
Key Bundles and Parcels:
Secure Communication in Many Groups

Eunjin Jung, Xiang-Yang Alex Liu, Mohamed G. Gouda�
ejung, alex, gouda � @cs.utexas.edu

Department of Computer Sciences
The University of Texas at Austin

Abstract. We consider a system where each user is in one or more elementary
groups. In this system, arbitrary groups of users can be specified using the op-
erations of union, intersection, and complement over the elementary groups in
the system. Each elementary group in the system is provided with a security key
that is known only to the users in the elementary group and to the system server.
Thus, for any user u to securely multicast a data item d to every user in an arbi-
trary group G, u first forwards d to the system server which encrypts it using the
keys of the elementary groups that comprise G before multicasting the encrypted
d to every user in G. Every elementary group is also provided with a key tree to
ensure that the cost of changing the key of the elementary group, when a user
leaves the group, is small. We describe two methods for packing the key trees of
elementary groups into key bundles and into key parcels. Packing into key bun-
dles has the advantage of reducing the number of encryptions needed to multicast
a data item to the complement of an elementary group. Packing into key parcels
has the advantage of reducing the total number of keys in the system. We apply
these two methods to a class of synthetic systems: each system has 10000 users
and 500 elementary groups, and each user is in 2 elementary groups on average.
Simulations of these systems show that our proposals to pack key trees into key
bundles and key parcels live up to their promises.

1 Introduction

We consider a system that consists of n users denoted ui, 0 � i � n. The system users
share one security key, called the system key. Each user ui can use the system key to
encrypt any data item before sending it to any subset of the system users, and can use
it to decrypt any data item after receiving it from any other system user. (Examples of
such systems are secure multicast systems [1], [2], [3], [4], secure peer-to-peer systems
[5], and secure wireless networks [6].)

When a user ui leaves the system, the system key needs to be changed so that ui can
no longer decrypt the encrypted data item exchanged within the system. This requires
to add a server S to the system and to provide each system user u j with an individual
key K j that only user u j and server S know. When a user ui leaves the system, server S
changes the system key and sends the new key to each user u j, other than ui, encrypted
using its individual key K j. The cost of this rekeying scheme, measured by the number
of needed encryptions, is O � n � , where n is the number of users in the system.

Clearly, this solution does not scale when the number of users become large. More
efficient rekeying schemes have been proposed in [7], [8], [9], [10], [11], and [12].
A particular efficient rekeying scheme [3] and [4] is shown to cost merely O � logn �
encryptions. This scheme is extended in [13], [14], and [15], and is shown to be optimal
in [16], and has already been accepted as an Internet standard [3].

This scheme is based on a distributed data structure called a key tree. A key tree is a
directed, incoming, rooted, balanced tree where each node represents a key. The root of
the tree represents the system key and each leaf node represents the individual key of a
system user. The number of leaf nodes is n, which is the number of users in the system.
Each user knows all the keys on the directed path from its individual key to the root of
the tree, and the server knows all the keys in the key tree. Thus, in a binary key tree,
each user knows � log2 n ��� 1 keys, and the server knows � 2n � 1 � keys.

An example of a key tree for a system of 8 users is depicted in Figure 1(a). The
root of the key tree represents the system key K01234567 that is known to all users in the
system. Each user also knows all the keys on the directed path from its individual key
to the root of the key tree. For example, user u7 knows all the keys K7, K67, K4567, and
K01234567.

K0123

K0 K2 K3 K4 K5 K6K1

01K 23K 45K

K0123 K4567

K01234567

K0 K2 K3 K4 K5 K6 K7K1

01K 23K 45K 67K

0123456(7)K

456(7)K

6(7)K

7u leaves
system key

individual keys
(a) (b)

Fig. 1. A binary key tree before and after u7 leaves

Figure 1(a) and 1(b) illustrates the protocol for updating the system key when user
u7 leaves the system. In this case, the system server S is required to change the keys
K01234567, K4567, and K67 that user u7 knows. To update these keys, S selects new keys
K0123456 � 7 � , K456 � 7 � , and K6 � 7 � , encrypts them, and sends them to the users that need to
know them. To ensure that u7 cannot get a copy of the new keys, S needs to encrypt the
new keys using keys that u7 does not know. Therefore, S encrypts the new K0123456 � 7 �
with the old K0123, encrypts the new K0123456 � 7 � and the new K456 � 7 � with the old K45,
encrypts the new K0123456 � 7 � , the new K456 � 7 � , and the new K6 � 7 � with K6. Then, S mul-
ticasts the encrypted keys to the corresponding holders of these keys. The protocol can
be specified as follows.

