
Verification of Distributed Firewalls

Mohamed G. Gouda

Department of Computer Sciences

The University of Texas at Austin

Austin, Texas 78712-0233, U.S.A.

gouda@cs.utexas.edu

Alex X. Liu

Department of Computer Science and Engineering

Michigan State University

East Lansing, MI 48824-1266, U.S.A.

alexliu@cse.msu.edu

Mansoor Jafry

Department of Computer Sciences

The University of Texas at Austin

Austin, Texas 78712-0233, U.S.A.

mansoor.jafry@gmail.com

Abstract—The private computer network of any large enter-
prise has tens, or even hundreds, of firewalls. These firewalls are
placed at the entry points of the network (where the network is
connected with the rest of the Internet), and at many chosen
points within the network. The result is a complex firewall
network that seems hard to understand or analyze. In this paper,
we propose a method for verifying the correctness of firewall
networks with tree topologies. Our method is based on identifying
two types of properties of firewall trees: accept and discard
properties. An accept (or discard) property of a firewall tree
specifies a class of packets that should be accepted (or discarded,
respectively) by the firewall tree. We present two algorithms that
can be used to decide whether a given firewall tree satisfies a
given, accept or discard, property of that tree.

I. INTRODUCTION

A firewall is placed at an entry point where a private

computer network is connected to the outside Internet. It

intercepts all the packets that are exchanged between the

private computer network and the rest of the Internet, and

examines the IP, TCP and UDP headers of each intercepted

packet, and decides whether to accept the packet (and allow

it to proceed to its destination) or to discard the packet.

Because the private computer network of a large enterprise

consists of many inter-connected constituent networks, the

private network of a large enterprise has tens or even hundreds

of firewalls. These firewalls are placed at the entry points of

the private network and at the entry point of each constituent

network within the private network. As an example, consider

the private computer network of some university. Such a

network would consist of many inter-connected constituent

networks for various academic, administrative and service

departments within the university. A firewall is often placed

at the entry point of each of these constituent networks.

One can view the private computer network of an enterprise

as a network of tens or even hundreds of firewalls, which

is hard to understand or verify its correctness. In this paper

we address this problem by presenting a method for deciding

whether a given firewall network accepts or discards a given

class of packets. Note that the focus of this paper is on stateless

firewalls. Our contributions in this paper are as follows: (1) We

present a formal model of firewall networks with tree topolo-

gies. (2) We identify two classes of properties of firewall trees;

we call these properties accept and discard properties. An

accept (or discard) property of a firewall tree specifies a class

of packets that should be accepted (or discarded, respectively)

by the firewall tree. (3) We develop two algorithms that can be

used to decide whether a given firewall tree satisfies a given,

accept or discard, property. The time and space complexity of

each of these algorithms is practically polynomial.

II. RELATED WORK

Prior papers in the area have focused on the analysis of a

single firewall. This paper is the first one that addresses the

correctness verification of distributed firewalls. The difference

between analysis and correctness verification of firewall net-

works is two-fold. First, the function of analysis is to identify

redundant rules, conflicts, and anomalies in the firewalls. The

identified conflicts and anomalies are not necessarily design

errors in the firewalls. Rather they can be intended to reduce

the total number of rules in each firewall. Second, the function

of correctness verification is to check whether the firewall

network satisfies its intended specification which is given as a

set of accept or discard properties. Note that if the analysis of

a firewall network shows that the network has no redundant

rules and no conflicts or anomalies, then this does not imply

the firewall network operates in accordance with its intended

specification. Even in this case, verification of the firewall

network is necessary to show that the network operates in

accordance with its intended specification.

In [1], the authors presented a systematic method for ana-

lyzing single firewalls. In [2] and [3], the authors discussed the

concept of conflicts between different rules in a single firewall,

and presented algorithms for detecting firewall conflicts. In [4]

and [5], the authors introduced a classification of firewall

conflicts into different anomaly classes, and they presented

several algorithms for detecting these anomalies in a single

firewall. This analysis can also be used in verifying the security

policies in IPsec and VPN, as demonstrated in [6].

A framework for understanding the vulnerabilities in a

single firewall was outlined in [7], and an analysis of these

vulnerabilities was presented in [8]. A quantitative study of the

configuration of errors of a single firewall was reported in [9].

