
Diverse Firewall Design

Alex X. Liu Mohamed G. Gouda
Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188, U.S.A.
{alex, gouda}@cs.utexas.edu

Abstract

Firewalls are safety-critical systems that secure most pri-
vate networks. An error in a firewall either leaks secret in-
formation from its network or disrupts legitimate communi-
cation between its network and the rest of the Internet. How
to design a correct firewall is therefore an important issue.
In this paper, we propose the method of diverse firewall de-
sign, which is inspired by the well-known method of design
diversity for building fault-tolerant software. Our method
consists of two phases: a design phase and a comparison
phase. In the design phase, the same requirement specifica-
tion of a firewall is given to multiple teams who proceed in-
dependently to design different versions of the firewall. In
the comparison phase, the resulting multiple versions are
compared with each other to find out all the discrepan-
cies between them, then each discrepancy is further investi-
gated and a correction is applied if necessary. The techni-
cal challenge in the method of diverse firewall design is how
to discover all the discrepancies between two given fire-
walls. We present a series of three efficient algorithms for
solving this problem: (1) a construction algorithm for con-
structing an equivalent ordered firewall decision diagram
from a sequence of rules, (2) a shaping algorithm for trans-
forming two ordered firewall decision diagrams to become
semi-isomorphic without changing their semantics, and (3)
a comparison algorithm for detecting all the discrepancies
between two semi-isomorphic firewall decision diagrams.

1. Introduction

A firewall is a security guard placed at the point of en-
try between a private network and the outside Internet so
that all incoming and outgoing packets have to pass through
it. A packet can be viewed as a tuple with a finite number of
fields; examples of these fields are source/destination IP ad-
dress, source/destination port number, and protocol type. By
examining the values of these fields for each incoming and

outgoing packet, a firewall accepts legitimate packets and
discards illegitimate ones according to its configuration. A
firewall configuration defines which packets are legitimate
and which are illegitimate. An error in a firewall configu-
ration means a wrong definition of being legitimate or il-
legitimate for some packets, which will either allow unau-
thorized access from the outside Internet to the private net-
work, or disable some legitimate communication between
the private network and the outside Internet. Neither case
is desirable. How to design a correct firewall configuration
is therefore an important security issue. Since the correct-
ness of a firewall configuration is the focus of this paper,
we assume a firewall is correct iff (if and only if) its con-
figuration is correct, and a firewall configuration is correct
iff it satisfies its given requirement specification, which is
usually written in a natural language. In the rest of this pa-
per, we use “firewall” to mean “firewall configuration” if
not otherwise specified.

We categorize firewall errors into specification induced
errors and design induced errors. Specification induced er-
rors are caused by the inherent ambiguities of informal re-
quirement specifications, especially if the requirement spec-
ification is written in a natural language. Design induced
errors are caused by the technical incapacity of individual
firewall designers. We observe that different designers may
have different understandings of the same informal require-
ment specification, and different designers may exhibit dif-
ferent technical strengths and weaknesses. This observation
motivates our method of diverse firewall design.

Our diverse firewall design method has two phases: a de-
sign phase and a comparison phase. In the design phase, the
same requirement specification is given to multiple teams
who proceed independently to design different versions of
the firewall. Different teams preferably have different tech-
nical strengths and use different design methods. By max-
imizing diversity in the design phase, the coincident errors
made by all teams are rare. In the comparison phase, the re-
sulting multiple versions are compared with each other to
discover all discrepancies. Then each discrepancy is further

investigated and a correction is applied if necessary. After
these comparisons and corrections, all the versions become
equivalent. Then any one of them can be deployed.

The technical challenge in this diverse firewall design
method is that how to discover all the discrepancies be-
tween two given firewalls, where each is designed by ei-
ther a sequence of rules or a firewall decision diagram. Our
solution for comparing two given firewalls consists of the
following three steps: (1) If either of the two firewalls is
designed by a sequence of rules, we construct an equiva-
lent ordered firewall decision diagram from the sequence
of rules by the construction algorithm in Section 4. If ei-
ther of the two firewalls is designed by a non-ordered fire-
wall decision diagram, we at first generate an equivalent se-
quence of rules from the diagram, then construct an equiv-
alent ordered firewall decision diagram from the sequence
of rules. After this step, we get two ordered firewall deci-
sion diagrams. (2) If the two ordered firewall decision dia-
grams are not semi-isomorphic, we transform them to two
semi-isomorphic firewall decision diagrams without chang-
ing their semantics by the shaping algorithm in Section 5.
After this step, we get two semi-isomorphic firewall deci-
sion diagrams. (3) Given two semi-isomorphic firewall de-
cision diagrams, all the discrepancies between them can be
discovered by the comparison algorithm in Section 6.

In conclusion, we make two main contributions in this
paper: (1) we propose the method of diverse firewall design;
(2) we present a series of three algorithms for discovering
all the discrepancies between two given firewalls: a con-
struction algorithm, a shaping algorithm, and the compar-
ison algorithm. The experimental results shows that these
three algorithms are very efficient.

2. Related Work

The idea of diverse firewall design is inspired by N -
version programming [6, 7, 8, 23], and back-to-back test-
ing [25, 26]. The basic idea of N -version programming is
to give the same requirement specification to N teams to in-
dependently design and implement N programs using dif-
ferent algorithms, languages, or tools. Then the resulting N
programs are executed in parallel. A decision mechanism
is deployed to examine the N results for each input from
the N programs and selects a correct or “best” result. The
key element of N -version programming is design diversity.
The diversity in the N programs should be maximized such
that coincident failure for the same input is rare. The ef-
fectiveness of N -version programming method for build-
ing fault-tolerant software has been shown in a variety of
safety-critical systems built since the 1970s, such as rail-
way interlocking and train control [5], Airbus flight control
[24], and nuclear reactor protection [12].

