniques and algorithms presented in
this paper are extensible to other rule-based systems such as IPsec rules.
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1 Introduction

1.1 Firewall Basics

Firewalls are crucial elements in network security, and have been widely deployed
in most businesses and institutions for securing private networks. A firewall is
placed at the point of entry between a private network and the outside Internet
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such that all incoming and outgoing packets have to pass through it. The func-
tion of a firewall is to examine every incoming or outgoing packet and decide
whether to accept or discard it. A packet can be viewed as a tuple with a finite
number of fields such as source IP address, destination IP address, source port
number, destination port number, and protocol type. The function of a firewall
is conventionally specified as a sequence of rules. Each rule in a firewall is of the
form

〈predicate〉 → 〈decision〉

The 〈predicate〉 of a rule is a boolean expression over some packet fields together
with the physical network interface on which a packet arrives. For simplicity, we
assume that each packet has a field containing the identification of the network
interface on which a packet arrives. The 〈decision〉 of a rule can be accept, or
discard, or a combination of these decisions with other options such as a logging
option. For simplicity, we assume that the 〈decision〉 of a rule is either accept

or discard.
A packet matches a rule if and only if (iff ) the packet satisfies the predicate

of the rule. The rules in a firewall often conflict. Two rules in a firewall conflict

iff they overlap and also have different decisions. Two rules in a firewall overlap

iff there is at least one packet that can match both rules. Due to conflicts among
rules, a packet may match more than one rule in a firewall, and the rules that a
packet matches may have different decisions. To resolve conflicts, the decision for
each packet is the decision of the first (i.e., highest priority) rule that the packet
matches. Consequently, the rules in a firewall are order sensitive. To ensure that
every packet has at least one matching rule in a firewall, the predicate of the
last rule in a firewall is usually a tautology. The last rule of a firewall is usually
called the default rule of the firewall.

1.2 Consistency, Completeness and Compactness

Because of the conflicts and order sensitivity of firewall rules, designing a firewall
directly as a sequence of rules suffers from these three problems: the consistency
problem, the completeness problem, and the compactness problem. Next, we
expatiate on these three problems via a simple firewall example shown in Figure
1. This firewall resides on a gateway router that connects a private network to
the outside Internet. The gateway router has two interfaces: interface 0, which
connects the router to the outside Internet, and interface 1, which connects the
router to the private network. In this example, we assume that every packet has
the following five fields.

name meaning
I Interface
S Source IP address
D Destination IP address
N Destination Port Number
P Protocol Type

A firewall on the Internet typically consists of hundreds or thousands of
rules. Here for simplicity, this firewall example only has four rules. Although
this firewall is small, it exemplifies all the following three problems.

1. Consistency Problem: It is difficult to order the rules in a firewall cor-
rectly. This difficulty mainly comes from conflicts among rules. Because rules
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Internet


Mail Server
 Host 1
 Host 2

Firewall


(Gateway Router)


A Private Network


1. Rule r1: (I = 0) ∧ (S = any) ∧ (D = Mail Server) ∧ (N = 25) ∧ (P = tcp) → accept

(This rule allows incoming SMTP packets to proceed to the mail server.)
2. Rule r2: (I = 0) ∧ (S = Malicious Hosts) ∧ (D = any) ∧ (N = any) ∧ (P = any) → discard

(This rule discards incoming packets from previously known malicious hosts.)
3. Rule r3: (I = 1) ∧ (S = any) ∧ (D = any) ∧ (N = any) ∧ (P = any) → accept

(This rule allows any outgoing packet to proceed.)
4. Rule r4: (I = any) ∧ (S = any) ∧ (D = any) ∧ (N = any) ∧ (P = any) → accept

(This rule allows any incoming or outgoing packet to proceed.)

Figure 1. A Firewall Example

often conflict, the order of the rules in a firewall is critical. The decision for
every packet is the decision of the first rule that the packet matches. In the
firewall example in Figure 1, rule r1 and r2 conflict since the SMTP packets
from previously known malicious hosts to the mail server match both rules
and the decisions of r1 and r2 are different. Because r1 is listed before r2

and the decision of rule r1 is “accept”, the SMTP packets from previously
known malicious hosts are allowed to proceed to the mail server. However,
such packets probably should be prohibited from reaching the mail server
because they originate from malicious hosts. Therefore, rules r1 and r2 prob-
ably should be swapped.

Because of the conflicts, the net effect of a rule cannot be understood by
the literal meaning of the rule. The decision of a rule affects the fate of
the packets that match this rule but does not match any rule listed before
this rule. To understand one single rule ri, one needs to go through all the
rules from r1 to ri−1, and for every rule rj , where 1 ≤ j ≤ i − 1, one needs
to figure out the logical relationship between the predicate of rj and that
of ri. In the firewall example in Figure 1, the net effect of rule r2 is not
to “discard all packets originated from previously known malicious hosts”,
but rather is to “discard all non-SMTP packets originated from previously
known malicious hosts”. The difficulty in understanding firewall rules in turn
makes the design and maintenance of a firewall error-prone. Maintenance of
a firewall usually involves inserting, deleting or updating rules, and reporting
the function of the firewall to others such as managers. All of these tasks
require precise understanding of firewalls, which is difficult, especially when
the firewall administrator is forced to maintain a legacy firewall that is not
originally designed by him.

