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Abstract
We address the challenges of bursty convergecast in
multi-hop wireless sensor networks, where a large burst
of packets from different locations needs to be trans-
ported reliably and in real-time to a base station. Via
experiments on a 49 MICA2 mote sensor network us-
ing a realistic traffic trace, we determine the primary
issues in bursty convergecast, and accordingly design
a protocol, RBC (for Reliable Bursty Convergecast),
to address these issues: To improve channel utiliza-
tion and to reduce ack-loss, we design a window-less
block acknowledgment scheme that guarantees contin-
uous packet forwarding and replicates the acknowledg-
ment for a packet; to alleviate retransmission-incurred
channel contention, we introduce differentiated con-
tention control. Moreover, we design mechanisms to
handle varying ack-delay and to reduce delay in timer-
based retransmissions. We evaluate RBC, again via
experiments, and show that compared to a commonly
used implicit-ack scheme, RBC doubles packet deliv-
ery ratio and reduces end-to-end delay by an order of
magnitude, as a result of which RBC achieves a close-
to-optimal goodput.�������
	���
��

—wireless sensor network, bursty convergecast, re-
liability, real-time, error control, contention control, System de-
sign, experimentation with real networks and testbeds

1 Introduction
A typical application of wireless sensor networks is to
monitor an environment (be it an agricultural field or
a classified area) for events that are of interest to the
users. Usually, the events are rare. Yet when an event
occurs, a large burst of packets is often generated that
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needs to be transported reliably and in real-time to a
base station.One exemplary event-driven application is
demonstrated in the DARPA NEST field experiment “A
Line in the Sand” (simply called Lites hereafter) [5].
In Lites, a typical event generates up to 100 packets
within a few seconds and the packets need to be trans-
ported from different network locations to a base sta-
tion, over multi-hop routes.

The high-volume bursty traffic in event-driven appli-
cations poses special challenges for reliable and real-
time packet delivery. The large number of packets gen-
erated within a short period leads to high degree of
channel contention and thus a high probability of packet
collision. The situation is further exacerbated by the
fact that packets travel over multi-hop routes: first, the
total number of packets competing for channel access
is increased by a factor of the average hop-count of
network routes; second, the probability of packet colli-
sion increases in multi-hop networks due to problems
such as hidden-terminals. Consequently, packets are
lost with high probability in bursty convergecast. For
example, with the default radio stack of TinyOS [3],
around 50% of packets are lost for most events in Lites.

For real-time packet delivery, hop-by-hop packet re-
covery is usually preferred over end-to-end recovery
[16, 18]; and this is especially the case when 100%
packet delivery is not required (for instance, for bursty
convergecast in sensor networks). Nevertheless, we
find issues with existing hop-by-hop control mecha-
nisms in bursty convergecast. Via experiments with a
testbed of 49 MICA2 motes and with traffic traces of
Lites, we observe that the commonly used link-layer
error control mechanisms do not significantly improve
and can even degenerate packet delivery reliability. For
example, when packets are retransmitted up to twice at
each hop, the overall packet delivery ratio increases by
only 6.15%; and when the number of retranmissions
increases, the packet delivery ratio actually decreases,
by 11.33%.

One issue with existing hop-by-hop control mecha-
nisms is that they do not schedule packet retransmis-
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sions appropriately; as a result, retransmitted packets
further increase the channel contention and cause more
packet loss. Moreover, due to in-order packet delivery
and conservative retransmission timers, packet deliv-
ery can be significantly delayed in existing hop-by-hop
mechanisms, which leads to packet backlogging and
reduction in network throughput. (We examine the de-
tails in Section 3.)

On the other hand, the new network and application
models of bursty convergecast in sensor networks offer
unique opportunities for reliable and real-time trans-
port control:� First, the broadcast nature of wireless channels

enables a node to determine, by snooping the chan-
nel, whether its packets are received and forwarded
by its neighbors.� Second, high-precision time synchronization and
the fact that data packets are timestamped relieve
transport layer from the constraint of in-order
packet delivery, since applications can determine
the order of packets by their timestamps.

Therefore, techniques that take advantage of these op-
portunities and meet the challenges of reliable and real-
time bursty convergecast are desired.

Contributions of the paper. We study the limita-
tions of two commonly used hop-by-hop packet recov-
ery schemes in bursty convergecast. We discover that
the lack of retransmission scheduling in both schemes
makes retransmission-based packet recovery ineffec-
tive in the case of bursty convergecast. Moreover, in-
order packet delivery makes the communication chan-
nel under-utilized in the presence of packet- and ack-
loss.

To address the challenges, we design protocol RBC
(for Reliable Bursty Convergecast). Taking advantage
of the unique sensor network models, RBC features the
following mechanisms:� To improve channel utilization, RBC uses a

window-less block acknowledgment scheme that
enables continuous packet forwarding in the pres-
ence of packet- and ack-loss. The block acknowl-
edgment also reduces the probability of ack-loss,
by replicating the acknowledgment for a received
packet.� To ameliorate retransmission-incurred channel
contention, RBC introduces differentiated con-
tention control, which ranks nodes by their queu-
ing conditions as well as the number of times that
the enqueued packets have been transmitted. A
node ranked the highest within its neighborhood
accesses the channel first.

In addition, we design techniques that address the
challenges of timer-based retransmission control in bursty
convergecast:� To deal with continuously changing ack-delay, RBC

uses adaptive retransmission timer which adjusts
itself as network state changes.� To reduce delay in timer-based retransmission and
to expedite retransmission of lost packets, RBC
uses block-NACK, retransmission timer reset, and
channel utilization protection.

We evaluate RBC by experimenting with an outdoor
testbed of 49 MICA2 motes and with realistic traffic
trace from the field sensor network of Lites. Our ex-
perimental results show that, compared with a com-
monly used implicit-ack scheme, RBC increases the
packet delivery ratio by a factor of 2.05 and reduces
the packet delivery delay by a factor of 10.91. More-
over, RBC achieves a goodput of 6.37 packets/second
for the traffic trace of Lites, almost reaching the opti-
mal goodput — 6.66 packets/second — for the trace.

