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Abstract—A firewall is a packet filter placed at an entry
point of a network in the Internet. Each packet that goes
through this entry point is checked by the firewall to determine
whether to accept or discard the packet. The firewall makes
this determination based on a specified sequence of overlapping
rules. The firewall uses the first-match criterion to determine
which rule in the sequence should be applied to which packet.
Thus, to compute the set of packets to which a rule is applied,
the firewall designer needs to consider all the rules that precede
this rule in the sequence. This “rule dependency” complicates
the task of designing firewalls (especially those with thousands
of rules), and makes firewalls hard to understand. In this paper,
we present a metric, called the dependency metric, for measuring
the complexity of firewalls. This metric, though accurate, does
not seem to suggest ways to design firewalls whose dependency
metrics are small. Thus, we present another metric, called the in-
version metric, and develop methods for designing firewalls with
small inversion metrics. We show that the dependency metric and
the inversion metric are correlated for some classes of firewalls.
So by aiming to design firewalls with small inversion metrics, the
designer may end up with firewalls whose dependency metrics
are small as well. We present a method for designing modular
firewalls whose inversion metrics are very small. Each modular
firewall consists of several components, called firewall modules.
The inversion metric of each firewall module is very small - in
fact, 1 or 2. Thus, we conclude that modular firewalls are easy
to design and easy to understand.

I. INTRODUCTION

A firewall is a packet filter that is placed at an entry point
of a network in the Internet. The function of a firewall is to
check each packet that goes through the entry point (at which
the firewall is located) and determine whether to accept the
packet and allow it to proceed on its way or to discard the
packet.

The firewall perform its function based on a specified
sequence of rules. Each rule is of the form

< predicate >→< decision >

where < predicate > is a function that assigns to each packet
a boolean value, true or false, and < decision > is either
”accept” or ”discard”. When a packet p reaches a firewall F ,
F performs two steps:

1) F identifies the first rule r (in its sequence of rules)
whose < predicate > assigns the value true to packet
p.

2) If the < decision > of rule r is accept (or discard,
respectively) then F accepts (or discards, respectively)
packet p.

Note that F employs a ”first-match” criterion to determine
which rule (in its sequence of rules) should be applied to which
packet. This first-match criterion allows the rules in the rule
sequence to be “overlapping”. This can be both advantageous
and disadvantageous.

The advantage of making the rules in the rule sequence
overlapping is that it reduces the number of rules in the rule
sequence, sometimes dramatically.

The disadvantage of making the rules in the rule sequence
overlapping is that it creates many dependencies between the
rules in the rule sequence. This, in turn, complicates the task of
designing and understanding the rule sequence. For instance,
if the firewall designer needs to compute the set of packets to
which a rule r (in the rule sequence) applies, then the designer
needs to consider not only rule r but also all the rules that
precede r in the rule sequence.

In this paper, we introduce a metric, called the “dependency
metric”, that measures the complexity of firewalls. The more
the value of the metric for a given firewall, the more complex
the firewall is and the harder it is to design and understand.

Unfortunately, the dependency metric, though accurate, does
not seem to suggest methods for designing firewalls for
which the values of the metric are small. Thus, we introduce
another complexity metric, called the “inversion metric”, for
measuring the complexity of firewalls.

We show, below, that the dependency metric and the inver-
sion metric are correlated (at least for a rich class of firewalls
called “uniform firewalls”). This result allows us to use the
inversion metric as a good approximation of the dependency
metric.

Then, we identify three classes of firewalls, namely “simple
firewalls”, “partitioned firewalls”, and “modular firewalls”, for
which the values of the inversion metric are small. (This
implies that these classes of firewalls are easier to design and
understand.) We also describe methods for designing firewalls
in these three classes.

Of particular interest is the class of modular firewalls. Each
modular firewall consists of simple firewall components, called
“firewall modules”. The value of the inversion metric for each
firewall module is 1 or 2. This causes the value of the inversion
metric for the full firewall to be 1 or 2. (Note that the smallest
possible value of the inversion metric is 1.)

We present an algorithm that takes as input any firewall
F whose inversion metric is large and computes as output an
equivalent modular firewall MF whose inversion metric is (by
definition) 1 or 2. The complexity of this algorithm is O(n2)



where n is the number of rules in the input firewall F . The
existence of this algorithm indicates that designing a modular
firewall is not harder than designing an equivalent non-modular
firewall. Our simulation results, reported below, show that the
cost and performance of this algorithm are attractive.