Methods for issuing queries and getting answers concerning

the function of a single firewall were discussed in [1] and [10].

Also, methods for designing a single firewall from its given

specification were presented in [11] and [13]. Methods for

analyzing firewall networks were presented in [17] and [18].



III. FIREWALL DECISION DIAGRAMS

We now formally define the concepts of fields, packets, fire-

walls, and firewall decision diagrams. A field Fi is a variable

of finite length (i.e., of a finite number of bits). The domain

of field Fi of w bits, denoted D(Fi), is [0, 2w − 1]. A packet

over the d fields F1, · · · , Fd is a d-tuple (p1, · · · , pd) where

each pi (1 ≤ i ≤ d) is an element of D(Fi). Firewalls usually

check the following five fields: source IP address, destination

IP address, source port number, destination port number, and

protocol type. The lengths of these packet fields are 32, 32, 16,

16, and 8, respectively. Without loss of generality, we assume

that d is at least 3. We also assume that the first three fields

F1, F2, and F3 of a received packet are as follows: (1)F1 is the

incoming interface via which the firewall receives the packet,

(2) F2 is the IP address of the original source of the received

packet, and (3) F3 is the IP address of the ultimate destination

of the received packet. Note that F1 is not really a field in any

header of the received packet. Nevertheless, we will refer to

it as a field throughout this paper.

A rule has the form 〈predicate〉 → 〈decision〉. A

〈predicate〉 defines a set of packets over the fields F1 through

Fd, and is specified as F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd where each

Si is a subset of D(Fi) and is specified as either a prefix or

a nonnegative integer interval. A packet matches a rule if and

only if the packet matches the predicate of the rule. A packet

(p1, · · · , pd) matches a predicate F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd

if and only if the condition p1 ∈ S1 ∧ · · · ∧ pd ∈ Sd holds.

Typically, the value for 〈decision〉 is either accept or discard.

A sequence of rules 〈r1, · · · , rn〉 is complete if and only if

for any packet p, there is at least one rule in the sequence that

p matches. To ensure that a sequence of rules is complete and

thus a firewall, the predicate of the last rule is usually specified

as F1 ∈ D(F1)∧· · ·Fd ∈ ∧D(Fd). A firewall C is a sequence

of rules that is complete. Two rules in a firewall may overlap;

that is, a single packet may match both rules. Furthermore, two

rules in a firewall may conflict; that is, the two rules not only

overlap but also have different decisions. Firewalls typically

resolve such conflicts by employing a first-match resolution

strategy where the decision for a packet p is the decision of

the first (i.e., highest priority) rule that p matches in f . The

decision that firewall f makes for packet p is denoted f(p).

The crucial tool used in our firewall network analysis

framework is the Firewall Decision Diagram (FDD) [11], [12].

A Firewall Decision Diagram (FDD) over fields F1, · · · , Fd

is an acyclic and directed graph that has the following five

properties: (1) There is exactly one node that has no incoming

edges. This node is called the root. The nodes that have no

outgoing edges are called terminal nodes. (2) Each node v

has a label, denoted F (v), such that F (v) ∈ {F1, · · · , Fd}
if v is a nonterminal node and F (v) ∈ accept , discard if v

is a terminal node. (3) Each edge e:u → v is labeled with

a nonempty set of integers, denoted I(e), where I(e) is a

subset of the domain of u’s label (i.e., I(e) ⊆ D(F (u))). (4)

A directed path from the root to a terminal node is called a

decision path. No two nodes on a decision path have the same

label. (5) The set of all outgoing edges of a node v, denoted

E(v), satisfies the following two conditions: (i) Consistency:

I(e) ∩ I(e′) = ∅ for any two distinct edges e and e′ in E(v).
(ii) Completeness:

⋃
e∈E(v) I(e) = D(F (v)).

We define a full-length ordered FDD as an FDD where in

each decision path, all fields appear exactly once and in the

same order. An FDD construction algorithm, which converts

a firewall to an equivalent full-length ordered FDD, is in [13].

For ease of presentation, in the rest of this proposal, we use

the term “FDD” to mean “full-length ordered FDD” if not

otherwise specified.