2. Completeness Problem: It is difficult to ensure that all possible packets
are considered. To ensure that every packet has at least one matching rule
in a firewall, the common practice is to make the predicate of the last rule
a tautology. This is clearly not a good way to ensure the thorough consid-
eration of all possible packets. In the firewall example in Figure 1, due to
the last rule r4, non-email packets from the outside to the mail server and
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email packets from the outside to the hosts other than the mail server are
accepted by the firewall. However, these two types of traffic probably should
be blocked. A mail server is usually dedicated to email service only. When a
host other than the mail server starts to behave like a mail server, it could
an indication that the host has been hacked and it is sending out spam. To
block these two types of traffic, the following two rules should be inserted
immediately after rule r1 in the above firewall:

(a) (I = 0) ∧ (S = any) ∧ (D = Mail Server) ∧ (N = any) ∧ (P = any) →
discard

(b) (I = 0) ∧ (S = any) ∧ (D = any) ∧ (N = 25) ∧ (P = tcp) → discard

3. Compactness Problem: A poorly designed firewall often has redundant
rules. A rule in a firewall is redundant iff removing the rule does not change
the function of the firewall, i.e., does not change the decision of the firewall for
every packet. In the above firewall example in Figure 1, rule r3 is redundant.
This is because all the packets that match r3 but do not match r1 and r2

also match r4, and both r3 and r4 have the same decision. Therefore, this
firewall can be made more compact by removing rule r3.

The consistency problem and the completeness problem cause firewall errors.
An error in a firewall means that the firewall either accepts some malicious
packets, which consequently creates security holes on the firewall, or discards
some legitimate packets, which consequently disrupts normal businesses. Given
the importance of firewalls, such errors are not acceptable. Unfortunately, it has
been observed that most firewalls on the Internet are poorly designed and have
many errors in their rules [27].

The compactness problem causes low firewall performance. In general, the
smaller the number of rules that a firewall has, the faster the firewall can map a
packet to the decision of the first rule the packet matches. Reducing the number
of rules is especially useful for the firewalls that use TCAM (Ternary Content
Addressable Memory). Such firewalls use O(n) space (where n is the number of
rules) and constant time in mapping a packet to a decision. Despite the high
performance of such TCAM-based firewalls, TCAM has very limited size and
consumes much more power as the number of rules increases. Size limitation
and power consumption are the two major issues for TCAM-based firewalls.

1.3 Structured Firewall Design

To achieve consistency, completeness, and compactness, we propose a new method
called Structured Firewall Design, which consists of two steps. First, one designs
a firewall using a Firewall Decision Diagram (FDD for short) instead of a se-
quence of often conflicting rules. Second, a program converts the FDD into a
compact, yet functionally equivalent, sequence of rules. This method addresses
the consistency problem because an FDD is conflict-free. It addresses the com-
pleteness problem because the syntactic requirements of an FDD force the de-
signer to consider all types of traffic. It also addresses the compactness problem
because in the second step we use two algorithms (namely FDD reduction and
FDD marking) to combine rules together, and one algorithm (namely Firewall
compaction) to remove redundant rules.

In some sense, our method of structured firewall design is like the method
of structured programming, and the method of designing a firewall directly as
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a sequence of conflicting rules is like the method of writing a program with
many goto statements. In late 1960s, Dijkstra pointed out that goto statements
are considered harmful [10] because a program with many goto statements is
very difficult to understand and therefore writing such a program is very error
prone. Similarly, a firewall of a sequence of conflicting rules is very difficult to
understand and writing a sequence of conflicting rules directly is extremely error
prone.

Using the method of structured firewall design, the firewall administrator
only deals with the FDD that uniquely represents the semantics of a firewall.
The FDD is essentially the formal specification of a firewall. Since an FDD can
be converted to an equivalent sequence of rules, our method does not require
any modification to any existing firewall, which takes a sequence of rules as its
configuration. Whenever the firewall administrator wants to change the function
of his firewall, he only needs to modify the FDD and then use programs to
automatically generate a new sequence of rules. This process is like a programmer
first modifies his source code and then compiles it again.

Note that this paper is primarily on how to design stateless firewalls. There
are two types of firewalls: stateless firewalls and stateful firewalls. If a firewall
decides the fate of every packet solely by examining the packet itself, then the
firewall is called a stateless firewall. If a firewall decides the fate of some packet
not only by examining the packet itself but also by examining the packets that
the firewall has accepted previously, then the firewall is called a stateful firewall.
Studying how to design stateless firewall is particularly important for two major
reasons. First, many stateless firewall products such as ipchains [2] have been
widely deployed. Second, most of the rules in a stateful firewall are stateless
rules [13]. Studying the design of stateless firewalls is the foundation for fur-
ther exploration of the design of stateful firewalls. Although this paper concerns
about firewall design, the techniques and algorithms presented in this paper are
extensible to other rule-based systems [23].

The rest of this paper proceeds as follows. In Section 2, we examine related
work. In Section 3, we introduce Firewall Decision Diagrams. In Section 4, we
present Algorithm 1 whose function is to reduce the size of a user specified FDD.
In Section 5, we present Algorithm 2 whose function is to do some marking on
the reduced FDD. In Section 6, we present Algorithm 3 whose function is to
generate firewall rules with the help of the marking information produced by
Algorithm 2. In Section 7, we present Algorithm 4 whose function is to remove
redundant rules from the firewall rules generated by Algorithm 3. In Section 8,
we present Algorithm 5 whose function is to simplify firewall rules. In Section
10, we give concluding remarks.

2 Related Work

It has been observed that most firewalls on the Internet are poorly designed and
have many configuration errors in their rules [9, 27]. There are two approaches
to reduce firewall design errors. The first approach is to prevent errors from
happening when designing firewalls. The second approach is to detect errors
after firewalls have been designed.