II. FIELDS, PACKETS, RULES, AND FIREWALLS

In this section, we define the main terms in this paper -
fields, packets, rules, and firewalls.

A field is a variable, whose value is taken from an interval
of non-negative integers. Examples of fields are source IP
address, destination IP address, transport protocol, source port
number, and destination port number. The domain of values
of the source IP address field, for example, is the interval
[0, 232 − 1].

In this paper, we consider d fields, denoted f1, .. , and fd.
The domain of values of each field fj , denoted D(fj), is an
interval of non-negative integers.

A packet p is a d-tuple (p.f1, .., p.fd), where each p.fj is
an element from the domain D(fj) of field fj .

A rule r is of the form:

f1 ∈ R1 ∧ ... ∧ fd ∈ Rd →< r.decision >

where each Rj is a non-empty interval of non-negative in-
tegers taken from the domain D(fj) of field fj , and the
< r.decision > is either accept or discard. A rule whose
decision is accept is called an accept rule, and a rule whose
decision is discard is called a discard rule.

A packet (p.f1, .., p.fd) is said to match a rule r of the
form:

f1 ∈ R1 ∧ ... ∧ fd ∈ Rd →< r.decision >

iff the predicate (p.f1 ∈ R1 ∧ ... ∧ p.fd ∈ Rd) holds.
A rule of the form

f1 ∈ D(f1) ∧ ... ∧ fd ∈ D(fd)→ accept

is called an accept-all rule, and a rule of the form

f1 ∈ D(f1) ∧ ... ∧ fd ∈ D(fd)→ discard

is called a discard-all rule.
A firewall F is a nonempty sequence of rules, where the

last rule is either an accept-all rule or a discard all rule.
A packet (p.f1, .., p.fd) is said to be accepted by a firewall

F iff F has an accept rule r such that the following two
conditions hold.

1) (p.f1, .., p.fd) matches r.
2) (p.f1, .., p.fd) does not match any rule that precedes r

in F .
A packet (p.f1, .., p.fd) is said to be discarded by a firewall

F iff F has a discard rule r such that the following two
conditions hold.

1) (p.f1, .., p.fd) matches r.
2) (p.f1, .., p.fd) does not match any rule that precedes r

in F .

Because the last rule in a firewall is either an accept-all rule
or a discard-all rule, it is straightforward to show that for every
packet and every firewall F , either the packet is accepted by
F or the packet is discarded by F .

Two firewalls F and G are said to be equivalent iff F and
G accept the same set of packets (and discard the same set of
packets).

III. THE DEPENDENCY METRIC OF FIREWALLS

In this section we define a metric that can be used to
measure the complexity of a firewall. If the value of this
metric is large for one firewall, then this firewall is relatively
”hard to understand”. And if the value of this metric is small
for another firewall, then this firewall is relatively ”easy to
understand”. We refer to this metric as the dependency metric.
But before we can define the dependency metric, we first need
to introduce several definitions.

A band of a firewall F is a maximal sequence of consecutive
rules that have the same decision, whether accept or discard,
in F . If (all) the rules in a band have accept decisions, then
the band is called an accept band. Similarly, if (all) the rules
in a band have discard decisions, then the band is called a
discard band.

Theorem 1. If the rules in a band in a firewall F are reordered
in any way, then the resulting firewall is equivalent to F .

Proof: Assume that the rules in a band B in F are
reordered in any way. Let p be a packet that is resolved by
a rule r in B before the reorder. And assume that packet p
is resolved by another rule s after the reorder. Thus, rule s
belongs to band B, and has moved ahead of rule r as a result
of the reorder.

Because both rules r and s belong to the same band B, they
have the same decision. Therefore, rule s will resolve packet
p after the reorder in the same way that rule r has resolved
packet p before the reorder.

Every packet that is accepted before the reorder is also
accepted after the reorder, and every packet that is discarded
before the reorder is also discarded after the reorder. Hence
the firewall that results from the reorder is equivalent to the
original firewall F before the reorder.

If all the rules in a firewall have the same decision, then
this firewall consists of only one band. But such a firewall is
not very useful in practice. Thus, from now on, we consider
only firewalls that consist of two or more bands.