Back-to-back testing is a complementary method to N -
version programming. This method is used to test the result-
ing N versions before deploying them in parallel. The basic
idea is as follows. At first, create a suite of test cases. Sec-
ond, for each test case, execute the N programs in parallel;
cross-compare the N results; then investigate each discrep-
ancy discovered, and apply corrections if necessary.

Our diverse firewall design method has two unique prop-
erties that distinguish it from N -version programming and
back-to-back testing. First, only one firewall version needs
to be deployed and executed. This is because all the discrep-
ancies between the multiple firewall versions can be discov-
ered by the algorithms presented in this paper, and correc-
tions can be applied to make them equivalent. By contrast,
the N -version programming method requires the deploy-
ment of all the N programs and executing them in parallel.
Second, the algorithms in this paper can detect all the dis-
crepancies between the multiple firewall versions. By con-
trast, back-to-back testing is not guaranteed to detect all the
discrepancies among N programs.

A firewall is usually designed by a sequence of rules and
the rules may overlap and conflict with each other. Two
rules overlap iff there is at least one packet that matches
both rules. Two rules conflict iff the two rules overlap and
also have different decisions. The conflicts among rules
make firewall design difficult and error prone. Detection of
conflicts was discussed in [10, 13, 19, 21]. Similar to con-
flict detection, six types of so-called “anomalies” were de-
fined in [1, 2, 3]. Examining each conflict or anomaly is
helpful in reducing errors; however, the number of conflicts
or anomalies in a firewall is usually large, and the manual
checking of each conflict or anomaly is unreliable because
the meaning of each rule depends on the current order of the
rules in the firewall, which may be incorrect.

Some high level languages for describing firewall rules
were proposed in [11, 18]. These languages are helpful in
firewall design; however, high level rules may still conflict.

Some firewall rule analysis tools are discussed in [4, 20].
The analysis is basically answering queries from users.
These tools are helpful in analyzing some suspicious be-
haviors of a firewall; however, the ad-hoc queries are not
guaranteed to cover all aspects of a firewall.

There are some tools currently available for network vul-
nerability testing, such as Satan [14, 15] and Nessus [22].
These vulnerability testing tools scan a private network
based on the current publicly known attacks, rather than the
requirement specification of a firewall. Although these tools
can possibly catch errors that allow illegitimate access to the
private network, they cannot find the errors that disable le-
gitimate communication between the private network and
the outside Internet.

3. Firewall Design Methods

We define a packet over the fields F1, · · · , Fd as a d-
tuple (p1, · · · , pd) where each pi is an element in the do-
main D(Fi) of field Fi, and each D(Fi) is an interval of
nonnegative integers. For example, one of the fields of an
IP packet is the source address, and the domain of this field
is [0, 232). For the brevity of presentation, we assume that
all packets are over the d fields F1, · · · , Fd, and we use Σ
to denote the set of all packets. It follows that Σ is a fi-
nite set of size |D(F1)| × · · · × |D(Fd)|.

3.1. Firewall

A firewall consists of a sequence of rules, where each
rule is of the following format:

(F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉

where each Si is a nonempty subset of D(Fi), and the
〈decision〉 is either accept or discard . If Si = D(Fi), we
can replace (Fi ∈ Si) by (Fi ∈ all), or remove the conjunct
(Fi ∈ D(Fi)) altogether. A packet (p1, · · · , pd) matches a
rule (F1 ∈ S1)∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉 iff the con-
dition (p1 ∈ S1) ∧ · · · ∧ (pd ∈ Sd) holds. Since a packet
may match more than one rule in a firewall, each packet
is mapped to the decision of the first rule that the packet
matches. The predicate of the last rule in a firewall is usu-
ally a tautology to ensure that every packet has at least one
matching rule in the firewall.

3.2. Firewall Function

A firewall function is a many-to-one mapping: Σ →
{accept , discard}. This function can be defined by a se-
quence of rules or by a firewall decision diagram. Two fire-
walls are equivalent iff they implement the same firewall
function.

3.3. Firewall Decision Diagram

In [16], Gouda and Liu presented Firewall Decision Di-
agrams as a useful notation for specifying firewalls. A Fire-
wall Decision Diagram (FDD) f over fields F1, · · · , Fd is
an acyclic and directed graph that has the following five
properties:

1. There is exactly one node in f that has no incoming
edges. This node is called the root of f . The nodes in f
that have no outgoing edges are called terminal nodes
of f .

2. Each node v in f has a label, denoted F (v), such that

F (v) ∈

{

{F1, · · · , Fd} if v is nonterminal,
{accept , discard} if v is terminal.

3. Each edge e in f has a label, denoted I(e), such that if
e is an outgoing edge of node v, then

I(e) ⊆ D(F (v)).

4. A directed path in f from the root to a terminal node
is called a decision path of f . No two nodes on a deci-
sion path have the same label.

5. The set of all outgoing edges of a node v in f , denoted
E(v), satisfies the following two conditions:

(a) Consistency: I(e) ∩ I(e′) = ∅ for any two
distinct edges e and e′ in E(v),

(b) Completeness:
⋃

e∈E(v) I(e) = D(F (v)) 2

A decision path in an FDD f is represented by
(v1e1 · · · vkekvk+1) where v1 is the root, vk+1 is a termi-
nal node, and each ei is a directed edge from node vi to node
vi+1. A decision path (v1e1 · · · vkekvk+1) in an FDD de-
fines the following rule:

F1 ∈ S1 ∧ · · · ∧ Fn ∈ Sn → F (vk+1)

where

Si =























I(ej) if there is a node vj in the decision
path that is labelled with field Fi,

D(Fi) if no node in the decision path is
labelled with field Fi.