With the first approach, people have tried to invent high-level languages that
can be used to specify firewall rules. Examples of such languages are the simple
model definition language in [5, 6], the Lisp-like language in [15], the declara-
tive predicate language in [7], and the high level firewall language in [1]. These
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high-level firewall languages are helpful for designing firewalls because otherwise
people have to use vendor specific languages to describe firewall rules. However,
a firewall specified using these high-level firewall languages is still a sequence of
rules and the rules may still conflict. The three problems of consistency, com-
pleteness and compactness that are inherent in designing a firewall by a sequence
of rules still remain. Our firewall design method belongs to the first approach,
but we propose a new firewall design paradigm that addresses the three problems
of consistency, completeness and compactness. Our method is a complementary
and prior step to those high-level firewall languages.

With the second approach, two methods have been tried previously. The first
method is to analyze the function of a firewall by queries [17,18,20,21,26]. The
basic idea is to issue queries such as “Which computers in the private network
can receive packets from a known malicious host in the outside Internet?” This
method is definitely helpful in detecting some of the errors in a firewall; however,
this method is not guaranteed to detect all the errors in a firewall. The second
method is conflict detection [3, 4, 11, 16, 22]. The basic idea of this method is to
first detect all pairs of rules that conflict, and then the firewall designer manually
examines every pair of conflicting rules to see whether the two rules need to be
swapped or a new rule needs to be added. This manual checking is unreliable
because the two conflicting rules have to be understood in the context of all the
other rules in the firewall where the order of the other rules may be wrong. Since
the number of conflicts in a firewall can be huge, this manual checking for each
conflict could be tremendous work for the firewall designer.

Firewall vulnerabilities are discussed and classified in [12, 19]. However, the
focus of [12, 19] are the vulnerabilities of the packet filtering software and the
supporting hardware part of a firewall, not the configuration of a firewall.

3 Firewall Decision Diagrams

A field Fi is a variable whose domain, denoted D(Fi), is a finite interval of
nonnegative integers. For example, the domain of the source address in an IP
packet is [0, 232 − 1].

A packet over fields F1, · · · , Fd is a d-tuple (p1, · · · , pd) where each pi (1 ≤ i ≤
d) is an element of D(Fi). We use Σ to denote the set of all packets over fields
F1, · · · , Fd. It follows that Σ is a finite set and |Σ| = |D(F1)| × · · · × |D(Fd)|,
where |Σ| denotes the number of elements in set Σ and each |D(Fi)| (1 ≤ i ≤ d)
denotes the number of elements in set D(Fi).

A Firewall Decision Diagram (FDD) f over fields F1, · · · , Fd is an acyclic
and directed graph that has the following five properties:

1. There is exactly one node in f that has no incoming edges. This node is
called the root of f . The nodes in f that have no outgoing edges are called
terminal nodes of f .

2. Each node v in f is labeled with a field, denoted F (v), such that

F (v) ∈







{F1, · · · , Fd} if v is nonterminal

{accept , discard} if v is terminal.

3. Each edge e in f is labeled with a nonempty set of integers, denoted I(e),
such that if e is an outgoing edge of node v, then we have

I(e) ⊆ D(F (v)).
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4. A directed path in f from the root to a terminal node is called a decision

path. No two nodes on a decision path have the same label.
5. The set of all outgoing edges of a node v in f , denoted E(v), satisfies the

following two conditions:

(a) Consistency : I(e)∩ I(e′) = ∅ for any two distinct edges e and e′ in E(v).
(b) Completeness:

⋃

e∈E(v) I(e) = D(F (v)). 2

Figure 2 shows an example of an FDD over two fields F1 and F2. The domain
of each field is the interval [1, 10]. Note that in labelling the terminal nodes, we
use letter “a” as a shorthand for “accept” and letter “d” as a shorthand for
“discard”. These two notations are carried through the rest of this paper.

In this paper, the label of an edge in an FDD is always represented by the
minimum number of non-overlapping integer intervals whose union equals the
label of the edge. For example, one outgoing edge of the root is labeled with the
set {1, 2, 3, 4, 9, 10}, which is represented by the two intervals [1, 4] and [9, 10].

a

[7,8]

d

[3,4]

[1,4][5,6] [9,10]

[6,8]
[1,2]
[5,5]

[9,10]

da

[3,4] [1,2]
[5,5]

dd

[6,10]   [1,5][6,8]
[9,10]

PSfrag replacements

F1

F2F2 F2

Figure 2. An FDD example

For brevity, in the rest of this paper, we assume that all packets and all FDDs
are over the d fields F1, · · · , Fd unless otherwise specified.

A firewall decision diagram maps each packet to a decision by testing the
packet down the diagram from the root to a terminal node, which indicates
the decision of the firewall for the packet. Each nonterminal node in a firewall
decision diagram specifies a test of a packet field, and each edge descending
from that node corresponds to some possible values of that field. Each packet is
mapped to a decision by starting at the root, testing the field that labels this
node, then moving down the edge whose label contains the value of the packet
field; this process is then repeated for the sub-diagram rooted at the new node.

A decision path in an FDD is represented by 〈v1e1 · · · vkekvk+1〉 where v1 is
the root, vk+1 is a terminal node, and each ei (1 ≤ i ≤ k) is a directed edge from
node vi to node vi+1.