Organization of the paper. We describe our testbed
and discuss the experiment design in Section 2. In Sec-
tion 3, we study the limitations of existing hop-by-hop
control mechanisms. We present the detailed design
of RBC in Section 4, then we present the experimental
results in Section 5. We discuss related works in Sec-
tion 6, and we make concluding remarks in Section 7.

2 Testbed and experiment design

Towards characterizing the issues in making bursty con-
vergecast both reliable and timely, we conduct an ex-
perimental study. We choose experimentation as op-
posed to simulation in order to gain higher fidelity and
confidence in the observations. Before presenting our
study, we first describe our testbed and the experiment
design.
Testbed. We setup our testbed to reflect the field sen-
sor network of Lites, and we use the traffic trace for a
typical event in Lites as the basis of our experiments.

The testbed consists of 49 MICA2 motes deployed in
a grass field, as shown in Figure 1(a), where the grass
is 2-4 inches tall.The 49 motes form a 7 � 7 grid with
a 5-feet separation between neighboring grid points, as
shown in Figure 1(b) where each grid point represents
a mote. The mote at the left-bottom corner of the grid
is the base station to which all the other motes send
packets. The 7 � 7 grid imitates a subgrid in the sensor
network of Lites.

The traffic trace (simply called Lites trace hereafter)
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(a) Environment (b) Grid topology

Figure 1: The testbed

corresponds to the packets generated in a 7 � 7 subgrid
of the Lites network when a vehicle passes across the
middle of the Lites network. When the vehicle passes
by, each mote except for the base station detects the ve-
hicle and generates two packets, which correspond to
the start and the end of the event detection respectively
and are separated 5-6 seconds on average. Overall, 96
packets are generated each time the vehicle passes by.1

The cumulative distribution of the number of packets
generated during the event is shown in Figure 2. (In-
terested readers can find the detailed description of the
traffic trace in [4].)
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Figure 2: The distribution of packets generated in Lites
trace

If we define the burst rate up to a moment in the
event as the number of packets generated so far di-
vided by the time since the first packet is generated,
the highest burst rate in Lites trace is 14.07 pack-
ets/second. Given that the highest one-hop through-
put is about 42.93 packets/second for MICA2 motes
with B-MAC (the latest MAC component of TinyOS)
and that, in multi-hop networks, even an ideal MAC
can only achieve �� of the throughput that a single-hop
transmission can achieve [11], the burst rate of Lites

1We could have chosen a traffic trace where fewer number packets are gen-
erated (e.g., when a soldier with a gun passes by), but that would not serve as
well in showing the challenges posed by huge event traffic bursts.

trace far exceeds the rate at which the motes can push
packets to the base station. Therefore, it is a challeng-
ing task to deliver packets reliably and in real time in
such a heavy-load bursty traffic scenario.
Experiment design. To reflect the multi-hop network
of Lites, we let each mote transmit at the minimum
power level by which two motes 10 feet apart are able
to reliably communicate with each other, and the power
level is 9 (out of a range between 1 and 255). We use
the routing protocol LGR [7] in our testbed.2 LGR uses
links that are reliable in the presence of bursty traf-
fic, and LGR spreads traffic uniformly across different
paths to reduce wireless channel contention. Therefore,
LGR provides a reliable and uniform packet delivery
service in bursty convergecast [7]. In our testbed, the
number of hops in a path is up to 6 and is 3.3 on aver-
age.

For each protocol we evaluate, we run the Lites trace
10 times and measure the average performance of the
protocol by the following metrics:� Event reliability (ER): the number of unique pack-

ets received at the base station in an event divided
by the number packets generated for the event.

Event reliability reflects how well an event is
reported to the base station.� Packet delivery delay (PD): the time taken for a
packet to reach the base station from the node that
generates it.� Event goodput (EG): the number of unique pack-
ets received at the base station divided by the in-
terval between the moment the first packet is gen-
erated and the moment the base station receives
any packet the last time.

Event goodput reflects how fast the traffic of an
event is pushed from the network to the base sta-
tion. By definition, the optimal event goodput for
Lites trace is 6.66 packets/second, which corre-
sponds to the case where the packet delivery de-
lay is 0 and all the packets are received by the base
station.� Node reliability (NR): the number of unique pack-
ets that are generated by a node and received by
the base station divided by the number of packets
generated at the node.

(Remark: The study in this paper applies to cases
where network topologies other than grid and routing
protocols other than LGR are used, since the protocols
studied are independent of the network topology and
the routing protocol.)

2To focus on transport issues,we disable the “base-snooping” in LGR so
that the base station does not accept packets snooped over the channel.
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3 Limitations of two hop-by-hop
packet recovery mechanisms

Two widely used hop-by-hop packet recovery mecha-
nisms in sensor networks are synchronous explicit ack
and stop-and-wait implicit ack. We study their perfor-
mance in bursty convergecast as follows.

3.1 Synchronous explicit ack (SEA)
In SEA, a receiver switches to transmit-mode, imme-
diately after receiving a packet, and sends back the ac-
knowledgment without going through the procedure of
channel access control (since the current transmission
is preventing other nearby nodes from accessing the
channel); the sender immediately retransmits a packet
if the corresponding ack is not received after certain
constant time. Using our testbed, we study the perfor-
mance of SEA when used with B-MAC [13, 3] and S-
MAC [21]. B-MAC uses the mechanism of CSMA/CA
(carrier sense multiple access with collision avoidance)
to control channel access; S-MAC uses CSMA/CA too,
but it also employs RTS-CTS handshake to reduce the
impact of hidden terminals.