S � u0 �
	�	
	�� u6 :
�
u0 � u1 � u2 � u3 � � K0123 � K0123456 � 7 �� chk �

S � u0 �
	�	
	�� u6 :
�
u4 � u5 � � K45 � K0123456 � 7 �
 K456 � 7 �� chk �

S � u0 �
	�	
	�� u6 :
�
u6 � � K6 � K0123456 � 7 �
 K456 � 7 �� K6 � 7 �� chk �

This protocol consists of three steps. In each step, server S broadcasts a message
consisting of two fields to every user in the system. The first field defines the set of
the intended ultimate destinations of the message. The second field is an encryption,
using an old key, of the concatenation of the new key(s) and a checksum computed over
the new key(s). Note that although the broadcast message is sent to every user in the
system, only users in the specified destination set have the key used in encrypting the
message and so only they can decrypt the message.

The above system architecture is based on the assumption that the system users
constitute a single group. In this paper, we extend this architecture to the case where the
system users form many groups.

2 Groups and Group Algebra

Assume that the system has m, m � 1, elementary groups: each elementary group is a
distinct subset of the system users and one elementary group has all the system users.
Every elementary group has a unique identifier G j, 0 � j � m � 1. The identifier for the
elementary group that has all users is G0. As an example, Figure 2 illustrates a system
that has eight users u0 through u7 and five elementary groups G0, G1, G2, G3, and G4.

G1

G0

G3

G4

G2

u 0 u 1

u 2

u 3 u 5

u 4

u 7
u 6

Fig. 2. A sample system

The system needs to be designed such that any user ui can securely multicast data
items to all users in any elementary group G j. Moreover, any user ui can securely multi-
cast data items to all users in any group, where a group is defined recursively according
to the following four rules:

i. Any of the elementary groups G0 �
	�	
	 � Gm � 1 is a group.
ii. The union of any two groups is a group.

iii. The intersection of any two groups is a group.
iv. The complement of any group is a group.(Note that the complement of any group

G is the set of all users in G0 that are not in G)

Thus, the set of groups is closed under the three operations of union, intersection, and
complement.

Each group can be defined by a group formula that includes the following symbols.

– G0 through Gm � 1

– � for union
– � for intersection
– � for complement

Group formulae can be manipulated using the well-known laws of algebra: asso-
ciativity, commutativity, distribution, De-Morgan’s, and so on. For example, the group
formula

G1 ��� ��� G2 � G1 �
can be manipulated as follows:

G1 ��� ��� G2 � G1 �
� �

by De Morgan’s � G1 � ����� G2 ��� G1 �
� �

by associativity of � � G1 ����� G2 ��� G1
� �

by definition of complement � G1 � G2 ��� G1
� �

by commutativity of � � G1 ��� G1 � G2
� �

by definition of complement � G0 � G2
� �

by definition of � � G0

From this formula manipulation, it follows that the group defined by the formula
G1 ��� ��� G2 � G1 � is the set of all system users. Thus, for a user ui to securely multicast
a data item d to every user in the group G1 �	� ��� G2 � G1 � , it is sufficient for ui to
securely broadcast d to every user in the system.

In the rest of this paper, we consider solutions for the following problem. How to
design the system so that any system user ui can securely multicast data items to any
group G in the system. Any reasonable solution for this problem needs to take into
account that the users can leave any elementary group in the system or leave the system
altogether, and these activities may require to change the security keys associated with
the elementary groups from which users leave. In particular, the solution should utilize
key trees, discussed in Section 1, that can reduce the cost of changing the security keys
from O � n � to O � logn � , where n is the total number of users in the system.