A packet p is said to be resolved by a rule r in a firewall
F iff the following two conditions hold:

1) p matches rule r.
2) p does not match any rule s, where s precedes r in F

and r and s occur in different bands in F .
The dependency set of a rule r in a firewall F is the set

containing every rule s, where s precedes r in F , and r and
s occur in different bands in F .

From the last two definitions, we conclude that to determine
whether a packet p is resolved by a rule r in a firewall F , one
needs to test packet p against rule r and against every rule in



the dependency set of r. Clearly, the complexity of these tests
are proportional to the number of rules in the dependency set
of r. If the cardinality of the dependency set of r is large,
then determining whether a given packet is resolved by r is
relatively hard. And one can claim, in this case, that rule r
is hard to understand. On the other hand, if the cardinality of
the dependency set of r is small, then determining whether a
given packet is resolved by r is relatively easy. And one can
claim, in this case, that rule r is easy to understand.

It follows from this discussion that the complexity of
understanding a rule r in a firewall F can be measured by
the cardinality of the dependency set of r in F . Therefore, the
complexity of understanding firewall F can be measured by
the average cardinality of a dependency set of a rule in F .

The dependency metric of a firewall F is the average
cardinality of a dependency set of a rule in F .

Theorem 2. Let F be any firewall that has n rules.
1) The smallest possible value of the dependency metric of

F is (n−1)
n .

2) The largest possible value of the dependency metric of
F is (n−1)

2 .

Proof:
1) The dependency metric of F has its smallest value when

F consists of only two bands. The first band consists of
the top n− 1 rules in F , and the second band consists
of the last rule in F . In this case, the dependency set
of each one of the top n − 1 rules is empty, and the
dependency set of the last rule has n − 1 rules. Thus,
the average cardinality of a dependency set of a rule in
F is n−1

n .
2) The dependency metric of F has its largest value when

F consists of n bands. And each band consists of only
one rule. In this case,
the dependency set of the first rule in F has 0 rules,
the dependency set of the second rule in F has 1 rule,
...,
the dependency set of the n-th rule in F has n−1 rules.
Thus, the average cardinality of a dependency set of a
rule in F is n−1

2 .

The problem of the dependency metric is that this metric
does not seem to suggest methods for designing firewalls
whose dependency metrics are small.

This problem compels us to look for another complexity
metric of firewalls. This new complexity metric needs to
satisfy two requirements. First, this new metric needs to be
correlated to the dependency metric (at least for some classes
of firewalls). Second, it should be easy to design firewalls for
which the new metric has a small value. We present such a
metric in the next section.

IV. THE INVERSION METRIC OF FIREWALLS

In this section we introduce a second metric that can be used
to measure the complexity of firewalls. We refer to this metric

as the inversion metric. We show that the inversion metric
satisfies two nice properties. First, we show, in this section,
that the value of the inversion metric of a firewall is correlated
to the value of the dependency metric of the same firewall
(when the firewall is uniform). This result allows us to use the
inversion metric as a good approximation of the dependency
metric. Second, we demonstrate, in Section 7 below, that one
can develop methods for designing firewalls whose inversion
metrics are very small. In particular, we give an algorithm
that takes as input any firewall, whose inversion metric value
is large, and produces an equivalent firewall, whose inversion
metric value is no more than 2, a small value.

The inversion metric of a firewall F is the number of pairs
of adjacent rules that have different decisions in F .

Theorem 3. Let F be a firewall that has n rules.
1) The smallest possible value of the inversion metric of F

is 1.
2) The largest possible value of the inversion metric of F

is n− 1.

Proof: Because, as mentioned in Section 3, we consider
only firewalls that have two or more bands, the smallest
possible value of the inversion metric of a firewall is 1. Also,
for a firewall that has n rules, the largest possible value of the
inversion metric is n− 1.

A firewall F is called uniform iff each band in F has the
same number of rules.

Thus, if a uniform firewall F has n rules and k bands, then
each band in F has n

k rules.

Theorem 4. Let F be a uniform firewall that has n rules.
Also, let dm be the value of the dependency metric of F , and
im be the value of the inversion metric of F .

dm =
n ∗ im

2 ∗ (im + 1)

Proof: Since im is the inversion metric of firewall F , F
has im + 1 bands, and because F is uniform, each band in F
has n

im+1 rules.
The cardinality of the dependency set of each rule in the

i-th band in F , where i is in the range 1..(im+1), is (i−1)∗n
(im+1) .