SEA with B-MAC. The event reliability, the average
packet delivery delay, as well as the event goodput is
shown in Table 1, where RT stands for the maximum

Metrics RT = 0 RT = 1 RT = 2
ER (%) 51.05 54.74 54.63

PD (seconds) 0.21 0.25 0.26
EG (packets/sec) 4.01 4.05 3.63

Table 1: SEA with B-MAC in Lites trace

number of retransmissions for each packet at each hop
(e.g., RT = 0 means that packets are not retransmit-
ted). The distribution of the number of unique packets
received at the base station along time is shown in Fig-
ure 3.

Table 1 and Figure 3 show that when packets are re-
transmitted, the event reliability increases slightly (i.e.,
by up to 3.69%). Nevertheless, the maximum relia-
bility is still only 54.74%, and, even worse, the event
reliability as well as goodput decreases when the max-
imum number of retransmissions increases from 1 to
2. (The above data is for B-MAC with its default con-
tention window size. We have conducted the experi-
ment with different contention window size of B-MAC,
and we found that the performance pattern remains the
same.)

SEA with S-MAC. Unlike B-MAC, S-MAC uses
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Figure 3: The distribution of packet reception in SEA
with B-MAC

RTS-CTS handshake for unicast transmissions, which
reduces packet collisions. We evaluate SEA when it is
used with S-MAC, and the performance data is shown
in Table 2 and Figure 4.

Metrics RT = 0 RT = 1 RT = 2
ER (%) 72.6 74.79 70.1

PD (seconds) 0.17 0.183 0.182
EG (packets/sec) 5.01 4.68 4.37

Table 2: SEA with S-MAC in Lites trace
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Figure 4: The distribution of packet reception in SEA
with S-MAC

Compared with B-MAC, RTS-CTS handshake im-
proves the event reliability by about 20% in S-MAC.
Yet packet retransmissions still do not significantly im-
prove the event reliability and can even decrease the
reliability.

Analysis. We find that the reason why retransmission
does not significantly improve — and can even degen-
erate — communication reliability is that, in SEA, lost
packets are retransmitted while new packets are gen-
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erated and forwarded, thus retransmissions, when not
scheduled appropriately, only increase channel con-
tention and cause more packet collision.3 The situation
is further exacerbated by ack-loss (with a probability
as high as 10.29%), since ack-loss causes unnecessary
retransmission of packets that have been received. To
make retransmission effective in improving reliability,
therefore, we need a retransmission scheduling mecha-
nism that ameliorates retransmission-incurred channel
contention.

3.2 Stop-and-wait implicit ack (SWIA)
SWIA takes advantage of the fact that every node, ex-
cept for the base station, forwards the packet it receives
and the forwarded packet can act as the acknowledg-
ment to the sender at the previous hop [12]. In SWIA,
the sender of a packet snoops the channel to check
whether the packet is forwarded within certain con-
stant threshold time; the sender regards the packet as
received if it is forwarded within the threshold time,
otherwise the packet is regarded as lost. The advantage
of SWIA is that acknowledgment comes for free except
for the limited control information piggybacked in data
packets.

We evaluate SWIA only with B-MAC, given that the
implementation of S-MAC is not readily applicable for
packet snooping. The performance results are shown
in Table 3 and in Figure 5.

Metrics RT = 0 RT = 1 RT = 2
ER (%) 43.09 31.76 46.5

PD (seconds) 0.35 8.81 18.77
EG (packets/sec) 3.48 2.58 1.41

Table 3: SWIA with B-MAC in Lites trace

We see that the maximum event reliability in SWIA
is only 46.5%, and that the reliability decreases signif-
icantly when packets are retransmitted at most once at
each hop. When packets are retransmitted up to twice
at each hop, the packet delivery delay increases, and
the event goodput decreases significantly despite the
slightly increased reliability.

Analysis. We find that the above phenomena are
due to the following reasons. First, the length of data
packets is increased by the piggybacked control in-
formation in SWIA, thus the ack-loss probability in-
creases (as high as 18.39% in our experiments), which
in turn increases unnecessary retransmissions. Second,

3This is not the case in wireline networks and is due to the nature of wireless
communications.
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Figure 5: The distribution of packet reception in SWIA
with B-MAC

most packets are queued upon reception and thus their
forwarding is delayed. As a result, the piggybacked
acknowledgments are delayed and the corresponding
packets are retransmitted unnecessarily. Third, once a
packet is waiting to be acknowledged, all the packets
arriving later cannot be forwarded even if the commu-
nication channel is free. Therefore, channel utilization
as well as system throughput decreases, and network
queuing as well as packet delivery delay increases.
Fourth, as in SEA, lack of retransmission scheduling
allows retransmissions, be it necessary or unnecessary,
to cause more channel contention and packet loss.

4 Protocol RBC

To address the limitations of SEA and SWIA in bursty
convergecast, we design protocol RBC. In RBC, we de-
sign a window-less block acknowledgment scheme to
increase channel utilization and to reduce the probabil-
ity of ack-loss. We also design a distributed contention
control scheme that schedules packet retransmissions
and reduces the contention between newly generated
and retransmitted packets. Moreover, we design mech-
anisms to address the challenges of bursty convergecast
on timer-based retransmission (such as varying ack-
delay and timer-incurred delay).

Given that the number of packets competing for
channel access is less in implicit-ack based schemes
than in explicit-ack based schemes, we design RBC
based on the paradigm of implicit-ack (i.e., piggyback-
ing control information in data packets). We elaborate
on RBC as follows. (Even though the mechanisms used
in RBC can be applied in the explicit-ack paradigm, we
relegate the detailed study as our future work.)
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4.1 Window-less block acknowledgment
In traditional block acknowledgment [6], a sliding-
window is used for both duplicate detection and in-
order packet delivery.4 The sliding-window reduces
network throughput once a packet is sent but remains
unacknowledged (since the sender can only send up to
its window size once a packet is unacknowledged), and
in-order delivery increases packet delivery delay once
a packet is lost (since the lost packet delays the deliv-
ery of every packet behind it). Therefore, the sliding-
window based block acknowledgment scheme does not
apply to bursty convergecast, given the real-time re-
quirement of the latter.