A decision path 〈v1e1 · · · vkekvk+1〉 in an FDD represents the following rule:

F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd → 〈decision〉

where

Si =







I(ej) if there is a node vj in the decision path that is labeled with field Fi

D(Fi) otherwise
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and 〈decision〉 is the label of the terminal node vk+1 in the path.
For an FDD f , we use f.rules to denote the set of all rules that are represented

by all the decision paths of f . For any packet p, there is one and only one rule in
f.rules that p matches because of the consistency and completeness properties
of an FDD. For example, the rules represented by all the decision paths of the
FDD in Figure 2 are listed in Figure 3. Taking the example of the packet (7, 9),
it matches only rule r4 in Figure 3.

r1: F1 ∈ [5, 6] ∧ F2 ∈ [3, 4] ∪ [6, 8] → a
r2: F1 ∈ [5, 6] ∧ F2 ∈ [1, 2] ∪ [5, 5] ∪ [9, 10] → d
r3: F1 ∈ [7, 8] ∧ F2 ∈ [3, 4] ∪ [6, 8] → a
r4: F1 ∈ [7, 8] ∧ F2 ∈ [1, 2] ∪ [5, 5] ∪ [9, 10] → d
r5: F1 ∈ [1, 4] ∪ [9, 10] ∧ F2 ∈ [1, 5] → d
r6: F1 ∈ [1, 4] ∪ [9, 10] ∧ F2 ∈ [6, 10] → d

Figure 3. All rules represented by FDD in Figure 2

The semantics of an FDD f is defined as follows: for any packet p, f maps p
to the decision of the rule (in fact the only rule) that p matches in f.rules. More
precisely, a packet (p1, · · · , pd) is accepted by an FDD f iff there is a rule of the
form

F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd → accept

in f.rules such that the condition p1 ∈ S1 ∧ · · · ∧ pd ∈ Sd holds. Similarly, a
packet (p1, · · · , pd) is discarded by an FDD f iff there is a rule of the form

F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd → discard

in f.rules such that the condition p1 ∈ S1 ∧ · · · ∧ pd ∈ Sd holds. For example,
the packet (6, 8) is discarded by the FDD in Figure 2 because the rule that this
packet matches is rule r4 in Figure 3 and the decision of this rule is “discard”.

Let f be an FDD. The accept set of f , denoted f.accept , is the set of all
packets that are accepted by f . Similarly, the discard set of f , denoted f.discard ,
is the set of all packets that are discarded by f . These two sets associated with
an FDD precisely define the semantics of the FDD.

Based on the definitions of accept set and discard set, we have the following
theorem. (Recall that Σ denotes the set of all packets over the fields F1, · · · , Fd.)

Theorem 1 (Theorem of FDDs) For any FDD f , the following two condi-
tions hold:

1. f.accept ∩ f.discard = ∅, and
2. f.accept ∪ f.discard = Σ 2

Two FDDs f and f ′ are equivalent iff they have identical accept sets and
identical discard sets, i.e., f.accept = f ′.accept and f.discard = f ′.discard .

There are some similarities between the structure of Firewall Decision Di-
agrams and that of Interval Decision Diagrams [25], which are mainly used in
formal verification. However, there are two major differences. First, in a firewall
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decision diagram, the label of a nonterminal node must have a finite domain;
while in an interval decision diagram, the label of a nonterminal node may have
an infinite domain. Second, in a firewall decision diagram, the label of an edge
is a set of integers which could be the union of several noncontinuous intervals;
while in an interval decision diagram, the label of an edge is limited to only
one interval. In broader sense, the structure of Firewall Decision Diagrams is
also similar to other types of decision diagrams such as the Binary Decision
Diagrams [8] and Decision Trees [24]. But note that the optimization goal of re-
ducing the total number of simple rules generated is unique to firewall decision
diagrams, which will be explored next.

4 FDD Reduction

In this section, we present an algorithm for reducing the number of decision
paths in an FDD. This reduction helps to reduce the number of rules generated
from an FDD. First, we introduce two concepts: isomorphic nodes in an FDD
and reduced FDDs.

Two nodes v and v′ in an FDD are isomorphic iff v and v′ satisfy one of the
following two conditions:

1. Both v and v′ are terminal nodes with identical labels.
2. Both v and v′ are nonterminal nodes and there is a one-to-one correspon-

dence between the outgoing edges of v and the outgoing edges of v′ such
that every pair of corresponding edges have identical labels and they both
point to the same node.

An FDD f is reduced iff it satisfies all of the following three conditions:

1. No node in f has only one outgoing edge.
2. No two nodes in f are isomorphic.
3. No two nodes have more than one edge between them.

Algorithm 1 (FDD reduction) in Figure 4 takes any FDD and outputs an
equivalent but reduced FDD. The correctness of this algorithm follows directly
from the semantics of FDDs. Note that this algorithm for reducing an FDD is
similar to the one described in [8] for reducing a BDD.

As an example, if we apply Algorithm 1 to the FDD in Figure 2, we get the
reduced FDD in Figure 5. Note that the FDD in Figure 2 consists of six decision
paths, whereas the FDD in Figure 5 consists of three decision paths.

5 FDD Marking

A firewall rule of the form F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd → 〈decision〉 is simple iff
every Si (1 ≤ i ≤ d) is a nonnegative integer interval. Because most firewalls
require simple rules, we want to minimize the number of simple rules generated
from an FDD. The number of simple rules generated from a “marked version”
of an FDD is less than or equal to the number of simple rules generated from
the original FDD. Next, we define a marked FDD.

A marked version f ′ of an FDD f is the same as f except that exactly one
outgoing edge of each nonterminal node in f ′ is marked “all”. Since the labels
of the edges that are marked “all” do not change, the two FDDs f and f ′ have
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Algorithm 1 (FDD Reduction)
Input : An FDD f

Output : A reduced FDD that is equivalent to f

Steps:

Repeatedly apply the following three reductions to f until none of them can be applied
any further.

1. If there is a node v that has only one outgoing edge e, assuming e point to node
v′, then remove both node v and edge e, and let all the edges that point to v point
to v′.

2. If there are two nodes v and v′ that are isomorphic, then remove v′ together with
all its outgoing edges, and let all the edges that point to v′ point to v.