For an FDD f , we use Sf to denote the set of all the rules
defined by all the decision paths of f . For any packet p,
there is one and only one rule in Sf that p matches because
of the consistency and completeness properties; therefore,
f maps p to the decision of the only rule that p matches.

Given an FDD f , any sequence of rules that consists of
all the rules in Sf is equivalent to f . The order of the rules
in such a firewall is immaterial because the rules in Sf are
non-overlapping.

Given a sequence of rules, how to construct an equiva-
lent FDD is discussed in Section 4.

3.4. A Running Example

In this paper, we use the following running example.
Consider the simple network in Figure 1. This network has a
gateway router with two interfaces: interface 0, which con-
nects the gateway router to the outside Internet, and inter-
face 1, which connects the gateway router to the inside lo-
cal network. The firewall for this local network resides in
the gateway router. The requirement specification for this
firewall is depicted in Figure 2.

Suppose we give this specification to two teams: Team
A and Team B. Team A designs the firewall by the FDD

in Figure 3 and Team B designs the firewall by the se-
quence of rules in Figure 4. In this paper, we use the fol-
lowing shorthand: a (Accept), d (Discard), I (Interface), S
(Source IP), D (Destination IP), N (Destination Port), P
(Protocol Type). We use α to denote the integer formed by
the four bytes of the IP address 192.168.0.0, and similarly
β for 192.168.255.255, and γ for 192.1.2.3. We assume the
protocol type value in a packet is either 0 (TCP) or 1 (UDP).
For ease of presentation, we assume that each packet has a
field containing the information of the network interface on
which a packet arrives.

C
 I
S
C
 O
 S
Y
 S
T
 E
M
 S

 0 1

Internet

Mail Server

(IP: 192.1.2.3)
 Host 1
 Host 2

Gateway

Router (Firewall)

Figure 1. A firewall

The mail server with IP address 192.1.2.3 can receive
emails. The packets from an outside malicious domain
192.168.0.0/16 should be blocked. Other packets should be
accepted and allowed to proceed.

Figure 2. The requirement specification

PSfrag replacements

0

0

1

1

[α, β]
[0, α − 1]

[β + 1, 232)

γ
[0, γ − 1]

[γ + 1, 232)

25
[0, 24]

[26, 216)

a

a

a

d

d

d

I

S

D

N

P

Figure 3. The FDD by Team A

Given these two firewalls, one in Figure 3 and the other
in in Figure 4, we use the following three steps to discover
all the discrepancies between them: (1) construct an equiv-
alent ordered FDD (in Figure 6) from the sequence of rules

1. (I ∈ {0}) ∧ (S ∈ all) ∧ (D ∈ {γ}) ∧ (N ∈ {25}) ∧
(P ∈ {0}) → a

2. (I ∈ {0}) ∧ (S ∈ [α, β]) ∧ (D ∈ all) ∧ (N ∈ all) ∧
(P ∈ all) → d

3. (I ∈ all)∧ (S ∈ all)∧ (D ∈ all)∧ (N ∈ all)∧ (P ∈
all) → a

Figure 4. The firewall by Team B

in Figure 4 by the construction algorithm in Section 4; (2)
transform the two ordered FDDs, one in Figure 3 and the
other in Figure 6, to two semi-isomorphic FDDs (where
one is in Figure 9) by the shaping algorithm in Section 5;
(3) discover all the discrepancies between the two semi-
isomorphic FDDs by the comparison algorithm in Section
6.

4. Construction Algorithm

In this section, we discuss how to construct an equiva-
lent FDD from a sequence of rules 〈r1, · · · , rn〉, where
each rule is of the format (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) →
〈decision〉. Note that all the d packet fields appear in the
predicate of each rule, and they appear in the same order.

We first construct a partial FDD from the first rule. A
partial FDD is a diagram that has all the properties of an
FDD except the completeness property. The partial FDD
constructed from a single rule contains only the decision
path that defines the rule. Suppose from the first i rules,
r1 through ri, we have constructed a partial FDD, whose
root v is labelled F1, and suppose v has k outgoing edges
e1, · · · , ek. Let ri+1 be the rule (F1 ∈ S1) ∧ · · · ∧ (Fd ∈
Sd) → 〈decision〉. Next we consider how to append rule
ri+1 to this partial FDD.

At first, we examine whether we need to add another out-
going edge to v. If S1−(I(e1)∪· · ·∪I(ek)) 6= ∅, we need to
add a new outgoing edge with label S1−(I(e1)∪· · ·∪I(ek))
to v because any packet whose F1 field is an element of
S1 − (I(e1) · · · ∪ I(ek)) does not match any of the first
i rules, but matches ri+1 provided that the packet satisfies
(F2 ∈ S2)∧· · ·∧ (Fd ∈ Sd). Then we build a decision path
from (F2 ∈ S2)∧· · ·∧ (Fd ∈ Sd) → 〈decision〉, and make
the new edge of the node v point to the first node of this de-
cision path.

Second, we compare S1 and I(ej) for each j where 1 ≤
j ≤ k. This comparison leads to one of the following three
cases:

1. S1 ∩ I(ej) = ∅: In this case, we skip edge ej be-
cause any packet whose value of field F1 is in set I(ej)
doesn’t match ri+1.