IV. FIREWALL NETWORKS

A firewall network is an undirected graph with two types

of nodes: firewall nodes and domain nodes. In a firewall

network each (undirected) edge, called interface, connects a

firewall node with a domain node. Each interface in a firewall

network has an integer identifier such that the identifiers of

all interfaces that are incident on the same firewall node are

distinct. Each leaf node in a firewall network is a domain node.

Fig. 1 shows a firewall network example with two firewall

nodes, a and b, and five domain nodes, u through y. This

network has six interfaces with identifiers in the range 0..2.

All four leaf nodes in this network, namely u, v, x and y, are

domain nodes.

Fig. 1. A firewall network example

Associated with each firewall node u in a firewall network

is a firewall, as defined in section III, denoted FW.u. The first

conjunct, namely F1 ∈ S1, in the predicate of each rule in

FW.u is such that S1 is a subset of the set of identifiers of all

interfaces that are incident on node u in the firewall network.

As an example, consider firewall node b in the firewall network

in Fig. 1. Associated with node b is a firewall FW.b. The first

conjunct, F1 ∈ S1 in the predicate of each rule in FW.b is

such that S1 is a subset of {0,1,2}.

Associated with each domain node u in a firewall network is

a set of IP addresses (from the Internet) denoted DM.u. The

sets of IP addresses associated with the domain nodes of a

firewall network are required to satisfy the following condition.

For each IP address (from the Internet), there is exactly one

domain node u in the firewall network such that the IP address

is in DM.u. It follows that each firewall network has a domain

node u, that can be regarded as “the rest of the internet”,

where DM.u contains all the IP addresses (from the Internet)



that are not associated with any of the other domain nodes

in the firewall network A firewall network that has no cycles

is referred to as a firewall tree. For example, the firewall

network in Fig. 1 is a firewall tree.

V. ACCEPT PROPERTIES OF FIREWALL TREES

Let N be a firewall tree, and let u and v be two distinct

domain nodes in N. An accept property from u to v in N

is of the form: F2 ∈ T2 ∧ F3 ∈ T3 ∧ . . . ∧ Fd ∈ Td → accept

such that (1) T2 is a subset of DM.u, and (2) T3 is a subset of

DM.v. Recall that DM.x is the set of IP addresses associated

with domain node x in the firewall tree N. Let N be a firewall

tree, and u and v be two distinct domain nodes in N. Also, let

F2 ∈ T2 ∧ F3 ∈ T3 ∧ . . . ∧ Fd ∈ Td → accept be an accept

property from u to v in N. Tree N is said to satisfy the

accept property if and only if the following condition holds:

if any packet, that satisfies the predicate F2 ∈ T2 ∧ F3 ∈
T3 ∧ . . . ∧ Fd ∈ Td of the accept property is generated in

domain u, and if this packet is routed in N towards its ultimate

destination in domain v. then this packet is accepted by every

firewall from u to v.

Next, we describe an algorithm for deciding whether a

firewall tree N satisfies a given accept property of N.

Fig. 2. Path from domain u to domain v in firewall tree N.

Step (a) in this algorithm can be regarded as projecting

firewall FW.x on its incoming interface ix. The function of

this step is to remove from firewall FW.x any rule that has

nothing to do with packets that FW.x receives through the

incoming interface ix.

Step (c) in Algorithm 2 can be regarded as projecting the

firewall decision diagram FD.x on the predicate F2 ∈ T2 ∧
F3 ∈ T3 ∧ . . . ∧ Fd ∈ Td of the accept property. The function

of this step is to remove from the firewall decision diagram

FD.x all the edges that cannot be traversed when trying to use

FD.x to decide whether to accept or discard any packet that

satisfies the predicate F2 ∈ T2 ∧ F3 ∈ T3 ∧ . . . ∧ Fd ∈ Td.

VI. DISCARD PROPERTIES OF FIREWALL TREES

Let N be a firewall tree, and let u and v be two distinct

domain nodes in N. A discard property from u to v in N is

of the form: F2 ∈ T2 ∧ F3 ∈ T3 ∧ . . . ∧ Fd ∈ Td → discard

such that (1) each of u and v is connected by an interface

with the same firewall node in N, and (2) T3 is a subset of

DM.v. Recall that DM.v is the set of IP addresses associated

with domain node v. Let N be a firewall tree, and u and v

be two distinct domain nodes in N. Also let F2 ∈ T2 ∧ F3 ∈
T3 ∧ . . . ∧ Fd ∈ Td → discard be a discard property form u

to v in N. Tree N is said to satisfy the discard property if

Algorithm 1 Verifying Accept Property

Input: A firewall tree N with two distinct domain nodes u

and v, and an accept property from u to v in N: F2 ∈
T2 ∧ F3 ∈ T3 ∧ . . . ∧ Fd ∈ Td → accept.