To address the constraints of traditional block ac-
knowledgment in the presence of unreliable links, we
take advantage of the fact that in-order delivery is not
required in bursty convergecast. Without considering
the order of packet delivery, by which we only need to
detect whether a sequence of packets are received with-
out loss in the middle and whether a received packet is
a duplicate of a previously received one. To this end,
we design, as follows, a window-less block acknowl-
edgment scheme which guarantees continuous packet
forwarding irrespective of the underlying link unrelia-
bility as well as the resulting packet- and ack-loss. For
clarity of presentation, we consider an arbitrary pair of
nodes � and � where � is the sender and � is the re-
ceiver.

Window-less queue management. The sender � or-
ganizes its packet queue as ����� �"! linked lists, as
shown in Figure 6, where � is the maximum num-
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Figure 6: Virtual queues at a node

ber of retransmissions at each hop. For convenience,
we call the linked lists virtual queues, denoted as#%$'&)(*()(+&,#.-0/

� . The virtual queues are ranked such
that a virtual queue

#21
ranks higher than

#43
if 5�687 .

Virtual queues
# $ &,#

�
&*()(*(

, and
# -

buffer packets
waiting to be sent or to be acknowledged, and

# -0/
�

4Note that SWIA is a special type of block acknowledgment where the
window size is 1.

collects the list of free queue buffers. The virtual
queues are maintained as follows:� When a new packet arrives at � to be sent, � de-

taches the head buffer of
# -0/

� , if any, stores
the packet into the queue buffer, and attaches the
queue buffer to the tail of

# $
.� Packets stored in a virtual queue
# 1

( 5:9<; ) will
not be sent unless

# 1>=
� is empty; packets in the

same virtual queue are sent in FIFO order.� After a packet in a virtual queue
#?1

( 5A@B; ) is
sent, the corresponding queue buffer is moved to
the tail of

#.1 /
� , unless the packet has been re-

transmitted � times5 in which case the queue
buffer is moved to the tail of

# -0/
� .� When a packet is acknowledged to have been re-

ceived, the buffer holding the packet is released
and moved to the tail of

# -0/
� .

Therefore, the order in which unacknowledged pack-
ets have been sent is maintained in the virtual queues
without any window-based control, providing the ba-
sis for window-less block acknowledgment. Moreover,
newly arrived packets can be sent immediately without
waiting for the previously sent packets to be acknowl-
edged, which enables continuous packet forwarding in
the presence of packet- and ack-loss.

Block acknowledgment & reduced ack-loss. Each
queue buffer at � has an ID that is unique at � . When� sends a packet to the receiver � , � attaches the ID
of the buffer holding the packet as well as the ID of the
buffer holding the packet to be sent next. In Figure 6,
for example, when � sends the packet in buffer C , � at-
taches the values C and D . Given the queue maintenance
procedure, if the buffer holding the packet being sent is
the tail of

#E$
or the head of a virtual queue other than#E$

, � also attaches the ID of the head buffer of
#0-?/

� ,
if any, since one or more new packets may arrive be-
fore the next enqueued packet is sent in which case the
newly arrived packet(s) will be sent first. For exam-
ple, when the packet in buffer F of Figure 6 is sent, �
attaches the values F , G , and H .

When the receiver � receives a packet I $ from � , �
learns the ID JLK of the buffer holding the next packet
to be sent by � . When � receives a packet INM from �
next time, � checks whether IOM is from buffer JLK at � :
if IPM is from buffer JLK , � knows that there is no packet
loss between receiving I $ and IOM from � ; otherwise, �
detects that some packets are lost between I $ and I M .

For each maximal sequence of packets I 1 &)(*()(+& I 1RQ
from � that are received at � without any loss in the

5Due to block-NACK, to be discussed in Section 4.3.2, a packet having
been retransmitted

-
times may be in a virtual queue other than SUT .
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middle, � attaches to packet I 1 Q the 2-tuple VXW 1�& W 1 Q�Y ,
where W 1 and W 1RQ are the IDs of the buffers storing I 1
and I 1RQ at � . We call VXW 1 & W 1RQ Y the block acknowledg-
ment for packets I 1 &)(*(*()& I 1 Q . When � snoops the for-
warded packet I 1 Q later, � learns that all the packets
sent between I 1 and I 1 Q have been received by � . Then� releases the buffers holding these packets. For exam-
ple, if � snoops a block acknowledgment VXF &[Z Y when
its queue state is as shown in Figure 6, � knows that
all the packets in buffers between F and

Z
in
#
� have

been received, and � releases buffers between F and
Z
,

including F and
Z
.

One delicate detail in processing the block acknowl-
edgment VXW 1�& W 1RQ Y is that after releasing buffer W 1 , �
will maintain a mapping W 1]\ W 1+Q Q , where W 1RQ Q is the
buffer holding the packet sent (or to be sent next) after
that in W 1 Q . When � snoops another block acknowl-
edgment VXW 1 & W M Y later, � knows, by W 1^\ W 1 Q Q , that
packets sent between those in buffers W 1 Q Q and W M have
been received by � ; then � releases the buffers holding
these packets, and � resets the mapping to W 1 \ W*M Q Q ,
where W)M Q Q is the buffer holding the packet sent (or to
be sent next) after that in W)M . � maintains the map-
ping for W 1 until � receives a block-NACK (to be dis-
cussed in Section 4.3.2) or a block acknowledgmentVXW & W�K Y where W`_a W 1 .

In the above block acknowledgment scheme, the ac-
knowledgment for a received packet is piggybacked
onto the packet itself as well as the packets that are re-
ceived consecutively after the packet without any loss
in the middle. Therefore, the acknowledgment is repli-
cated and the probability for it to be lost decreases sig-
nificantly, by a factor of 2.07 in Lites trace as analyzed
below.