3. If there are two edges e and e′ that both are between a pair of two nodes, then
remove e′ and change the label of e from I(e) to I(e) ∪ I(e′). (Recall that I(e)
denotes the label of edge e.)

Figure 4. Algorithm 1 (FDD Reduction)

a d

[3,4]

[1,4]
[9,10]

[5,5]

[5,8]

[6,8] [9,10]

[1,2]

PSfrag replacements

F1

F2

Figure 5. A reduced FDD

the same semantics, i.e., f and f ′ are equivalent. A marked version of an FDD
is also called a marked FDD.

Figure 6 shows two marked versions f ′ and f ′′ of the FDD in Figure 5. In f ′,
the edge labeled [5, 8] and the edge labeled [1, 2]∪ [5, 5]∪ [9, 10] are both marked
all . In f ′′, the edge labeled [1, 4]∪ [9, 10] and the edge labeled [1, 2]∪ [5, 5]∪ [9, 10]
are both marked all .

a d

[3,4]
[6,8]

[1,4][5,8]

[9,10][1,2]
[5,5]

[9,10]

a d

[3,4]
[6,8]

[1,4][5,8]

[9,10][1,2]
[5,5]

[9,10]

PSfrag replacements

(a) f ′ (b) f ′′

F1 F1

F2 F2 all

all

all all

Figure 6. Two marked FDDs
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The load of a nonempty set of integers S, denoted load(S), is the minimal
number of non-overlapping integer intervals that cover S. For example, the load
of the set {1, 2, 3, 5, 8, 9, 10} is 3 because this set is covered by the three inte-
ger intervals [1, 3], [5, 5] and [8, 10], and this set cannot be covered by any two
intervals.

The load of an edge e in a marked FDD, denoted load(e), is defined as follows:

load(e) =







1 if e is marked all

load(I(e)) otherwise

The load of a node v in a marked FDD, denoted load(v), is defined recursively
as follows:

load(v) =























1 if v is terminal

∑k

i=1(load(ei) × load(vi)) if v is nonterminal: suppose v has k
outgoing edges e1, · · · , ek, which point to
nodes v1, · · · , vk respectively

The load of a marked FDD f , denoted load(f), equals the load of the root
of f .

Different marked versions of the same FDD may have different loads. Figure
6 shows two marked versions f ′ and f ′′ of the same FDD in Figure 5. The load
of f ′ is 5, whereas the load of f ′′ is 4.

As we will see in Section 8, for any two marked versions of the same FDD,
the one with the smaller load will generate a smaller number of simple rules.
Therefore, we should use the marked version of FDD f that has the minimal
load to generate rules.

Algorithm 2 (FDD marking) in Figure 7 takes any FDD and outputs a marked
version that has the minimal load.

Algorithm 2 (FDD Marking)
Input : An FDD f

Output : A marked version f ′ of f such that for every marked version f ′′ of f ,
load(f ′) ≤ load(f ′′)

Steps:

1. Compute the load of each terminal node v in f as follows: load(v) := 1
2. while there is a node v whose load has not yet been computed, suppose v has k

outgoing edges e1, · · · , ek and these edges point to nodes v1, · · · , vk respectively,
and the loads of these k nodes have been computed
do
(a) Among the k edges e1, · · · , ek, choose an edge ej with the largest value of

(load(ej) − 1) × load(vj), and mark edge ej with “all”.

(b) Compute the load of v as follows: load(v) :=
∑k

i=1
(load(ei) × load(vi)).

end

Figure 7. Algorithm 2 (FDD Marking)
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As an example, if we apply Algorithm 2 to the reduced FDD in Figure 5, we
get the marked FDD in Figure 6(b).

The correctness of Algorithm 2 is stated in Theorem 2, whose proof is pre-
sented in the appendix.

Theorem 2 The load of an FDD marked by Algorithm 2 (FDD Marking) is
minimal. 2

6 Firewall Generation

In this section, we present an algorithm for generating a sequence of rules, which
form a firewall, from a marked FDD such that the firewall has the same semantics
as the marked FDD. First, we introduce the semantics of a firewall.

A packet (p1, · · · , pd) matches a rule F1 ∈ S1 ∧ · · · ∧Fd ∈ Sd → 〈decision〉 iff
the condition p1 ∈ S1 ∧ · · · ∧ pd ∈ Sd holds. A firewall consists of a sequence of
rules such that for any packet there is at least one rule that the packet matches.
A firewall maps every packet to the decision of the first rule that the packet
matches. Let f be a firewall of a sequence of rules. The set of all packets accepted
by f is denoted f.accept , and the set of all packets discarded by f is denoted
f.discard . The next theorem follows from these definitions. Recall that Σ denotes
the set of all packets over the fields F1, · · · , Fd.

Theorem 3 (Theorem of Firewalls) For a firewall f of a sequence of rules,

1. f.accept ∩ f.discard = ∅, and
2. f.accept ∪ f.discard = Σ 2

Based on Theorem 1 and 3, we now extend the equivalence relations on FDDs
to incorporate the firewalls. Given f and f ′, where each is an FDD or a firewall, f
and f ′ are equivalent iff they have identical accept sets and identical discard sets,
i.e., f.accept = f ′.accept and f.discard = f ′.discard . This equivalence relation
is symmetric, reflexive, and transitive. We use f ≡ f ′ to denote the equivalence
relation between f and f ′.