2. S1 ∩ I(ej) = I(ej): In this case, for a packet whose
value of field F1 is in set I(ej), it may match one of
the first i rules, and it also may match rule ri+1. So
we append the rule (F2 ∈ S2) ∧ · · · ∧ (Fd ∈ Sd) →
〈decision〉 to the subgraph rooted at the node that ej

points to.

3. S1 ∩ I(ej) 6= ∅ and S1 ∩ I(ej) 6= I(ej): In this case,
we split edge e into two edges: e′ with label I(ej)−S1

and e′′ with label I(ej)∩S1. Then we make two copies
of the subgraph rooted at the node that ej points to, and
let e′ and e′′ point to one copy each. We then deal with
e′ by the first case, and e′′ by the second case.

In the following pseudocode of the construction algo-
rithm, we use e.t to denote the (target) node that the edge e
points to.

Construction Algorithm

Input : A firewall f of a sequence of rules 〈r1, · · · , rn〉
Output: An FDD f ′ such that f and f ′ are equivalent
Steps:
1. build a decision path with root v from rule r1;
2. for i := 2 to n do APPEND(v, ri);
End

APPEND(v, (Fm ∈ Sm) ∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉)
/*F (v) = Fm and E(v) = {e1, · · · , ek}*/
1. if (Sm − (I(e1) ∪ · · · ∪ I(ek))) 6= ∅ then

(a) add an outgoing edge ek+1 with label
Sm − (I(e1) ∪ · · · ∪ I(ek)) to v;

(b) build a decision path from rule
(Fm+1 ∈ Sm+1) ∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉,
and make ek+1 point to the first node in this path;

2. if m < d then
for j := 1 to k do

if I(ej) ⊆ Sm then
APPEND(ej .t, (Fm+1 ∈ Sm+1) ∧ · · · ∧ (Fd ∈ Sd)

→ 〈decision〉);
else if I(ej) ∩ Sm 6= ∅ then

(a) add one outgoing edge e to v,
and label e with I(ej) ∩ Sm;

(b) make a copy of the subgraph rooted at ej .t,
and make e points to the root of the copy;

(a) replace the label of ej by I(ej) − Sm;
(d) APPEND(e.t, (Fm+1 ∈ Sm+1) ∧ · · · ∧ (Fd ∈ Sd)

→ 〈decision〉);

As an example, consider the sequence of rules in Figure
4. Figure 5 shows the partial FDD that we construct from
the first rule, and the partial FDD after we append the sec-
ond rule. The FDD after we append the third rule is shown
in Figure 6.

ddd

PSfrag replacements

00

00

0 1

[α, β]
[0, α − 1]

[β + 1, 232)

βββ
[0, γ − 1]

[γ + 1, 232)

252525
[0, 24]

[26, 216)

[26, 216)

aaa

d

II

SS

DDD

NN NN

PPP PP

all all

all

all

Before Appending: After Appending:

Figure 5. Appending rule (I ∈ {0}) ∧ (S ∈
[α, β]) ∧ (D ∈ all) ∧ (N ∈ all) ∧ (P ∈ all) → d

dd d

PSfrag replacements

00

0

1

1

1

[α, β]
[0, α − 1]

[β + 1, 232)

γγ
[0, γ − 1]

[0, γ − 1] [γ + 1, 232)
[γ + 1, 232)

2525
[0, 24]

[0, 24]
[26, 216)

[26, 216)

aaa aa a

d

I

SS

DDD

N

N

NNN

P P
PP P

PPP

all

all

all

all

all

all

all

allall

all

Figure 6. The FDD constructed from Figure 4

5. Shaping Algorithm

In this section we discuss how to transform two ordered,
but not semi-isomorphic FDDs fa and fb to two semi-
isomorphic FDDs f ′

a and f ′

b such that fa is equivalent to
f ′

a, and fb is equivalent to f ′

b. We define ordered FDDs and
semi-isomorphic FDDs as follows.

Definition 5.1 (Ordered FDDs) Let ≺ be the total order
over the packet fields F1, · · · , Fd where F1 ≺ · · · ≺
Fd holds. An FDD is ordered iff for each decision path
(v1e1 · · · vkekvk+1), we have F (v1) ≺ · · · ≺ F (vk). 2

From this definition, the FDDs constructed by the con-
struction algorithm in Section 4 are ordered. Therefore, if
a firewall f designed by a team is a non-ordered FDD f ,
we first generate a sequence of rules that consists of all the
rules in Sf , where Sf is the set of all the rules defined by the
decision paths of f ; second, we construct an equivalent or-
dered FDD f ′ from the sequence of rules. Then use f ′, in-
stead of f , to compare with other firewalls.

Informally, two FDDs are semi-isomorphic if their
graphs are isomorphic, the labels of their correspond-
ing nonterminal nodes match, and the labels of their
corresponding edges match. In other words, only the la-
bels of their terminal nodes may differ. Formally:

Definition 5.2 (Semi-isomorphic FDDs) Two FDDs f
and f ′ are semi-isomorphic iff there exists a one-to-one
mapping σ from the nodes of f onto the nodes of f ′, such
that the following two conditions hold:

1. For any node v in f , either both v and σ(v) are nonter-
minal nodes with the same label, or both of them are
terminal nodes;

2. For each edge e in f , where e is from a node v1 to a
node v2, there is an edge e′ from σ(v1) to σ(v2) in f ′,
and the two edges e and e′ have the same label. 2

The algorithm for transforming two ordered FDDs to two
semi-isomorphic FDDs uses the following three basic oper-
ations. (Note that none of these operations changes the se-
mantics of the FDDs.)