The above problem has many applications. As a first example, consider a music file
sharing system that has four elementary groups: Rock, Jazz, Blues, and Do-Not-Disturb.
A user ui in this system may wish to securely distribute a song of Louis Armstrong to
all interested users. In this case, user ui securely multicasts the song to all users in the
group, Jazz ��� Do-Not-Disturb.

As a second example, consider a student registration system in some university.
This system has m elementary groups G0 through Gm � 1, where each Gi is a list of the
students registered in one course section. A professor who is teaching three sections G5,
G6, G7 of the same course, may wish to securely multicast any information related to
the course to all the students in the group G5 � G6 � G7.

3 Key Bundles

The above problem suggests the following simple solution (which we show below that
it is ineffective). First, assign to each elementary group G j a security key to be shared

by all the users of G j. Second, assign to the complement � G j of each elementary group
G j a security key to be shared by every member of this complement. Third, provide a
key tree for each elementary group and another key tree for its complement. Note that
the two key trees provided for an elementary group and its complement span all the
users in the system. Thus, these two trees can be combined into one complete key tree
that spans all system users in the system. Figure 3 shows the four complete key trees
that are provided for the four elementary groups and their complements in the system
in Figure 2.

K0 K2 K3 K4 K5 K6 K7K1

01K 23K 45K 67K

K0 K2 K3 K4 K5 K6 K7K1

01K 23K 45K 67K

K0 K2 K3 K4 K5 K6 K7K1

01K 23K 45K 67K

K0123 K4567 K2345

K0123

K0 K2 K3 K4 K5 K6 K7K1

01K 23K 45K 67K

K0167

K234567

K012345

K01234567

K01234567

K01234567

G0
G0

G0

G1

G3
G4

G4

K2345
G3

G2

K01234567
G0

G1

G0 G1 G1(a) Groups , , G0 G2 G2

G0 G3 G3(c) Groups , , G0 G4 G4

G2

(b) Groups , ,

(d) Groups , ,

Fig. 3. The complete key trees for the elementary groups and their complements

From Figure 3(a), the key for the elementary group G1 is K0123 and the key for its
complement is K4567. From Figure 3(b), the key for the elementary group G2 is K01

and the key for its complement is K234567. From Figure 3(c), the key for the elementary
group G3 is K2345, and the key fro its complement is K0167. From Figure 3(d), the key
for the elementary group G4 is K67, and the key for its complement is K012345.

Note that these complete trees have the same key for group G0, and the same indi-
vidual key for each user. Nevertheless, the total number of distinct keys in these com-
plete trees is 19, which is relatively large for this rather simple system. In general, this
method requires O � mn � keys, where m is the number of elementary groups and n is the
number of users in the system.

To reduce the total number of needed keys, several elementary groups can be added
to the same complete key tree, provided that these elementary groups are “nonconflict-
ing”. This idea suggests the following three definitions of nonconflicting elementary
groups, bundles, and bundle covers.

Two elementary groups are nonconflicting if and only if either their intersection is
empty or one of them is a subset of the other. In the system example in Figure 2, the
three elementary groups G0, G1 and G2 are nonconflicting since G1 is a subset of G0,
and G2 is a subset of G1. On the other hand, the two elementary groups G1 and G3 are
conflicting, because they share two users u2 and u3 and neither group is a subset of the
other.

A bundle of a system is a maximal set of nonconflicting elementary groups of the
system. In the system example in Figure 2, the four elementary groups G0, G1, G2, G4

constitute one bundle B0, and the four elementary groups G0, G2, G3, G4 constitute a
second bundle B1.

A bundle cover of a system is a set
�
B0 �
	�	
	 � Bm � 1 � of system bundles such that the

following two conditions hold:

i. Completeness: Each elementary group of the system appears in some bundle Bi in
the bundle cover.

ii. Compactness: Each bundle Bi has at least one elementary group that does not ap-
pear in any other bundle B j in the bundle cover.