Thus, the average cardinality dm of the dependency set of
a rule in F can be computed as follows:

dm =
im+1∑
i=1

n
im+1 ∗

(i−1)∗n
im+1

n

=
n

(im + 1)2
∗

im+1∑
i=1

i− 1

=
n

(im + 1)2
∗

im∑
i=0

i

=
n

(im + 1)2
∗ im ∗ (im + 1)

2

=
n ∗ im

2 ∗ (im + 1)



This theorem shows that when the value of the inversion
metric im (of a uniform firewall) is n − 1, the value of the
dependency metric dm (of the same firewall) is (n−1)/2. Both
these values are the largest possible values for their metrics.
Also, when the value of the inversion metric im is reduced to
1, the value of the dependency metric is reduced to n/4. Both
these values are small values for their metrics. In other words,
there is some correlation between the value of the inversion
metric im and the value of the dependency metric dm. Thus
one can use the inversion metric (which is easy to deal with)
as a good approximation of the dependency metric (which is
hard to deal with).

In the next two sections, we present two classes of firewalls,
namely simple firewalls and partitioned firewalls, whose inver-
sion metrics are small.

V. SIMPLE FIREWALLS

A firewall F is called simple iff F is a sequence of three
bands, B0 followed by B1 followed by B2, such that the
following three conditions are satisfied:

1) Band B0 consists of zero or more discard rules. (Note
that if B0 has zero discard rules, then band B0 does not
exist in F and, in this case, F is a sequence of only two
bands, B1 followed by B2.)

2) Band B1 consists of one or more accept rules.
3) Band B2 consists of only one discard-all rule.
Simple firewalls are interesting because the values of their

inversion metrics are small (and so they are easy to understand)
as follows. If band B0 exists in a simple firewall F , then the
inversion metric of F is 2. Otherwise, the inversion metric of
F is 1.

Below we describe how to identify “irrelevant rules” in any
simple firewall F and argue that removing these rules from F
yields a firewall G that is both equivalent to F and simple.
But first we need to present some definitions.

Let F be a simple firewall and let r and s be two distinct
rules in F where

r : f1 ∈ R1 ∧ .. ∧ fd ∈ Rd →< r.decision >

s : f1 ∈ S1 ∧ .. ∧ fd ∈ Sd →< s.decision >

Rule r is said to cover rule s iff every interval Rj in r
contains the corresponding interval Sj in s.

Rule r is said to overlap rule s iff every intersection of an
interval Rj in r with the corresponding interval Sj in s is
nonempty.

Rule s is called irrelevant in the simple firewall F iff s
satisfies the following three conditions (Recall that, since F is
simple, F is a sequence of three bands, B0 followed by B1,
followed by B2):

1) Rule s is in band B0 and there is another rule r in B0

where r covers s.
2) Rule s is in band B0 and there is no rule r in B1 where

r overlaps s.

3) Rule s is in band B1 and there is another rule r in B1

where r covers s.
Now we argue that if an irrelevant rule s is removed from

its simple firewall F , then any packet that could have been
resolved (i.e., accepted or discarded) by rule s can still be
resolved in the same way after s is removed. Because the
removed rule s is irrelevant, rule s must have satisfied one of
three conditions 1, 2, or 3 (in the above definition), before it
is removed.

First, if s satisfied condition 1 before it is removed, then
any packet that is discarded by s, before s is removed, will
still be discarded at least by rule r, after s is removed.

Second, if s satisfied condition 2 before it is removed, then
any packet that is discarded by s, before s is removed, will
still be discarded at least by the discard-all rule in F , after s
is removed.

Third, if s satisfied condition 3 before it is removed, then
any packet that is accepted by s, before s is removed, will
still be accepted at least by rule r, after s is removed.

The algorithm for removing irrelevant rules from any simple
firewall is detailed in Algorithm 1. Note that the time com-
plexity for executing Algorithm 1 is O(n2), where n is the
number of rules in the input firewall F .