1. Node Insertion: If along all the decision paths contain-
ing a node v, there is no node that is labelled with a
field F , then we can insert a node v′ labelled F above
v as follows: make all incoming edges of v point to v′,
create one edge from v′ to v, and label this edge with
the domain of F .

2. Edge Splitting: For an edge e from v1 to v2, if I(e) =
S1 ∪ S2, where neither S1 nor S2 is empty, then we
can split e into two edges as follows: replace e by two
edges from v1 to v2, label one edge with S1 and la-
bel the other with S2.

3. Subgraph Replication: If a node v has m (m ≥ 2) in-
coming edges, we can make m copies of the subgraph
rooted at v, and make each incoming edge of v point
to the root of one distinct copy.

5.1. FDD Simplifying

Before applying the shaping algorithm, presented below,
to two ordered FDDs, we need to transform each of them
to an equivalent simple FDD. A simple FDD is defined as
follows:

Definition 5.3 (Simple FDDs) An FDD is simple iff each
node in the FDD has at most one incoming edge and each
edge in the FDD is labelled with a single interval. 2

It is straightforward that the two operations of edge split-
ting and subgraph replication can be applied repetitively to
an FDD in order to make this FDD simple. Note that the
graph of a simple FDD is an outgoing directed tree. In other
words, each node in a simple FDD, except the root, has only

one parent node, and has only one incoming edge (from the
parent node).

5.2. Node Shaping

Next, we introduce the procedure for transforming two
shapable nodes to two semi-isomorphic nodes, which is the
basic building block in the shaping algorithm for transform-
ing two ordered FDDs to two semi-isomorphic FDDs. Sha-
pable nodes and semi-isomorphic nodes are defined as fol-
lows.

Definition 5.4 (Shapable Nodes) Let fa and fb be two or-
dered simple FDDs, va be a node in fa and vb be a node
in fb. Nodes va and vb are shapable iff one of the follow-
ing two conditions holds:

1. Both va and vb have no parents, i.e., they are the roots
of their respective FDDs;

2. Both va and vb have parents, their parents have the
same label, and their incoming edges have the same
label. 2

For example, the two nodes labelled F1 in Figure 7 are
shapable since they have no parents.

PSfrag replacements

[1, 50] [51, 100] [1, 30] [31, 100]

F1 F1

F2 F2F2 F2

shapable nodes

Figure 7. Two shapable nodes in two FDDs

Definition 5.5 (Semi-isomorphic Nodes) Let fa and fb be
two ordered simple FDDs, va be a node in fa and vb be a
node in fb. The two nodes va and vb are semi-isomorphic iff
one of the following two conditions holds:

1. Both va and vb are terminal nodes;

2. Both va and vb are nonterminal nodes with the same
label and there exists a one-to-one mapping σ from the
children of va to the children of vb such that for each
child v of va, v and σ(v) are shapable. 2

The algorithm for making two shapable nodes va and vb

semi-isomorphic consists of two steps:

1. Step I: This step is skipped if va and vb have the same
label, or both of them are terminal nodes. Otherwise,
without loss of generality, assume F (va) ≺ F (vb). It

is straightforward to show that in this case along all the
decision paths containing node vb, no node is labelled
F (va). Therefore, we can create a new node v′

b with
label F (va), create a new edge with label D(F (va))
from v′

b to vb, and make all incoming edges of vb point
to v′

b. Now va have the same label as v′

b. (Recall that
this node insertion operation leaves the semantics of
the FDD unchanged.)

2. Step II: From the previous step, we can assume that va

and vb have the same label. In the current step, we use
the two operations of edge splitting and subgraph repli-
cation to build a one-to-one correspondence from the
children of va to the children of vb such that each child
of va and its corresponding child of vb are shapable.

Suppose D(F (va)) = D(F (vb)) = [a, b]. We
know that each outgoing edge of va or vb is labelled
with a single interval. Suppose va has m outgoing
edges {e1, · · · , em}, where I(ei) = [ai, bi], a1 = a,
bm = b, and every ai+1 = bi + 1. Also suppose vb has
n outgoing edges {e′1, · · · , e

′

n}, where I(e′i) = [a′

i, b
′

i],
a′

1 = a, b′n = b, and every a′

i+1 = b′i + 1.
Comparing edge e1, whose label is [a, b1], and e′1,

whose label is [a, b′1], we have the following two cases:
(1) b1 = b′1: In this case I(e1) = I(e′1), therefore, node
e1.t and node e′1.t are shapable. (Recall that we use e.t
to denote the node that edge e points to.) Then we can
continue to compare e2 and e′2 since both I(e2) and
I(e′2) begin with b1 + 1. (2) b1 6= b′1: Without loss of
generality, we assume b1 < b′1. In this case, we split e′1
into two edges e and e′, where e is labelled [a, b1] and
e′ is labelled [b1 + 1, b′1]. Then we make two copies of
the subgraph rooted at e′1.t and let e and e′ point to one
copy each. Thus I(e1) = I(e) and the two nodes, e1.t
and e.t are shapable. Then we can continue to compare
the two edges e2 and e′ since both I(e2) and I(e′) be-
gin with b1 + 1.

The above process continues until we reach the last
outgoing edge of va and the last outgoing edge of vb.
Note that each time that we compare an outgoing edge
of va and an outgoing edge of vb, the two intervals
labelled on the two edges begin with the same value.
Therefore, the last two edges that we compare must
have the same label because they both ends with b. In
other words, this edge splitting and subgraph replica-
tion process will terminate. When it terminates, va and
vb become semi-isomorphic.