Analysis of ack-loss probability. For convenience, we
define the following notations:
b c the probability of losing a single (data) packet;d c the number of packets received in succession

without any loss in the middle;d
e c the number of packets lost in succession;f c the number of packets received in succession
without any loss in the middle, after a packet
is already received;g c the number of times that the acknowledgment
for a packet is received at the sender.

Assuming that packet losses are independent of one
another, we have the probability mass functions for
random variables h and h]K as follows.ikj d^lnm*o l b�pXqsrtb'uXvikj d
ewlxm)oyl pXqzr
b'u{b v

In RBC, when a packet | is received at a receiver � ,
the acknowledgment for | can reach back to the sender

� in two ways: � snoops | when it is forwarded by �
later, with probability }�~������ ; or � does not snoop |
but snoops a packet whose block acknowledgment ac-
knowledges the reception of | , with probability }���� .
Therefore, the probability }������ of � receiving the ac-
knowledgment for | can be derived as follows:
i������{��l qLrtbi��X� l bz���v���� ikj f�lxm*o�ikj g�� q*� f:lxm*ol b � �v���� ikj f�lxm*o p�qLr ikj g ln� � f]l�m)o ul b � �v���� ikj d lxm�¡ q o pXqsr ikj d¢ewl�m)o ul £)¤¦¥¨§�©�£Rª�«�£�¬*§�­X£R®,¯¥¨§"£Rª�£ ¬i�°��X± l i������{��¡²i��³�

l qLrtb ¡ £)¤¦¥¨§�©�£+ª´«�£ ¬ §´­X£ ® ¯¥¨§"£Rªw£ ¬
Then, the probability }.K�,��� of losing the acknowledg-
ment for a packet in RBC is µ·¶¸}������ .

In the case of Lites trace and implicit-ack, I a�"� ({¹'º . Therefore } K����� ay» ( »'¼ º , reducing the ack-
loss probability of SWIA by a factor of 2.07. ½
Duplicate detection & obsolete-ack filtering. Since
it is impossible to completely prevent ack-loss in lossy
communication channels, packets whose acknowledg-
ments are lost will be retransmitted unnecessarily.
Therefore, it is necessary that duplicate packets be de-
tected and dropped.

To enable duplicate detection, the sender � main-
tains a counter for each queue buffer, whose value is
incremented by one each time a new packet is stored
in the buffer. When � sends a packet, it attaches the
current value of the corresponding buffer counter. For
each buffer W at � , the receiver � maintains the counter
value F)¾ piggybacked in the last packet from the buffer.
When � receives another packet from the buffer W later,� checks whether the counter value piggybacked in the
packet equals to F)¾ : if they are equal, � knows that the
packet is a duplicate and drops it; otherwise � regards
the packet as a new one and accepts it. The duplicate
detection is local in the sense that it only requires infor-
mation local to each queue buffer instead of imposing
any rule involving different buffers (such as in sliding-
window) that can degenerate system performance.

For the correctness of the above duplicate detection
mechanism, we only need to choose the domain size ¿
for the counter value such that the probability of losing¿ packets in succession is negligible. For example, for
the high per-hop packet loss probability 22.7% in the
case of Lites trace, ¿ could still be as small as 7, since
the probability of losing 7 packets in succession is only
0.003%.6

6Given the small domain size for the counter value as well as the usually
small queue size at each node, the duplicate detection mechanism does not
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In addition to duplicate detection, we also use buffer
counter to filter out obsolete acknowledgment. De-
spite the low probability, packet forwarding at � may
be severely delayed, such that the queue buffers signi-
fied in a block acknowledgment have been reused by� to hold packets arriving later. To deal with this, �
attaches to each forwarded packet the ID as well as
the counter value of the buffer holding the packet at� originally; when � snoops a packet forwarded by� , � checks whether the piggybacked counter value
equals to the current value of the corresponding buffer:
if they are equal, � regards as valid the piggybacked
block acknowledgment; otherwise, � regards the block
acknowledgment as obsolete and ignores it.

Aggregated-ack at the base station. In sensor net-
works, the base station usually forwards all the pack-
ets it receives to an external network. As a result, the
children of the base station (i.e., the nodes that for-
ward packets directly to the base station) are unable
to snoop the packets the base station forwards, and the
base station has to explicitly acknowledge the packets
it receives. To reduce channel contention, the base sta-
tion aggregates several acknowledgments, for packets
received consecutively in a short period of time, into a
single packet and broadcasts the packet to its children.
Accordingly, the children of the base station adapt their
control parameters to the way the base station handles
acknowledgments.

4.2 Differentiated contention control

In wireless sensor networks where per-hop connectiv-
ity is reliable, most packet losses are due to collision in
the presence of severe channel contention. To enable
reliable packet delivery, lost packets need to be retrans-
mitted. Nevertheless, packet retransmission may cause
more channel contention and packet loss, thus degen-
erating communication reliability. Also, there exist un-
necessary retransmissions due to ack-loss, which only
increase channel contention and reduce communica-
tion reliability. Therefore, it is desirable to schedule
packet retransmissions such that they do not interfere
with transmissions of other packets.

The way the virtual queues are maintained in our
window-less block acknowledgment scheme facilitates
the retransmission scheduling, since packets are auto-
matically grouped together by different virtual queues.
Packets in higher-ranked virtual queues have been
transmitted less number of times, and the probabil-

consume much memory. For example, it only takes 36 bytes in the case of
Lites.

ity that the receiver has already received the packets
in higher-ranked virtual queues is lower (e.g., 0 for
packets in

#E$
). Therefore, we rank packets by the

rank of the virtual queues holding the packets, and
higher-ranked packets have higher-priority in access-
ing the communication channel. By this rule, packets
that have been transmitted less number of times will be
(re)transmitted earlier than those that have been trans-
mitted more, and interference between packets of dif-
ferent ranks is reduced.

Window-less block acknowledgment already han-
dles packet differentiation and scheduling within a
node, thus we only need a mechanism that schedules
packet transmission across different nodes. To reduce
interference between packets of the same rank and to
balance network queuing as well as channel contention
across nodes, inter-node packet scheduling also takes
into account the number of packets of a certain rank so
that nodes having more such packets transmit earlier.