Output: A decision whether or not N satisfies the given

accept property.

1) Since the firewall tree N has no cycles, N has exactly

one directed path from u to v. Without loss of gener-

ality, let this path be as shown in Fig. 2.

2) Check whether each packet, that satisfies the predicate

F2 ∈ T2 ∧ F3 ∈ T3 ∧ . . . ∧ Fd ∈ Td of the accept

property, is accepted by every firewall in the directed

path from u to v in Fig. 2. If each such packet is

indeed accepted by every firewall in the directed path,

then the firewall tree N satisfies the accept property.

Otherwise N does not satisfy the accept property.

3) To check whether each packet that satisfies F2 ∈ T2 ∧
F3 ∈ T3∧. . .∧Fd ∈ Td is accepted by a firewall FW.x

in the directed path in Fig. 2, do the following steps:

a) Let ix be the identifier of the incoming interface

of FW.x in the directed path in Fig. 2. For each

rule in FW.x, if the first conjunct F1 ∈ S1 of this

rule is such that ix is not an element of S1, then

remove the rule from FW.x. Otherwise, remove the

first conjunct from the rule.

b) Construct a decision diagram FD.x for the firewall

FW.x using Algorithm 1 above. The non-leaf nodes

in the constructed FD.x are labeled with the fields

Fj where j is in the range 2..d.

c) For each non-leaf node labeled Fj in FD.x, and for

each edge e outgoing from this node, if edge e is

labeled with a set whose intersection with Tj is

empty, then remove edge e along with each node

and each edge that follow e in FD.x.

d) If the remaining FD.x has only accept leaf nodes,

then each packet, that satisfies F2 ∈ T2 ∧ F3 ∈
T3∧. . .∧Fd ∈ Td, is accepted by FW.x. Otherwise,

some such packets are discarded by FW.x.

and only if the following condition holds. If any packet that

satisfies the predicate F2 ∈ T2 ∧ F3 ∈ T3 ∧ . . . ∧ Fd ∈ Td of

the discard property ever reaches domain u, and if this packet

is routed to the firewall that is adjacent to both u and v, then

the packet is discarded by this firewall.

There is a significant difference between an accept property

and a discard property of a firewall tree N. First, in order

that N satisfies an accept property, each packet that satisfies

the predicate of the property, needs to be accepted by every

firewall that the packet encounters as it travels from its original

source to its ultimate destination in N. Second, in order that

N satisfies a discard property, each packet that satisfies the

predicate of the property needs to be discarded by the last

firewall that the packet encounters before it reaches its ultimate

destination in N. This is because the last firewall that a packet



encounters before it reaches its ultimate destination is regarded

as the true protector of the domain that hosts the ultimate

destination.

Next, we describe an algorithm for deciding whether a

firewall tree N satisfies a given discard property of N.

Algorithm 2 Verifying Discard Property

Input: A firewall tree N with two distinct domain nodes u

and v, and a discard property from u to v in N: F2 ∈ T2 ∧
F3 ∈ T3 ∧ . . . ∧ Fd ∈ Td → discard.

Output: A decision whether or not N satisfies the given

discard property.

1) Since the firewall tree N has no cycles, N has exactly

one firewall nod ebetween the two domain nodes u

and v. Without loss of generality, let the directed path

from u to v be as shown in Fig. 3.

2) Check whether each packet, that satisfies the predicate

F2 ∈ T2 ∧ F3 ∈ T3 ∧ . . . ∧ Fd ∈ Td of the discard

property, is discarded by the firewall FW.y in the

firewall node y located in the path from u to v in

Fig. 3. If each such packet is indeed discarded by

FW.y, then the firewall tree N satisfies the discard

property. Otherwise, N does not satisfy the discard

property.