In the following pseudocode for making two sha-
pable nodes in two ordered simple FDDs semi-isomorphic,
we use I(e) < I(e′) to indicate that every integer in I(e) is
less than every integer in I(e′).

Procedure Node Shaping(fa, fb, va, vb)
Input : Two ordered simple FDDs fa and fb, and

two shapable nodes va in fa and vb in fb

Output: The two nodes va and vb become semi-isomorphic,
and the procedure returns a set S of node pairs of
the form (wa, wb) where wa is a child of va in fa,
wb is a child of vb in fb, and the two nodes wa and
wb are shapable.

Steps:
1. if (both va and vb are terminal) return(∅);

else if ∼(both va and vb are nonterminal
and they have the same label)

then /*Here either both va and vb are nonterminal and they
have different labels, or one node is terminal and
the other is nonterminal. Without loss of generality,
assume one of the following conditions holds:
(1) both va and vb are nonterminal and F (va) ≺ F (vb),
(2) va is nonterminal and vb is terminal.*/

insert a new node with label F (va) above vb,
and call the new node vb;

2. let E(va) be {ea,1, · · · , ea,m} where I(ea,1) < · · · < I(ea,m).
let E(vb) be {eb,1, · · · , eb,n} where I(eb,1) < · · · < I(eb,n).

3. i := 1; j := 1;
while ((i < m) or (j < n)) do{

/*During this loop, the two intervals I(ea,i) and
I(eb,j) always begin with the same integer.*/

let I(ea,i) = [A,B] and I(eb,j) = [A,C], where
A, B, C are three integers;

if B = C then {i := i + 1; j := j + 1; }
else if B < C then{

(a) create an outgoing edge e of vb,
and label e with [A,B];

(b) make a copy of the subgraph rooted at eb,j .t and
make e point to the root of the copy;

(c) I(eb,j) := [B + 1, C];
(d) i := i + 1;}

else {/*B > C*/
(a) create an outgoing edge e of va,

and label e with [A,C];
(b) make a copy of the subgraph rooted at ea,j .t and

make e point to the root of the copy;
(c) I(ea,i) := [C + 1, B];
(d) j := j + 1;}

}
4. /*Now va and vb become semi-isomorphic.*/

let E(va) = {ea,1, · · · , ea,k} where
I(ea,1) < · · · < I(ea,k) and k ≥ 1;

let E(vb) = {eb,1, · · · , eb,k} where
I(eb,1) < · · · < I(eb,k) and k ≥ 1;

S := ∅;
for i = 1 to k do

add the pair of shapable nodes (ea,i.t, eb,i.t) to S;
return(S);

End

If we apply the above node shaping procedure to the two
shapable nodes labelled F1 in Figure 7, we make them semi-
isomorphic as shown in Figure 8.

PSfrag replacements
[1, 50]

[51, 100] [51, 100][1, 30] [1, 30]

[31, 100]

[31, 50] [31, 50]

F1 F1

F2F2 F2 F2F2 F2

shapable nodes shapable nodes shapable nodes

semi-isomorphic nodes

Figure 8. Two semi-isomorphic nodes

5.3. FDD Shaping

To make two ordered FDDs fa and fb semi-isomorphic,
at first we make fa and fb simple, then we make fa and fb

semi-isomorphic as follows. Suppose we have a queue Q,
which is initially empty. At first we put the pair of shapable
nodes consisting of the root of fa and the root of fb into Q.
As long as Q is not empty, we remove the head of Q, feed
the two shapable nodes to the above Node Shaping proce-
dure, then put all the pairs of shapable nodes returned by the
Node Shaping procedure into Q. When the algorithm fin-
ishes, fa and fb become semi-isomorphic. The pseudocode
for this shaping algorithm is as follows:

Shaping Algorithm

Input : Two ordered FDDs fa and fb

Output: fa and fb become semi-isomorphic.
Steps:
1. make the two FDDs fa and fb simple;
2. Q := ∅;
3. add the shapable pair (root of fa, root of fb) to Q;
4. while Q 6= ∅ do{

remove the header pair (va, vb) from Q;
S :=Node Shaping(fa, fb, va, vb);
add every shapable pair from S into Q;

}
End

As an example, if we apply the above shaping algorithm
to the two FDDs in Figure 3 and 6, we obtain two semi-
isomorphic FDDs. One of those FDDs is shown in Figure
9, and the other one is identical to the one in Figure 9 with
one exception: the labels of the black terminal nodes are re-
versed.

6. Comparison Algorithm

In this section, we consider how to compare two semi-
isomorphic FDDs. Given two semi-isomorphic FDDs f
and f ′ with a one-to-one mapping σ, each decision path
(v1e1 · · · vkekvk+1) in f has a corresponding decision path
(σ(v1)σ(e1) · · ·σ(vk)σ(ek)σ(vk+1)) in f ′. Similarly, each
rule (F (v1) ∈ I(e1)) ∧ · · · ∧ (F (vk) ∈ I(ek)) → F (vk+1)
in Sf has a corresponding rule (F (σ(v1)) ∈ I(σ(e1))) ∧
∧ · · · ∧ (F (σ(vk)) ∈ I(σ(ek))) → F (σ(vk+1)) in Sf ′ .
Note that F (vi) = F (σ(vi)) and I(ei) = I(σ(ei)) for each
i where 1 ≤ i ≤ k. Therefore, for each rule (F (v1) ∈
I(e1))∧ · · · ∧ (F (vk) ∈ I(ek)) → F (vk+1) in Sf , the cor-
responding rule in Sf ′ is (F (v1) ∈ I(e1))∧ · · · ∧ (F (vk) ∈
I(ek)) → F (σ(vk+1)). Each of these two rules is called
the companion of the other. This companionship implies a
one-to-one mapping from the rules defined by the decision
paths in f to the rules defined by the decision paths in f ′.
Note that for each rule and its companion, either they are
identical, or they have the same predicate but different deci-
sions. Therefore, Sfa

− Sfb
is the set of all the rules in Sfa

that have different decisions from their companions. Simi-
larly for Sfb

− Sfa
. Note that the set of all the companions

of the rules in Sfa
− Sfb

is Sfb
− Sfa

; and similarly the set
of all the companions of the rules in Sfb

−Sfa
is Sfa

−Sfb
.