To implement the above concepts, we define the rankÀ CwJs5N��7w! of a node 7 as V��Á¶Â5 &�Ã #.1�Ã{& ID �Ä7�! Y , where#21
is the highest-ranked non-empty virtual queue at 7 ,Ã #.1´Ã

is the number of packets in
#21

, and ID �Ä7�! is the
ID of 7 . A node with a larger rank value ranks higher.7

Then, the distributed transmission scheduling works as
follows:� Each node piggybacks its rank to the data packets

it sends out.� Upon snooping or receiving a packet, a node 7
compares its rank with that of the packet sender 5 .7 will change its behavior only if 5 ranks higher
than 7 , in which case 7 will not send any packet in
the following Å2�Ä7 & 5´!O�tÆOÇ 1�È time. ÆPÇ 1�È is the time
taken to transmit a packet at the MAC layer, andÅ2�Ä7 & 5´! aÊÉ ¶¸Ë , when À CwJs5N��7�! and À CwJs5N��5´! dif-
fer at the Ë -th element of the 3-tuple ranks. Å2�Ä7 & 5´!
is defined such that the probability of all waiting
nodes starting their transmissions simultaneously
is reduced, and that higher-ranked nodes tend to
wait for shorter time. Æ Ç 1RÈ is estimated by the
method of Exponentially Weighted Moving Aver-
age (EWMA).� If a sending node 7 detects that it will not send
its next packet within ÆOÇ 1�È time (i.e., when 7
knows that, after the current packet transmission,
it will rank lower than another node), 7 signifies
this by marking the packet being sent, so that the

7The concept of “rank” is defined such that the first field guarantees that
packets having been transmitted less number of times will be (re)transmitted
earlier, the second field ensures that nodes having more packets enqueued get
chances to transmit earlier, and the third field is to break ties in the first two
fields.
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nodes overhearing the packet will skip 7 in the
contention control. (This mechanism reduces the
probability of idle waiting, where the channel is
free but no packet is sent.)

4.3 Timer management in window-less
block acknowledgment

In window-less block acknowledgment, a sender �
starts a retransmission timer after sending a packet, and� retransmits the packet if � has not received the cor-
responding ack when the timer times out. Retransmis-
sion timers directly affect the reliability and the de-
lay in packet delivery: large timeout values of timers
tend to increase packet delivery delay, whereas small
timeout values tend to cause unnecessary retransmis-
sions and thus decrease packet delivery reliability. To
provide reliable and real-time packet delivery, we de-
sign mechanisms to manage the timers in window-less
block acknowledgment as follows. (Again, we con-
sider a sender � and a receiver � .)

4.3.1 Dealing with varying ack-delay

When the receiver � receives a packet | from the
sender � , � first buffers | in

# $
. The delay in � for-

warding | depends on the number of packets in front
of | in

# $
. Since the number of packets enqueued in# $

keeps changing, the delay in forwarding a received
packet by � keeps changing, which leads to varying
delay in packet acknowledgment. Therefore, the re-
transmission timer at the sender � should adapt to the
queuing condition at � ; otherwise, either lost packets
are unnecessarily delayed in retransmission (when the
retransmission timer is too large) or packets are unnec-
essarily retransmitted even if they are received (when
the retransmission timer is too small).

To adaptively setting the retransmission timer for a
packet, the sender � keeps track of, by snooping pack-
ets forwarded by � , the length Ì � of

# $
at � , the aver-

age delay G � in � forwarding a packet after the packet
becomes the head of

# $
, and the deviation GwK� of G � .

When � sends a packet to � , � sets the retransmission
timer of the packet as

��Ì � � ¿ $ !+��G � � É G K� !
where ¿ $ is a constant denoting the number of new
packets that � may have received since � learned Ì �
the last time ( ¿ $ depends on the application as well
as the link reliability, and ¿ $ is 3 in our experiments).
The reason why we use the deviation G�K� in the above
formula is that Gw� varies a lot in wireless networks in

the presence of bursty traffic, in which case the devia-
tion improves estimation quality [10].

At a node, each local parameter Í (such as G�� for
node � ) and its deviation ÍUK are estimated by the
method of EWMA as follows:Î.ÏÐpXqsr.Ñ"u³Î ¡ Ñ'Î e eÎ e ÏÐp�qLr.Ñ e u³Î e ¡ Ñ e � Î e e r2ÎN�
where Ò and Ò K are weight-factors, and Í K K is the latest
observation of Í . Empirically, we set Ò a �Ó and ÒÔK a�� in RBC.

4.3.2 Alleviating timer-incurred delay

The packet retransmission timer calculated as above is
conservative in the sense that it is usually greater than
the actual ack-delay [10]. This is important for reduc-
ing the probability of unnecessary retransmissions, but
it introduces extra delay and makes network resources
under-utilized [22].

To alleviate timer-incurred delay, we design the fol-
lowing mechanisms to expedite necessary packet re-
transmissions and to improve channel utilization:� Whenever the receiver � receives a packet |

from buffer J of the sender � while � is expecting
(in the absence of packet loss) to receive a packet
from buffer JsK of � , � learns that packets sent be-
tween those in buffers JsK and J at � , including the
one in JsK , are lost. In this case, � piggybacks a
block-NACK Õ JsK & Js! onto the next packet it for-
wards, by which the block-NACK can be snooped
by � immediately.

When � learns the block-NACK Õ JsK & Js! from� , � resets the retransmission timers to 0 for the
packets sent between those in JzK and J (includ-
ing the one in JsK ), and for each of these packets,� moves the corresponding buffer to the tail of#.1�=
� if the buffer is currently at

#?1
. Therefore,

packets that need to be retransmitted are put into
higher-ranked virtual queues and are retransmit-
ted quickly.8� Whenever � learns that the virtual queue

#.$
of �

becomes empty, � knows that � has forwarded all
the packets it has received. In this case, � resets
the retransmission timers to 0 for those packets
still waiting to be acknowledged, since they will
not be (due to either packet-loss or ack-loss).