To generate an equivalent firewall from a marked FDD f , we basically make
a depth-first traversal of f such that for each nonterminal node v, the out-
going edge marked “all” of v is traversed after all the other outgoing edges
of v have been traversed. Whenever a terminal node is encountered, assuming
〈v1e1 · · · vkekvk+1〉 is the decision path where for every i (1 ≤ i ≤ k) ei is the
most recently traversed outgoing edge of node vi, output a rule r as follows:

F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd → F (vk+1)

where

Si =















I(ej) if the decision path has a node vj that is labeled with field Fi

and ej is not marked “all”

D(Fi) otherwise

Note that the i-th rule output is the i-th rule in the firewall generated.
For the above rule r, the predicate F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd is called the

matching predicate of r.
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The rule represented by the path 〈v1e1 · · · vkekvk+1〉 is F1 ∈ T1 ∧ · · · ∧ Fd ∈
Td → F (vk+1), where

Ti =







I(ej) if the decision path has a node vj that is labeled with field Fi

D(Fi) otherwise

We call the predicate F1 ∈ T1∧· · ·∧Fd ∈ Td the resolving predicate of the above
rule r. Note that if a packet satisfies the resolving predicate of r, r is the first
rule that the packet matches in the firewall generated. If a packet satisfies the
resolving predicate of rule r in firewall f , we say the packet is resolved by r in

f .
Algorithm 3 (firewall generation) in Figure 8 takes any marked FDD and

outputs an equivalent firewall. Recall that the i-th rule output by Algorithm 3 is
the i-th rule in the firewall generated. The correctness of this algorithm follows
directly from the semantics of FDDs and firewalls. In Algorithm 3, for every rule
generated, we also generate its matching predicate and its resolving predicate.
In the next section, we will see that these two predicates associated with each
rule play important roles in removing redundant rules.

Algorithm 3 (Firewall Generation)
Input : A marked FDD f

Output : A firewall that is equivalent to f . For each rule r, r.mp and r.rp is computed
Steps:

Depth-first traverse f such that for each nonterminal node v, the outgoing edge marked
“all” of v is traversed after all other outgoing edges of v have been traversed. Whenever
a terminal node is encountered, assuming 〈v1e1 · · · vkekvk+1〉 is the decision path where
each ei is the most recently traversed outgoing edge of node vi, output a rule r together
with its matching predicate r.mp and its resolving predicate r.rp as follows:

r is the rule F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd → F (vk+1), where

Si =











I(ej) if the decision path has a node vj that is labeled with field Fi

and ej is not marked “all”

D(Fi) otherwise
r.mp is the predicate of rule r.
r.rp is the predicate F1 ∈ T1 ∧ · · · ∧ Fd ∈ Td, where

Ti =

{

I(ej) if the decision path has a node vj that is labeled with field Fi

D(Fi) otherwise

Figure 8. Algorithm 3 (Firewall Generation)

As an example, if we apply Algorithm 3 to the marked FDD in Figure 6(b),
we get the firewall in Figure 9.

7 Firewall Compaction

Firewalls often have redundant rules. A rule in a firewall is redundant iff removing
the rule does not change the semantics of the firewall, i.e., does not change the



14

r1 = F1 ∈ [5, 8] ∧ F2 ∈ [3, 4] ∪ [6, 8] → a,
r1.mp = F1 ∈ [5, 8] ∧ F2 ∈ [3, 4] ∪ [6, 8]
r1.rp = F1 ∈ [5, 8] ∧ F2 ∈ [3, 4] ∪ [6, 8]

r2 = F1 ∈ [5, 8] ∧ F2 ∈ [1, 10] → d,
r2.mp = F1 ∈ [5, 8] ∧ F2 ∈ [1, 10]
r2.rp = (F1 ∈ [5, 8] ∧ F2 ∈ [1, 2] ∪ [5, 5] ∪ [9, 10])

r3 = F1 ∈ [1, 10] ∧ F2 ∈ [1, 10] → d,
r3.mp = F1 ∈ [1, 10] ∧ F2 ∈ [1, 10]
r3.rp = F1 ∈ [1, 4] ∪ [9, 10] ∧ F2 ∈ [1, 10]

Figure 9. A generated firewall

accept set and the discard set of the firewall. Removing redundant rules from a
firewall produces an equivalent firewall but with fewer rules. For example, the
rule r2 in Figure 9 is redundant. Removing this rule yields an equivalent firewall
with two rules, which are shown in Figure 10.

1. F1 ∈ [5, 8] ∧ F2 ∈ [3, 4] ∪ [6, 8] → a,
2. F1 ∈ [1, 10] ∧ F2 ∈ [1, 10] → d

Figure 10. A firewall with no redundant rules

In this section, we present an efficient algorithm for discovering redundant
rules. Algorithm 4 (firewall compaction) in Figure 11 takes any firewall and
outputs an equivalent but more compact firewall.

In Algorithm 4, “ri.rp implies rk.mp” means that for any packet p, if p
satisfies ri.rp, then p satisfies rk.mp. Checking whether ri.rp implies rk.mp is
simple. Let ri.rp be F1 ∈ T1 ∧ F2 ∈ T2 ∧ · · · ∧ Fd ∈ Td and let rk.mp be
F1 ∈ S1 ∧ F2 ∈ S2 ∧ · · · ∧ Fd ∈ Sd. Then, ri.rp implies rk.mp iff for every j,
where 1 ≤ j ≤ d, the condition Tj ⊆ Sj holds.

Checking whether no packet satisfies both ri.rp and rj .mp is simple. Let ri.rp
be F1 ∈ T1∧F2 ∈ T2∧· · ·∧Fd ∈ Td and let rj .mp be F1 ∈ S1∧F2 ∈ S2∧· · ·∧Fd ∈
Sd. We have ri.rp∧rj .mp = F1 ∈ (T1∩S1)∧F2 ∈ (T2∩S2)∧· · ·∧Fd ∈ (Td∩Sd).
Therefore, no packet satisfies both ri.rp and rj .mp iff there exists j, where
1 ≤ j ≤ d, such that Tj ∩ Sj = ∅.