Note that the set
�
B0 � B1 � , where B0

� �
G0 � G1 � G2 � G4 � and B1

� �
G0 � G2 � G3 � G4 � ,

is a bundle cover for the system in Figure 2.

K0123

K01234567G0

G1

G2 C0

K0 K2 K3 K4 K5 K6 K7K1

01K 23K 45K 67K G4

K0 K2 K3 K4 K5 K6 K7K1

01K 23K 45K 67KC1

(a) B0 � �
G0 � G1 � G2 � G4 �

K2345

K0 K2 K3 K4 K5 K6 K7K1

01K 23K 45K 67K

K01234567G0

G2

G3

G4

(b) B1 � �
G0 � G2 � G3 � G4 �

Fig. 4. The complete key trees for the two bundles B0 and B1

The security keys for the elementary groups in a bundle can be arranged in a com-
plete key tree. For example, Figure 4(a) shows the complete key tree for B0. In this tree,
the key for group G0 is K01234567, the key for group G1 is K0123, the key for G2 is K01,
and the key for G4 is K67. Note that users u4 and u5 in G0 do not belong to any other
elementary group in the bundle, and so they are viewed as forming a complement group
C0 whose key is K45. We refer to a complete key tree that corresponds to a bundle as a
key bundle.

Figure 4(b) shows the complete key bundle for B1. Note that in this bundle every
user in G0 is also in another elementary group. Thus, the resulting complete key tree
does not have a complement group as in the former key tree in Figure 4(a).

Comparing the two key bundles in Figures 4(a) and 4(b), one observes that each of
the elementary groups G0, G2, and G4 appear in both key bundles because none of them
conflict with any elementary group or any group in the system. One also observes that
each of these groups has the same group key in both key bundles, and that the individual
key of each user is the same in both key bundles. Note that these key bundles have only
15 distinct keys compared with the 19 distinct keys in the four complete trees in Figure
3. This represents more than 20% reduction in the total number of keys in the system.

The system server S knows the two key bundles in Figure 4, and each user ui knows
only the keys that exist on the paths from its individual key Ki to the key of group G0.
Thus, each user ui needs to collaborate with the system server S in order to securely
multicast data items to any elementary group or any group that can be defined by inter-
section, union, and complement of elementary groups. This point is illustrated by the
following four examples.

For the first example, assume that user u0 wants to securely multicast a data item d
to every user in group G4. In this case, user u0 can execute the following protocol.

u0 � S : K0 � d G4 chk �
S � u0 �
	�	
	 � u7 : G4 � K67 � d u0 chk �

This protocol consists of two steps. In the first step, user u0 sends a message K0 �
d G4 chk � to server S. This message consists of three concatenated fields, namely the
data item d, its intended destination G4, and the checksum chk; the message is encrypted
by the individual key K0 of user u0. In the second step, server S multicasts the message
G4, K67 � d u0 chk � where the second field consists of the data item d, the message
source u0, and the checksum chk and is encrypted with the group key of G4.

For the second example, assume user u1 wants to securely multicast a data item d
to the users in either group G1 or G3, namely the users in the union of G1 and G3. In
this case, user u1 can execute the following protocol.

u1 � S : K1 � d G1 � G3 chk �
S � u0 �
	�	
	�� u7 : G1 � G3 � K0123 � d u1 chk � � K2345 � d u1 chk �

In the second step of this protocol, server S multicasts the message G1 � G3, K0123 �
d u1 chk � , K2345 � d u1 chk � to the two groups G1 and G3. The users in group G1

can get d by using the group key K0123 to decrypt K0123 � d u1 chk � and the users in
group G3 can get d by using the group key K2345 to decrypt K2345 � d u1 chk � . Note
that if it is u2 who wants to send d to G1 � G3, then since u2 belongs to both G1 and G3,
u2 already knows both K0123 and K2345. Therefore, u2 can send the encrypted d directly
to the users in G1 and G3 as follows:

u2 � u0 ��	
	
	 � u7 : G1 � G3 � K0123 � d u2 chk � � K2345 � d u2 chk �
For the third example, assume that user u4 wants to send a data item d to all the

users in the intersection of G1 and G3. In this case, user u4 can execute the following

protocol.