Similarly, when � snoops the acknowledgment
for a packet | , � resets the retransmission timer
to 0 for those packets that are sent before | but
are still waiting to be acknowledged.

8Note that the movement of NACKed packets do not disrupt the buffering
order required by block-acknowledgment.
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� When a network channel is fully utilized, it should
be busy all the time. Therefore, if the sender� has packets to send, and if � notices that no
packet is sent by any neighboring node in a pe-
riod of ¿ � � Æ�Ç

1�È
time, � sends out the packet

at the head of its highest-ranked non-empty vir-
tual queue, without considering the retransmis-
sion timer even if the packet is to be acknowl-
edged.9 ¿ � is a constant reflecting the degree of
channel utilization we want and Æ Ç 1�È is the time
taken to transmit a packet at the MAC layer.

5 Experimental results
We have implemented protocol RBC in TinyOS using
B-MAC,10 and RBC has been successfully applied in a
field sensor network of about 1,000 XSM motes (an en-
hanced version of MICA2) to support reliable and real-
time convergecast [2]. We have also evaluated RBC in
our testbed, and the performance results are shown in
Table 4. Figure 7 shows the distribution of packet re-

Metrics RT = 0 RT = 1 RT = 2
ER (%) 56.21 83.16 95.26

PD (seconds) 0.21 1.18 1.72
EG (packets/sec) 4.28 5.72 6.37

Table 4: RBC in Lites trace
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Figure 7: The distribution of packet reception in RBC

ception in RBC. From Table 4 and Figure 7, we observe
the following properties of RBC:

9This mechanism improves channel utilization without introducing unnec-
essary retransmissions because of the “differentiated contention control” in
RBC.

10In the implementation, the control logic takes 185 bytes of RAM when
each node maintains a buffer capable of holding 16 packets, and the control
information piggybacked in data packets takes 14 bytes. We are currently
studying methods of reducing the memory consumption and the length of the
piggybacked control information, for instance, using explicit acknowledgment.

� The event reliability keeps increasing, in a signif-
icant manner, as the number of retransmissions
increases. The increased reliability mainly at-
tributes to reduced unnecessary retransmissions
(by reduced ack loss and adaptive retransmission
timer) and retransmission scheduling.� Compared with SWIA which is also based on
implicit-ack, RBC reduces packet delivery delay
significantly. This mainly attributes to the ability
of continuous packet forwarding in the presence
of packet- and ack-loss and the reduction in timer-
incurred delay.� The rate of packet reception at the base station and
the event goodput keep increasing as the number
of retransmissions increases. When packets are
retransmitted up to twice at each hop, the event
goodput reaches 6.37 packets/second, quite close
to the optimal goodput — 6.66 packets/second —
for Lites trace.

Compared with SWIA, RBC improves reliability by
a factor of 2.05 and reduces average packet delivery
delay by a factor of 10.91. Compared to SEA with
B-MAC (simply referred to as SEA hereafter), RBC
improves reliability by a factor of 1.74, but the av-
erage packet delivery delay increases by a factor of
6.61 in RBC. Interestingly, however, RBC still im-
proves the event goodput by a factor of 1.75 when com-
pared with SEA. The reason is that, in RBC, lost pack-
ets are retransmitted and delivered after those packets
that are generated later but transmitted less number of
times. Therefore, the delivery delay for lost packets
increases, which increases the average packet delivery
delay, without degenerating the system goodput. The
observation shows that, due to the unique application
models in sensor networks, metrics evaluating aggre-
gate system behaviors (such as the event goodput) tend
to be of more relevance than metrics evaluating unit be-
haviors (such as the delay in delivering each individual
packet).

To further understand protocol behaviors in the pres-
ence of packet retransmissions, we conduct, as follows,
a comparative study of RBC, SWIA, and SEA for the
case where packets are retransmitted up to twice at
each hop.

Figure 8 compares the distribution of packet gener-
ation in Lites trace with the distributions of packet re-
ception in SEA, SWIA, and RBC. We see that the curve
for packet reception in RBC smooths out and almost
matches that of packet generation. In contrast, many
packets are lost in SEA despite the fact that the rate of
packet reception in SEA is close to that in RBC; packet
delivery is significantly delayed in SWIA, in addition
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Figure 8: The distributions of packet generation and
reception

to the high degree of packet loss.
Based on the grid topology as shown in Figure 1(b),

Figures 9(a)-(c) show the node reliability in SEA,
SWIA, and RBC respectively. Figure 10 shows the cu-
mulative distribution of node reliability in SEA, SWIA,
and RBC. We see that node reliability improves signif-
icantly in RBC: only 4.17% of nodes have a node reli-
ability less than 80% in RBC; yet in SEA and SWIA,
above 80% of nodes have a node reliability less than
80%.

Figure 11 shows the average node reliability in SEA,
SWIA, and RBC as the number of routing hops (to the
base station) increases. We see that the node reliability
in RBC is much higher than that in SEA and SWIA at
every routing hop, and that the reliability at the farthest
hop in RBC is even greater than that at the closest hop
in SEA and SWIA. (Note that, in RBC, the reason why
nodes 5 hops away from the base station have lower av-
erage delivery rate than nodes 6 hops away can be due
to the specific traffic pattern and the difference among
nodes’ hardware.)
Remark. In this paper, we focus on scenarios where
packets are timestamped and thus we do not need to
precisely preserve the relative timing between packets
as it is when they are generated. Nevertheless, to char-
acterize how RBC affects the relative timing of packets,
we measure the timing-shift of packet delivery as fol-
lows. Given a packet }²µ received at the base station,
the timing-shift for }²µ is calculated as