The correctness of Algorithm 4 is stated in Theorem 4, whose proof is pre-
sented in the appendix.

Theorem 4 If we apply Algorithm 4 to a firewall f and get the resulting firewall
f ′, then f and f ′ are equivalent. 2

As an example, if we apply Algorithm 4 to the firewall in Figure 9, we get
the compact firewall in Figure 10.

Let n be the number of rules in a firewall and d be the number of packet fields
that a rule checks, the computational complexity of Algorithm 4 is O(n2∗d). Note
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Algorithm 4 (Firewall Compaction)
Input : A firewall 〈r1, · · · , rn〉
Output : An equivalent but more compact firewall
Steps:
1. for i = n to 1 do

redundant [i] := false.
2. for i = n to 1 do

if there exist a rule rk in the firewall, where i < k ≤ n, such that the following
four conditions hold
(1) redundant [k] = false.
(2) ri and rk have the same decision.
(3) ri.rp implies rk.mp.
(4) for every rule rj , where i < j < k, at least one of the following three

conditions holds:
(a) redundant [j] = true.
(b) ri and rj have the same decision.
(c) no packet satisfies both ri.rp and rj .mp.

then redundant [i] := true.
else redundant [i] := false.

3. for i = n to 1 do
if redundant [i] = true then remove ri from the firewall.

Figure 11. Algorithm 4 (Firewall Compaction)

that d can be regarded as a constant because d is usually small. Most firewalls
checks five packet fields: source IP address, destination IP address, source port
number, destination port number, and protocol type.

8 Firewall Simplification

Most firewall software, such as Linux’s ipchains [2], requires each firewall rule to
be simple. A firewall rule of the form F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd → 〈decision〉 is
simple iff every Si (1 ≤ i ≤ d) is an interval of consecutive nonnegative integers.
A firewall is simple iff all its rules are simple.

Algorithm 5 (firewall simplification) in Figure 12 takes any firewall and out-
puts an equivalent firewall in which each rule is simple. The correctness of this
algorithm follows directly from the semantics of firewalls.

As an example, if we apply Algorithm 5 to the firewall in Figure 10, we get
the firewall in Figure 13.

What we get from Algorithm 5 is a simple firewall. For each rule F1 ∈ S1 ∧
· · · ∧ Fi ∈ Si ∧ · · · ∧ Fd ∈ Sd → 〈decision〉, Si is an interval of nonnegative
integers. Some existing firewall products, such as Linux’s ipchains [2], require
that Si be represented in a prefix format such as 192.168.0.0/16, where 16 means
that the prefix is the first 16 bits of 192.168.0.0 in a binary format. In this paper
we stop the level of discussion at simple rules because an integer interval can be
converted to multiple prefixes algorithmically. For example, integer interval [2, 8]
can be converted to 3 prefixes: 001∗, 01∗, 1000. A w−bit integer interval can be
converted to at most 2w − 2 prefixes [14].
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Algorithm 5 (Firewall Simplification)
Input : A firewall f

Output : A simple firewall f ′ where f ′ is equivalent to f

Steps:

while f has a rule of the form F1 ∈ S1 ∧ · · · ∧ Fi ∈ Si ∧ · · · ∧ Fd ∈ Sd → 〈decision〉
where some Si is represented by [a1, b1] ∪ · · · ∪ [ak, bk] where k ≥ 2.

do
replace this rule by the following k non-overlapping rules:
F1 ∈ S1 ∧ · · · ∧ Fi ∈ [a1, b1] ∧ · · · ∧ Fd ∈ Sd → 〈decision〉,
F1 ∈ S1 ∧ · · · ∧ Fi ∈ [a2, b2] ∧ · · · ∧ Fd ∈ Sd → 〈decision〉,

...
F1 ∈ S1 ∧ · · · ∧ Fi ∈ [ak, bk] ∧ · · · ∧ Fd ∈ Sd → 〈decision〉

end

Figure 12. Algorithm 5 (Firewall Simplification)

1. F1 ∈ [5, 8] ∧ F2 ∈ [3, 4] → a,
2. F1 ∈ [5, 8] ∧ F2 ∈ [6, 8] → a,
3. F1 ∈ [1, 10] ∧ F2 ∈ [1, 10] → d,

Figure 13. A simple firewall

9 Summary of Structured Firewall Design

In this section, we summarize our firewall design method. Figure 14 shows the
five steps of this method.

Our firewall design method starts by a user specifying an FDD f . The con-
sistency and completeness properties of f can be verified automatically based
on the syntactic requirements of an FDD. After an FDD is specified, it goes
through the following five steps, and we get a simple firewall that is equivalent
to the FDD. The first step is to apply Algorithm 1 (FDD Reduction) to the
user specified FDD. We then get an equivalent but reduced FDD, which has
a smaller number of decision paths. The second step is to apply Algorithm 2
(FDD Marking) to the reduced FDD. We then get an equivalent FDD where
each nonterminal node has exactly one outgoing edge that is marked all . The
third step is to apply Algorithm 3 (FDD Generation) to the marked FDD. We
then get an equivalent firewall. The fourth step is to apply Algorithm 4 (Firewall
Compaction) to the generated firewall. We then get an equivalent firewall with
a smaller number of rules. The fifth step is to apply Algorithm 5 (Firewall Sim-
plification) to this firewall. We then get the final result: a simple firewall that is
equivalent to the user specified FDD.