3) To check whether each packet that satisfies F2 ∈ T2∧
F3 ∈ T3 ∧ . . .∧Fd ∈ Td is discarded by FW.y, do the

following steps:

a) Let iy be the identifier of the incoming interface of

FW.y in the directed path in Fig. 3. For each rule

in Fw.y, if the first F1 ∈ S1 of this rule is such that

iy is not an element of S1, then remove the rule

from FW.y. Otherwise, remove the first conjunct

from the rule.

b) Construct a decision diagram FD.y for the firewall

FW.y using Algorithm 1. The non-leaf nodes in

the constructed Fd.y are labeled with the fields Fj

where j is in the range 2..d.

c) For each non-leaf node labeled Fj in FD.y, and

for each edge e outgoing from this node, if edge e

is labeled with a set whose intersection with Tj is

empty, then remove edge e along with each node

and each edge that follows e in FD.y.

d) If the remaining FD.y has only discard leaf nodes,

then each packet that satisfies F2 ∈ T2 ∧ F3 ∈
T3∧. . .∧Fd ∈ Td is discarded by FW.y. Otherwise,

some such packets are accepted by FW.y.

Step (a) in this algorithm can be regarded as projecting

firewall FW.y on its incoming interface y. Also, Step (c) in this

algorithm can be regarded as projecting the firewall decision

diagram FD.y on the predicate F2 ∈ T2∧F3 ∈ T3∧ . . .∧Fd ∈
Td of the discard property.

VII. SIMULATION RESULTS

In this section, we discuss several simulation experiments

that we conducted to measure the performance of our algo-

Fig. 3. The only path from domain u to domain v in tree N.

rithms as they are applied to synthetic firewalls and properties,

generated at random. (The reason for conducting our experi-

ments on synthetic firewalls and properties is that we were

unsuccessful in convincing some administrators of firewall

networks to allow us to study the firewalls and properties of

their networks.)

In our first set of experiments, we generated firewalls at

random and computed an equivalent FDD for each generated

firewall. Each rule in each generated firewall examines five

fields, F1 through F5, where

• F1 stands for the incoming interface

• F2 stands for the IP address of the original source

• F3 stands for the IP address of the ultimate destination

• F4 stands for the destination port number

• F5 stands for the transport protocol

For simplicity, we assumed that the value domain Di for

each field Fi is as follows: D1 = {0..10}, D2 = {0..1000},

D3 = {0..1000}, D4 = {0..1000}, D5 = {0..1}.

For each value of n, n=30, 50, 80, and 100, we performed

the following four steps: (1) We generated 10 random firewalls

of n rules each. (2) For each generated firewall in Step (1), we

computed an equivalent FDD. (3) We computed the average

number of nodes in each FDD computed in Step (2). (4) We

also computed the average execution time of computing each

FDD.

The results of these experiments are shown in Figures 4(a)

and 4(b). The results in Fig. 4(a) are particularly interesting.

According to the worst case complexity analysis of Algo-

rithm 1, the number of nodes in an FDD, which is equivalent

to a firewall, is O(nd) where n is the number of rules in the

firewall, and d is the number of fields that are examined by

each rule in the firewall. Thus, for a firewall where n=100

and d=5, one expects that an equivalent FDD has millions

or even billions of nodes. But this turned out not to be the

case. According to Fig. 4(a), an FDD, which is equivalent

to a firewall where n=100 and d=5, has on average 1200 to

1400 nodes. This suggests that the practical complexity of

Algorithm 1 is O(n.d), which is much smaller than its worst-

case complexity of O(nd).
In our second set of experiments, we generated 5 random

accept or discard properties that are satisfied, for each of the

firewalls generated earlier and computed the average execution

time (of Algorithm 1 and Algorithm 2, respectively) that

is needed to establish that each generated property satisfies

its firewall. The results of these experiments are plotted in



(a) Average number of nodes in FDDs gener-
ated from firewalls of various sizes

(b) Time for generating FDD (c) Execution time for checking accept and dis-
card properties

Fig. 4. Simulation Results

Fig. 4(c).

Comparing Fig. 4(b) and 4(c), we conclude that the exe-

cution time needed to check whether a given FDD satisfies

a given (accept or discard) property is dominated by the

execution time needed to generate the FDD from a given

firewall.

The experiments described in this section were carried out

using a C++ program that has 1130 lines of code. The host

machine, son which the experiments were carried out, has the

following specifications: (1) processor: Intel Core Duo 1.73

Ghz, (2) memory: 1 GB.