Since these two sets manifest the discrepancies between the
two FDDs, the two design teams can investigate them to re-
solve the discrepancies.

Let fa be the FDD in Figure 9, and let fb be the FDD that
is identical to fa with one exception: the labels of the black
terminal nodes are reversed. Here fa is equivalent to the
firewall in Figure 3 designed by Team A, and fb is equiv-
alent to the firewall in Figure 4 designed by Team B. By
comparing fa and fb, we discover the following discrep-
ancies between the two firewalls designed by Team A and
Team B:

1. (I ∈ {0})∧(S ∈ [α, β])∧(D ∈ {γ})∧(N ∈ {25})∧
(P ∈ {0}) → d in fa / a in fb

Question to investigate: Should we allow the com-
puters from the malicious domain send email to the
mail server? Team A says no, while Team B says yes.

2. (I ∈ {0}) ∧ (S ∈ [0, α − 1] ∪ [β + 1, 232)) ∧ (D ∈
{γ}) ∧ (N ∈ {25}) ∧ (P ∈ {1})∧ → d in fa / a in fb

Question to investigate: Should we allow UDP
packets with destination port number 25 sent from the
hosts that are not in the malicious domain to the mail
server? Team A says no, while Team B says yes.

3. (I ∈ {0}) ∧ (S ∈ [0, α − 1] ∪ [β + 1, 232)) ∧ (D ∈
{γ})∧ (N ∈ [0, 24]∪ [26, 216))∧ (P ∈ all)∧ → d in
fa / a in fb

Question to investigate: Should we allow the pack-
ets with a destination port number other than 25 be sent

d d dd d dd

PSfrag replacements

0

0

00 1

1

11

[α, β]

[0, α − 1] [β + 1, 232)

γγγ

[0, γ − 1]
[0, γ − 1][0, γ − 1]

[γ + 1, 232)
[γ + 1, 232)[γ + 1, 232)

252525

[0, 24] [0, 24][0, 24] [26, 216) [26, 216)[26, 216)

aa aaaa a ddddd

I

SS

DDDD

N NN NNN NNN N

P PPPP PPP PPPPPPP P

all

all

allall

all

allall

all all

all

all

all

all allall

all

allall all

all

all

all

Figure 9. The FDD transformed from the FDD in Figure 3

from the hosts who are not in the malicious domain to
the mail server? Team A says no, while Team B says
yes.

7. Experimental Results

In this paper we presented three algorithms, a construc-
tion algorithm, a shaping algorithm and a comparison algo-
rithm. These three algorithms can be used to detect all dis-
crepancies between two given firewalls. In this section, we
evaluate the efficiency of each of these three algorithms.

The construction algorithm is evaluated by the average
time for constructing an FDD from a sequence of rules. The
shaping algorithm is evaluated by the average time for shap-
ing two FDDs where each is an FDD constructed from a
sequence rules that we generate independently. The com-
parison algorithm is measured by the average time for de-
tecting all the discrepancies between two semi-isomorphic
FDDs that we get from the shaping algorithm. In the ab-
sence of publicly available firewalls, we create synthetic
firewalls based on the characteristics of real-life packet clas-
sifiers discovered in [9, 17]. Each rule has the following five
fields: interface, source IP address, destination IP address,
destination port number and protocol type.

The programs are implemented in SUN Java JDK 1.4.
The experiments were carried out on a SunBlade 2000 ma-
chine running Solaris 9 with 1Ghz CPU and 1 GB mem-
ory. Figure 10 shows the average execution times for the
construction algorithm, for the shaping algorithm, and for
the comparison algorithm versus the total number of rules.
We also measured the average total time for detecting all
the discrepancies between two sequences of rules, which

includes the time for constructing two ordered FDDs from
two sequences of rules, shaping the two ordered FDDs to be
semi-isomorphic, and comparing the two semi-isomorphic
FDDs. From this figure, we see that it takes less than 5 sec-
onds to detect all the discrepancies between two sequences
of 3000 rules. In fact, it is very unlikely that a firewall
can have this many rules (see the characteristics of real-life
packet classifiers in [9, 17]). Clearly the efficiency of our
three algorithms make them attractive to be used in prac-
tice for supporting our diverse firewall design method.

0 1000 2000 3000
0

1

2

3

4

5

Number of rules

C
on

st
ru

ct
io

n
A

lg
or

ith
m

 (s
ec

)

0 1000 2000 3000
0

1

2

3

4

5

Number of rules

S
ha

pi
ng

 A
lg

or
ith

m
 (s

ec
)

0 1000 2000 3000
0

1

2

3

4

5

Number of rules

C
om

pa
ris

on
 A

lg
or

ith
m

 (s
ec

)

0 1000 2000 3000
0

1

2

3

4

5

Number of rules

To
ta

l t
im

e
(s

ec
)

Figure 10. Experimental Results

8. Conclusions

In this paper, we propose the method of diverse firewall
design, and present a series of three algorithms (a construc-
tion algorithm, a shaping algorithm and a comparison al-
gorithm) for detecting all discrepancies between two given
firewalls. The experimental results show that these algo-
rithms are very efficient. It takes only about five seconds
to detect all the discrepancies between two firewalls where
each has 3000 rules. We believe that our method of diverse
firewall design and the three algorithms will be used to de-
sign firewalls whose correctness is important.