Three of the above five algorithms, namely Algorithm 1 (FDD Reduction),
Algorithm 2 (FDD Marking) and Algorithm 4 (Firewall Compaction), are for the
purpose of reducing the number of rules in the final simple firewall. Algorithm 1
(FDD Reduction) does so by reducing the number of decision paths in the user
specified FDD. Algorithm 2 (FDD Marking) does so by reducing the load of
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PSfrag replacements

A user specified FDD f

Algorithm 1 (FDD Reduction)

A reduced FDD f1

Algorithm 2 (FDD Marking)

A marked FDD f2

Algorithm 3 (Firewall Generation)

A generated firewall f3

Algorithm 4 (Firewall Compaction)

A compact firewall f4

Algorithm 5 (Firewall Simplification)

A simple firewall f5

Figure 14. Five steps of our firewall design method (f ≡ f1 ≡ f2 ≡ f3 ≡
f4 ≡ f5)

some edges in the FDD. Algorithm 4 (Firewall Compaction) does so by removing
some redundant rules from the generated firewall. These three algorithms could
reduce the number of simple rules dramatically. Consider the running example
illustrated in Figures 2 through 13. If we directly generate and simplify our
firewall from the FDD in Figure 2, ignoring Algorithm 1, 2, and 4, we would
have ended up with a simple firewall that has 14 rules. However, with the help
of these three algorithms, we end up with a simple firewall that has only 3 rules.

10 Conclusions

Our contribution in this paper is two-fold. First, we propose the structured fire-
wall design method that addresses the consistency problem, the completeness
problem, and the compactness problem. These three problems are inherent in
the current practice of designing a firewall directly as a sequence of (possibly
conflicting) rules. Our method starts with a decision diagram that ensures the
consistency and completeness properties, and ends up with a sequence of rules
that ensures the compactness property. In this process, the user only deals with a
firewall decision diagram, which is the formal specification of a firewall. Convert-
ing a decision diagram to a compact sequence of rules is automatically carried
by a series of five algorithms presented in this paper. Second, we present three
optimization techniques, namely FDD reduction, FDD marking, and firewall
compaction, for reducing the total number of rules generated from a firewall
decision diagram.

In this paper, for ease of presentation, we assume that a firewall maps every
packet to one of two decisions: accept or discard. Most firewall software supports
more than two decisions such as accept, accept-and-log, discard, and discard-and-
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log. Our firewall design method can be straightforwardly extended to support
more than two decisions.

The design method discussed in this paper is not limited to just firewalls.
Rather, the techniques and algorithms presented in this paper are extensible to
other rule-based systems such as general packet classifiers and IPsec rules.
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Appendix

A Proof of Algorithm 2

Consider an FDD f . Let f ′ be the version marked by algorithm 2, and let f ′′ be
an arbitrary marked version. Next we prove that load(f ′) ≤ load(f ′′).

Consider a node v, which has k outgoing edges e1, e2, · · · , ek and these edges
point to v1, v2, · · · , vk respectively, such that the loads of v1, v2, · · · , vk in f ′ is
the same as those in f ′′. Clearly such node v exists because the load of any
terminal node is constant 1.

Let ei be the edge marked ALL in f ′ and ej be the edge marked ALL in f ′′.
Suppose i 6= j. We use load ′(v) to denote the load of node v in f ′ and load ′′(v)
to denote the load of node v in f ′′. We then have

load ′(v) =
∑i−1

t=1(load(et) × load(vt)) + load(vi) +
∑k

t=i+1(load(et) × load(vt))

load ′′(v) =
∑j−1

t=1 (load(et) × load(vt)) + load(vj) +
∑k

t=j+1(load(et) × load(vt))

load ′(v) − load ′′(v) = (load(ej) − 1) × load(vj) − (load(ei) − 1) × load(vi)

According to Algorithm 2, (load(ej)−1)×load(vj) ≤ (load(ei)−1)×load(vi).
So, load ′(v) ≤ load ′′(v).

Apply the above argument to any node v in f , we have load ′(v) ≤ load ′′(v).
So, the load of an FDD marked by Algorithm 2 is minimal.

B Proof of Theorem 4

Suppose for the rule ri in firewall 〈r1, · · · , rn〉, there exist a rule rk in this firewall,
where i < k ≤ n, such that the following four conditions hold:

1. redundant [k] = false.
2. ri and rk have the same decision.
3. ri.rp implies rk.mp.
4. for every rule rj , where i < j < k, at least one of the following three

conditions holds:
(a) redundant [j] = true.
(b) ri and rj have the same decision.
(c) no packet satisfies both ri.rp and rj .mp.
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If we remove rule ri from firewall 〈r1, · · · , rn〉, the packets whose decision may
be affected are the packets that are resolved by ri in 〈r1, · · · , rn〉, i.e., the packets
that satisfy ri.rp. Let S be the set of all the packets that satisfy ri.rp. Because
ri.rp implies rk.mp and redundant [k] = false, if we remove rule ri, the packets
in S will be resolved by the rules from ri+1 to rk in 〈r1, · · · , ri−1, ri+1, · · · , rn〉.
Consider a rule rj where i < j < k. If redundant [j] = true, we assume rj has
been removed; therefore, rule rj does not affect the decision of any packet in S.
If the two rules ri and rj have the same decision, then rule rj does not affect the
decision of any packet in S. If no packet satisfies both ri.rp and rj .mp, then any
packet in S does not match rule rj ; therefore, rule rj does not affect the decision
of any packet in S. Note that ri and rk have the same decision. Therefore, for
any packet p in S, the decision that the firewall 〈r1, · · · , ri−1, ri+1, · · · , rn〉 makes
for p is the same as the decision that the firewall 〈r1, · · · , ri−1, ri, ri+1, · · · , rn〉
makes for p. So rule ri is redundant.

Suppose we apply Algorithm 4 to a firewall f . Since any rule removed by
Algorithm 4 is redundant, the resulting firewall f ′ is equivalent to the original
firewall f .