VIII. CONCLUDING REMARKS

The technical contributions of this paper are three-fold.

First, we formally specify what we mean by a firewall tree.

Second, we identify two classes of properties, namely accept

and discard properties, of firewall trees. Third, we give two

algorithms that can be used to verify whether any given

firewall tree satisfies a given accept or discard property of

that tree.

ACKNOWLEDGMENT

We are thankful to Anand Iyer for providing programming

help in performing the simulations in Section VII. The work

of Mohamad G. Gouda is supported in part by grant 0520250

from the National Science Foundation. The work of Alex Liu

is supported by the National Science Foundation under Grant

No. CNS-0716407.

REFERENCES

[1] A. Mayer, A.Wool, and E. Ziskind. Fang: A firewall analysis engine.
In Proceedings of IEEE Symp. on Security and Privacy, pages 177-187,
2000.

[2] D. Eppstein and S. Muthukrishnan. Internet packet filter management and
rectangle geometry. In Symp. on Discrete Algorithms, pages 827-835,
2001.

[3] A. Hari, S. Suri, and G. M. Parulkar. Detecting and resolving packet filter
conflicts. In Proceedings of IEEE INFOCOM, pages 1203-1212, 2000.

[4] E. Al-Shaer and H. Hamed. Discovery of policy anomalies in distributed
firewalls. In IEEE INFOCOM’04, pages 2605-2616, March 2004.

[5] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan. Conflict classification
and analysis of distributed firewall policies. IEEE Journal on Selected

Areas in Communications (JSAC) , 23(10):2069-2084, 2005.
[6] H. Hamed, E. Al-Shaer, and W. Marrero. Modeling and Verification of

IPsec and VPN Security Policies. In Proceedings IEEE International
Conference on Network Protocols, Nov 2005.

[7] M. Frantzen, F. Kerschbaum, E. Schultz, and S. Fahmy. A framework
for understanding vulnerabilities in firewalls using a dataflow model of
firewall internals. Computers and Security, 20(3):263-270, 2001.

[8] S. Kamara, S. Fahmy, E. Schultz, F. Kerschbaum, and M. Frantzen.
Analysis of vulnerabilities in internet firewalls. Computers and Security,
22(3):214-232, 2003.

[9] A. Wool. A quantitative study of firewall configuration errors. IEEE

Computer , 37(6):62-67, 2004.
[10] A. X. Liu, M. G. Gouda, H. H. Ma, and A. H. Ngu. Firewall queries.

In Proceedings of the 8th International Conference on Principles of
Distributed Systems, LNCS 3544, T. Higashino Ed., Springer-Verlag,
pages 124-139, December 2004.

[11] M. G. Gouda and A. X. Liu. Structured firewall design. Computer

Networks Journal (Elsevier), 51(4):1106–1120, March 2007.
[12] M. G. Gouda and A. X. Liu. Firewall design: consistency, completeness

and compactness. In Proceedings of the 24th IEEE International Con-

ference on Distributed Computing Systems (ICDCS-04), pages 320–327,
March 2004.

[13] A. X. Liu and M. G. Gouda. Diverse Firewall Design, In Proceedings of
the IEEE International Conference on Dependable Systems and Networks
(DSN-04), Florence, Italy, June 2004.

[14] R. E. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Trans. on Computers, 35(8):677-691, 1986.

[15] K. Strehl and L. Thiele. Interval diagrams for efficient symbolic verifi-
cation of process networks. IEEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems, 19(8):939-956, 2000.
[16] M. G. Gouda and A. X. Liu. A model of stateful firewalls and its

properties. In Proceedings of the IEEE International Conference on
Dependable Systems and Networks (DSN-05), pages 320-327, June 2005.

[17] Lihua Yuan and Hao Chen and Jianning Mai and Chen-Nee Chuah and
Zhendong Su and Prasant Mohapatra FIREMAN: a toolkit for firewall
modeling and analysis. In Proceedings of the IEEE Symposium on
Security and Privacy, May 2006.

[18] J. Garcła-Alfaro and F. Cuppens and N. Cuppens Analysis of Policy
Anomalies on Distributed Network Security Setups In Proceedings of the
11th European Symposium On Research In Computer Security (Esorics),
Hamburg, Germany, September, 2006.