Ã �X� � ¶8�
$ !U¶Ö��� � ¶×�

$ ! Ã
where � � denotes the time when }²µ is received at the
base station, � $ denotes the time when a packet }E; is
received at the base station immediately before }²µ , � �
denotes the time when }²µ is generated at some node
in the network, and � $ denotes the time when }E; is
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Figure 9: Node reliability

generated at some node in the network.11 For conve-
nience, we set the timing-shift to ; for the first packet
received at the base station. Based on this definition,

11In this definition, we do not consider the packets that are lost, only cal-
culating the relative timing-shift between packets that are received at the base
station.
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Figure 11: Node reliability as a function of routing
hops

we find that the average timing-shift is 1.0035 second
for the packets received in the case of RBC, and that the
average timing-shift is around 0.1698 second in both
SEA and SWIA. Even though the timing-shift in RBC
is predictably greater than those in SEA and SWIA, it
is still small enough for real-time event-driven applica-
tions such as Lites and ExScal [2] where high-level de-
cisions are based on data in the order of seconds. Note
that to reduce the timing-shift in packet delivery, we
can modify the queue management policy in window-
less block acknowledgment, but we relegate a study of
this to our future work.

6 Related work
The performance of packet delivery in dense sensor
networks has been studied in [23]. The results show
that, in the presence of heavy channel load, a com-
monly used loss recovery scheme at link layer (i.e., lost
packets are retransmitted up to 3 times) does not mask
packet loss, and more than 50% of the links observe
50% packet loss. The observation shows the challenge
of reliable communication over multi-hop routes, since

the reliability decreases exponentially as the number of
hops increases.

The limitations of timers in TCP retransmission con-
trol have been studied in [22]. The author analyzes
the intrinsic difficulties in using timers to achieve op-
timal performance and argues that additional mecha-
nisms should be used. Despite its focus on TCP, the
study also applies to retransmission control in sensor
networks.

Block acknowledgment [6] has been proposed for er-
ror as well as flow control in the Internet. It considers
the problem of in-order packet delivery. Therefore, a
lost packet blocks the delivery of all the packets that
are behind the lost one but have reached the receiver,
as a result of which packet delivery delay is increased.
Moreover, a sender can send packets at most up to its
window size once a packet is sent but unacknowledged,
thus the channel resource may be under-utilized. Block
acknowledgment also uses timers without addressing
their limitations, which can render additional delay in
packet delivery.

For packet-loss detection and retransmission control,
DFRF [12] uses stop-and-wait implicit ack (SWIA).
Yet DFRF does not address the issue of retransmission-
incurred channel contention. Moreover, the retrans-
mission timers in DFRF do not adapt to the varying
ack-delay, which can introduce more retransmission
or delay than necessary. To reduce the number of
packet transmissions, DFRF uses raw data aggregation
where multiple short packets are concatenated to form
a longer packet. In the type of bursty convergecast as
experienced by Lites and ExScal [2], it is more diffi-
cult to perform data aggregation at the mote level be-
cause motes detecting an event can be multiple hops
away from one another and the length of a single sen-
sor data entry is more than half of the packet length.
Therefore, the current implementation of RBC is based
on the paradigm of implicit-ack to reduce the number
of packets competing for channel access. On the other
hand, we believe that the methodologies developed in
RBC (e.g., window-less block acknowledgment and
differentiated contention control) can also be applied
when there is data aggregation, in which case we can
use explicit-ack packets to send out control informa-
tion. The detailed study on this is a part of our future
work.

RMST [16] and PSFQ [18] have shown the im-
portance of hop-by-hop packet recovery in sensor
networks. Yet RMST and PSFQ do not focus on
bursty convergecast. Therefore, they do not cope with
retransmission-incurred channel contention, they do
not design mechanisms to alleviate delay incurred by
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retransmission timers (whose timeout values are con-
servatively chosen to reduce unnecessary retransmis-
sions), and they do not design mechanisms to reduce
the probability of ack-loss. Our work complements
theirs by identifying issues with existing hop-by-hop
mechanisms in bursty convergecast and proposing ap-
proaches to address the issues.

CODA [19] and ESRT [14] have studied conges-
tion control in sensor networks. They consider a traffic
model where multiple sources are continuously or pe-
riodically generating packets. Therefore, they do not
focus on real-time packet delivery in bursty converge-
cast, and they do not consider retransmission-incurred
delay as well as channel contention. Recent work in [9]
and [8] has studied different techniques for mitigating
congestion and guaranteeing fairness in wireless sensor
networks. Our work complements theirs by focusing
on retransmission-based error control and retransmis-
sion scheduling. Several transport protocols, such as
ATP [17] and WTCP [15], are also proposed for wire-
less ad hoc networks. Again, they do not face the chal-
lenges of reliable bursty convergecast.

7 Concluding remarks

Unlike most existing literature on reliable transport in
sensor networks that focuses on periodic traffic, we
have focused on bursty convergecast where the key
challenges are reliable and real-time error control and
the resulting contention control. To address the unique
challenges, we have proposed the window-less block
acknowledgment scheme which improves channel uti-
lization and reduces ack-loss as well as packet delivery
delay; we have also designed mechanisms to sched-
ule packet retransmissions and to reduce timer-incurred
delay, which are critical for reliable and real-time trans-
port of bursty traffic. With its well-tested support for
reliable and real-time transport of bursty traffic, RBC
has been used in a field sensor network experiment
where about 1,000 XSM motes are deployed [2].

From protocol RBC, we see that bursty converge-
cast not only poses challenges for reliable and real-time
transport control, it also provides unique opportunities
for protocol design. Tolerance of out-of-order packet
delivery enables the window-less block acknowledg-
ment, which not only guarantees continuous packet
delivery in the presence of packet- and ack-loss but
also facilitates retransmission scheduling. Overall, the
unique network as well as application models in sensor
networks offer opportunities for new methodologies in
protocol engineering and are interesting areas for fur-

ther exploration.
In designing RBC, we have focused on reliable

bursty convergecast in event-driven applications. As
a part of our future work, we plan to evolve the design
of RBC to support reliable and real-time transport of
periodic data.
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