u4 � S : K4 � d G1 � G3 chk �
S � u0 �
	�	
	 � u7 : G1 � G3 � K0123 � K2345 � d u4 chk � �

In the second step of this protocol, server S multicasts a message G1 � G3, K0123 �
K2345 � d u4 chk � � to the group G1 � G3. Here the concatenation of d, u4 and chk is
encrypted by both the group key of G1, which is K0123, and the group key of G3, which
is K2345. The encrypted message can only be decrypted by the users that are in both G1

and G3 because only these users know the two group keys K0123 and K2345.
For the fourth example, assume that user u5 wants to send a data item d to all

the users in the complement of group G1. In this case, user u5 executes the following
protocol.

u5 � S : K5 � d � G1 chk �
S � u0 �
	�	
	 � u7 : C0 � G4 � K45 � d u5 chk � � K67 � d u5 chk �

After server S receives this message, it translates � G1 to C0 � G4 then multicasts the
message Gc � G4 � K45 � d u5 chk � � K67 � d u5 chk � . The users in group Gc can get
d using the group key K45, and the users in group G4 can get d using the group key K67.

The algorithm for the construction of a bundle cover is described in detail in the full
version of this paper[17].

4 Key Parcels

A bundle is defined as a maximal set of nonconflicting elementary groups in the system.
From this definition the elementary group G0 is in every bundle since it does not conflict
with any other elementary group in the system. Thus, every key bundle is a complete
key tree.

This feature of bundle maximality has one advantage and one disadvantage. The ad-
vantage is that the complement of any elementary group in a bundle B j can be expressed
as the union of some other elementary groups in B j. Thus, securely multicasting a data
item to the complement of any elementary group can be carried out efficiently. The dis-
advantage is that the number of keys needed in each key bundle is relatively large, and
so the total number of keys in the system is relatively large.

Clearly, the disadvantage of bundle maximality outweighs its advantage in systems
where users never need to securely multicast data items to the complements of ele-
mentary groups. Therefore, in these systems, we use “parcels”, which are not maximal,
instead of bundles, which are maximal. The definitions of parcels and parcel covers are
given next.

A parcel of a system is a set of nonconflicting elementary groups of the system.
A parcel cover of a system is a sequence of parcels � P0 �
	�	
	�� Ps � 1 � such that the

following two conditions hold:

i. Completeness: Each elementary group of the system appears in some parcel Pi in
the parcel cover.

ii. Compactness: Each elementary group in each parcel Pi conflicts with at least one
elementary group in each of the preceding parcels P0 �
	�	
	 � Pi � 1 in the parcel cover.

K0123

K01234567G0

G1

G2

K0 K2 K3 K4 K5 K6 K7K1

01K 23K 45K 67K G4

K0 K2 K3 K4 K5 K6 K7K1

01K 23K 45K 67K

(a) P0 � �
G0 � G1 � G2 � G4 �

K2345G3

K2 K3 K4 K5

23K 45K

(b) P1 � �
G3 �

Fig. 5. The complete key trees for the parcel cover

As an example, a parcel cover for the system in Figure 2 is � P0 � P1 � , where P0
��

G0 � G1 � G2 � G4 � and P1
� �

G3 � . Figure 6 is a parcel cover � P0 � P1 � for the system in
Figure 2.

The security keys for the elementary groups in a parcel can be arranged in a key
tree that is not necessarily a complete tree. Figure 6(a) shows the key tree for parcel P0

consisting of the elementary groups G0, G1, G2, and G4. Figure 6(b) shows the key tree
for parcel P1 consisting of the elementary group G3. Note that the key tree for parcel P1

is not a complete tree. We refer to a key tree that corresponds to a parcel as a key parcel.
The algorithm to construct a parcel cover is described in detail in the full version of

this paper[17].