In terms of firewall comparison, what we have discussed
so far is how to compare two firewalls. If we have N fire-
walls where N > 2, there are two ways to compare them:
cross comparison and direct comparison. Cross comparison
means to compare each of the N ∗ (N − 1) pairs, where
each pair consists of two of the N firewalls. Direct compar-
ison means to extend the shaping algorithm and the com-
parison algorithm to handle N firewalls. This extension is
considered fairly straightforward.

Since a firewall is just one type of packet classifiers, the
diverse firewall design method that we propose in this pa-
per can be used for designing other packet classifiers. This
generalization is straightforward.

References

[1] E. Al-Shaer and H. Hamed. Firewall policy advisor for
anomaly detection and rule editing. In IEEE/IFIP Integrated
Management IM’2003, March 2003.

[2] E. Al-Shaer and H. Hamed. Management and translation of
filtering security policies. In IEEE International Conference
on Communications, May 2003.

[3] E. Al-Shaer and H. Hamed. Discovery of policy anomalies in
distributed firewalls. In IEEE INFOCOM’04, March 2004.

[4] A. W. Alain Mayer and E. Ziskind. Fang: A firewall analy-
sis engine. In Proc. of IEEE Symp. on Security and Privacy,
pages 177–187, 2000.

[5] H. Anderson and G. Hagelin. Computer controlled interlock-
ing system. Ericsson Review, (2), 1981.

[6] A. Avizienis. The n-version approach to fault tolerant soft-
ware. IEEE Transactions on Software Engineering, SE-
11(12):1491–1501, 1985.

[7] A. Avizienis. The methodology of n-version programming.
Chapter 2 of Software Fault Tolerance, M. R. Lyu (ed.), Wi-
ley, 23-46, 1995.

[8] A. Avizienis and L. Chen. On the implementation of n-
version programming for software fault-tolerance during
program execution. In Proc. of Intl. Computer software and
Appl. Conf., pages 145–155, 1977.

[9] F. Baboescu, S. Singh, and G. Varghese. Packet classifica-
tion for core routers: Is there an alternative to cams? In Proc.
of IEEE INFOCOM, 2003.

[10] F. Baboescu and G. Varghese. Fast and scalable conflict de-
tection for packet classifiers. In Proc. of the 10th IEEE In-
ternational Conference on Network Protocols, 2002.

[11] Y. Bartal, A. J. Mayer, K. Nissim, and A. Wool. Firmato: A
novel firewall management toolkit. In Proc. of IEEE Symp.
on Security and Privacy, pages 17–31, 1999.

[12] A. Condor and G. Hinton. Fault tolerant and fail-safe de-
sign of candu computerised shutdown systems. IAEA Spe-
cialist Meeting on Microprocessors important to the Safety
of Nuclear Power Plants,, May 1988.

[13] D. Eppstein and S. Muthukrishnan. Internet packet filter
management and rectangle geometry. In Symp. on Discrete
Algorithms, pages 827–835, 2001.

[14] D. Farmer and W. Venema. Improving the
security of your site by breaking into it.
http://www.alw.nih.gov/Security/Docs/admin-guide-to-
cracking.101.html, 1993.

[15] M. Freiss. Protecting Networks with SATAN. O’Reilly & As-
sociates, Inc., 1998.

[16] M. G. Gouda and A. X. Liu. Firewall design: consistency,
completeness and compactness. In Proc. of the 24th IEEE
International Conference on Distributed Computing Systems
(ICDCS’04), pages 320–327, March 2004.

[17] P. Gupta. Algorithms for Routing Lookups and Packet Clas-
sification. PhD thesis, Stanford University, 2000.

[18] J. D. Guttman. Filtering postures: Local enforcement for
global policies. In Proc. of IEEE Symp. on Security and Pri-
vacy, pages 120–129, 1997.

[19] A. Hari, S. Suri, and G. M. Parulkar. Detecting and resolving
packet filter conflicts. In Proc. of IEEE INFOCOM, pages
1203–1212, 2000.

[20] S. Hazelhurst, A. Attar, and R. Sinnappan. Algorithms for
improving the dependability of firewall and filter rule lists.
In Proc. of the International Conference on Dependable Sys-
tems and Networks (DSN’00), pages 576–585, 2000.

[21] J. D. Moffett and M. S. Sloman. Policy conflict analysis in
distributed system management. Journal of Organizational
Computing, 4(1):1–22, 1994.

[22] Nessus. http://www.nessus.org/. March 2004.
[23] X. Teng and H. Pham. A software-reliability growth model

for n-version programming systems. IEEE Transactions on
Reliability, 51(3):311–321, 2002.

[24] P. Traverse. Airbus and atr system architecture and specifi-
cation. Software Diversity in Computerised Control Systems,
U. Voges (ed.), Springer Verlag, 1988.

[25] M. A. Vouk. On back-to-back testing. In Proc. of Annual
Conference on Computer Assurance (COMPASS), pages 84–
91, 1988.

[26] M. A. Vouk. On growing software reliability using back-to-
back testing. In Proc. 11th Minnowbrook Workshop on Soft-
ware Reliability, 1988.