5 Simulation Results

In this section, we present the results of simulations that we carried out to demonstrate
the feasibility of key bundles and key parcels. In our simulation, we used a class of
synthetic systems with the following properties:

i. The number of users in each system varies from 1000 to 10000.
ii. Each system has 500 elementary groups.

iii. In each system, a user joins 2 elementary groups on average.

Each system is simulated 100 times and the averages of the following four items
are computed over the 100 simulation runs for each system: the number of bundles or
parcels in the system cover, the total number of keys in the system, the number of keys
per user, and the number of encryptions needed to multicast a data item to the users in
the complement of an elementary group. The results of these simulations are shown in
Figures 6 through 9.

As shown in Figure 6, the number of bundles in a bundle cover more or less equals
the number of parcels in a parcel cover. Note that this number increases logarithmically
as the number of users in the simulated system grows.

Figure 7 shows that the number of keys in systems that use key bundles and the
number of keys in systems that use key parcels grow linearly as the number of users
in the system increases. However, the number of keys in the case of key bundles grows
much faster in the case of key parcels. This is because each key bundle is a complete
key tree while each key parcel is not necessarily complete.

0

1

2

3

4

5

6

7

0 2 4 6 8 10

N
um

be
r

of
 b

un
dl

es
 o

r
pa

rc
el

s

Number of Users (in 1000s)

Key Bundle
Key Parcel

Fig. 6. Number of bundles or parcels

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 2 4 6 8 10

N
um

be
r

of
 k

ey
s

in
 th

e
sy

st
em

Number of Users (in 1000s)

Key Bundle
Key Parcel

Fig. 7. Number of keys in the system

As shown in Figure 8, the number of keys that each user needs to store increases as
a logarithm function with the number of users in the system.

Figure 9 shows that when Key Bundle approach is used, the average number of
encryptions performed for a complement of an elementary group decreases as the num-
ber of users increases (the actual number is from around 500 to 400). As the number
of users increases, the probability of two groups’ conflicting increases. Therefore, the
average number of groups can be put in a bundle decreases. Since we use the keys of
other groups in the same bundle of a complement of an elementary group, the number
of encryptions decreases as the number of users increases.

The number of encryptions for a complement performed in Key Parcel approach is
constantly larger than that in Key Bundle approach, and the difference becomes greater
as the number of users grows. It is because that the number of encryptions for a com-
plement � G for a random elementary group G in key parcels is O � n � , since the server
needs to use the individual keys for the users that are not in the parcel which G belongs
to.

6 Conclusion

We consider a system where each user is in one or more elementary groups. In this
system, arbitrary groups of users can be specified using the operations of union, inter-
section, and complement over the elementary groups in the system. Every elementary

0

2

4

6

8

10

12

14

0 2 4 6 8 10

N
um

be
r

of
 k

ey
s

pe
r

us
er

Number of Users (in 1000s)

Key Bundle
Key Parcel

Fig. 8. Number of keys per user

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 e

nc
ry

pt
iio

ns
 p

er
 c

om
pl

em
en

t

Number of Users (in 1000s)

Key Bundle
Key Parcel

Fig. 9. Number of encryptions per com-
plement

group is provided with a key tree to reduce the cost of changing the key of the elemen-
tary group. We propose two methods for packing the key trees of elementary groups
into key bundles and into key parcels.

Packing into key bundles has the advantage of reducing number of encryptions
needed to multicast a data item to the complement of an elementary group. Packing
into key parcels has the advantage of reducing the total number of keys in the system.
We apply these two methods to a class of synthetic systems: each system has from 1000
to 10000 users and 500 elementary groups, and a user in each system is in 2 elementary
groups on average. Simulations of these systems show that our proposal to pack key
trees into key bundles and key parcels provides a reasonable performance to be used.
The number of keys stored per user in the case of key bundles is 12 for 10000 user
system, while that in the case of key parcels is 5. Instead, the number of encryptions
needed for a complement in the case of key bundles is far less than that in the case of
key parcels by the magnitude of O � n

k � .

As a future work, we would like to find a hybrid between these two methods, which
needs less number of keys in the system than in the case of key bundles and at the same
time supports complement of an elementary group with less number of encryptions than
in the case of key parcels.

We are also interested in conducting a case study of these methods in a real world
application. The case study includes to define appropriate scopes of elementary groups
and to maintain key bundles or key parcels accordingly. As a typical application of
secure group communication, a knowledge sharing system can take advantage of these
methods.

As described in Section 3, if the sender of message m does not know the keys re-
quired to encrypt m appropriately, the system server has to encrypt m and multicast.
This requirement for the server’s help may cause performance bottleneck at the server.
To reduce the workload of the system server, future work will investigate how multiple
servers may be placed and coordinated to work in a distributed or a hierarchical manner.

References

1. Gong, L.: Enclaves: Enabling secure collaboration over the internet. IEEE Journal of Se-
lected Areas in Communications 15 (1997) 567–575

2. Mittra, S.: Iolus: a framework for scalable secure multicasting. In: the Proceedings of the
ACM SIGCOMM ’97, ACM Press (1997) 277–288

3. Wallner, D.M., Harder, E.J., Agee, R.C.: Key management for multicast: Issues and archi-
tectures. RFC 2627 (1999)

4. Wong, C.K., Gouda, M., Lam, S.S.: Secure group communications using key graphs.
IEEE/ACM Transactions on Networking (TON) 8 (2000) 16–30

5. Steiner, M., Tsudik, G., Waidner, M.: Key agreement in dynamic peer groups. IEEE Trans-
actions on Parallel and Distributed Systems 11 (2000) 769–780

6. Gong, L., Shacham, N.: Multicast security and its extension to a mobile environment. Wire-
less Networks 1 (1995) 281–295

7. Ballardie, A.: Scalable multicast key distribution. RFC 1949 (1996)
8. Chang, I., Engel, R., Kandlur, D.D., Pendarakis, D.E., Saha, D.: Key management for secure

internet multicast using boolean function minimization techniques. In: the Proceedings of
IEEE Infocom 1999. Volume 2. (1999) 689–698

9. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers. In:
Advances in Cryptology - CRYPTO 2001. LNCS 2139, Springer-Verlag (2001) 41–62

10. Rodeh, O., Birman, K., Dolev, D.: The architecture and performance of security protocols
in the ensemble group communication system: Using diamonds to guard the castle. ACM
Transactions on Information and System Security (TISSEC) 4 (2001) 289–319

11. Setia, S., Koussih, S., Jajodia, S., Harder, E.: Kronos: A scalable group re-keying approach
for secure multicast. In: the Proceedings of IEEE Symposium on Security and Privacy.
(2000)

12. Waldvogel, M., Caronni, G., Sun, D., Weiler, N., Plattner, B.: The versakey framework:
Versatile group key management. IEEE Journal on Selected Areas in Communications 17
(1999) 1614–1631

13. Gouda, M.G., Huang, C.T., Elnozahy, E.: Key trees and the security of the interval multi-
cast. In: the Proceedings of the 22 nd International Conference on Distributed Computing
Systems. (2002) 467–468

14. Li, X.S., Yang, Y.R., Gouda, M.G., Lam, S.S.: Batch rekeying for secure group communi-
cations. In: the Proceedings of the 10th international World Wide Web conference on World
Wide Web, ACM Press (2001) 525–534

15. Yang, Y.R., Li, X.S., Zhang, X.B., Lam, S.S.: Reliable group rekeying: a performance anal-
ysis. In: the Proceedings of the 2001 conference on applications, technologies, architectures,
and protocols for computer communications, ACM Press (2001) 27–38

16. Snoeyink, J., Suri, S., Varghese, G.: A lower bound for multicast key distribution. In: the
Proceedings of IEEE Infocom 2001. (2001) 667–675

17. Jung, E., Liu, X.Y.A., Gouda, M.G.: Key bundles and parcels: Secure communication in
many groups. Technical Report TR-03-21, Dept. of Computer Sciences, the University of
Texas at Austin (2003)