Algorithm 1 Removing Irrelevant Rules
Input: A simple firewall F that is a sequence of three bands

B0 followed by B1 followed by B2

Output: A simple firewall G that is equivalent to F and has
no irrelevant rules
for every rule r in B0 do

if there is another rule s in B0 such that r covers s or
there is no rule s in B1 such that r overlaps s then

Remove rule r from B0

end if
end for
for every rule r in B1 do

if there is another rule s in B1 such that r covers s then
then remove rule r from B1

end if
end for
The remaining firewall is G

VI. PARTITIONED FIREWALLS

A partitioned firewall PF is a nonempty set {PF1, .., PFr}
of firewalls, such that the following oneness condition holds.
Every packet is accepted by at most one firewall, say PFk, in
PF .

If a packet is accepted by one (and so only one) firewall in a
partitioned firewall PF , then this packet is said to be accepted
by PF . Otherwise, the packet is discarded by every firewall
in PF and, in this case, the packet is said to be discarded by
PF .

If a partitioned firewall PF is the set {PF1, .., PFr}, then
each firewall PFk in this set is called a component of the
partitioned firewall PF .



Note that one can view a monolithic firewall F as a
partitioned firewall that consists of only one component F .

A monolithic firewall F and a partitioned firewall PF are
said to be equivalent iff F and PF accept the same set of
packets (and discard the same set of packets).

There are three advantages of partitioned firewalls over
monolithic ones:

(a) Parallel processing of packets
(b) Ease of design and update
(c) Small inversion metrics

We discuss these three advantages , one by one, in order.

A. Parallel Processing of Packets

Each component PFk of a partitioned firewall PF can be
implemented as a distinct thread [1] that is executed on a
distinct core in a multicore architecture [2].

When a packet p arrives at the multicore architecture hosting
the partitioned firewall PF , a copy of p is forwarded to
each core, as shown in Figure 1. Each core then proceeds
independently to determine whether or not to accept packet p
and allow it to proceed.

Fig. 1. Parallel Processing of Packets

Note that each core makes its determination (of whether
or not to accept its copy of p) independently from the
determinations made by the other cores. In other words, the
cores do not need to synchronize in any way, and yet, thanks
to oneness condition, at most one copy of packet p is accepted
and allowed to proceed by one core while all the other copies
of p are discarded by the other cores.

As shown in our experimental results below, this multicore
architecture of a partitioned firewall can process up to 2.5
times as many packets per second as the traditional one core
architecture of a monolithic firewall.

B. Ease of Design and Update

A partitioned firewall {PF1, .., PFr} can be designed in
two steps as follows.

1) The set of all packets is partitioned into r non-
overlapping classes: PC1, .., PCr.

2) Each component PFk in the partitioned firewall is
designed to accept some (or all) of the packets that
belong to the packet class PCk.

As an example, assume that we wish to design a partitioned
firewall with five components PF1 through PF5. First, we
partition the set of all packets into the five overlapping classes
PC1 through PC5:
• PC1: All outgoing packets
• PC2: All incoming, TCP, email packets
• PC3: All incoming, TCP, web packets
• PC4: All incoming, TCP packets that are neither email

nor web.
• PC5: All incoming, non-TCP packets
Second, each firewall component PFk is designed to accept

only some (or all) of the packets that belong to the correspond-
ing packet class PCk. For instance, PF1 is designed to accept
only some (or all) of the outgoing packets, and so on.

In other words, once the packet classes are all identified,
the firewall components can be designed independently of one
another. This makes the design of a partitioned firewall easier
than that of a monolithic firewall.

Moreover, because each firewall component PFk is de-
signed to accept only some (or all) of the packets that belong
to the packet class PCk, only component PFk needs to be
updated whenever the set of accepted packets, that belong to
the packet class PCk, needs to be updated.

In other words, any update of a partitioned firewall can be
realized by updating only one component in the firewall. This
makes the update of a partitioned firewall easier than that of
a monolithic one.

C. Small Inversion Metric

The inversion metric of a partitioned firewall
{PF1, .., PFr} is the value
(MAX over k, k is in the range 1..r, im.k)
where each im.k denotes the inversion metric of the firewall
component PFk.

Because the inversion metric of a partitioned firewall is the
maximum, rather than say the sum, of the inversion metrics of
the firewall components, the inversion metric of a partitioned
firewall tends to be smaller than the inversion metric of an
equivalent monolithic firewall. In other words, understanding
a partitioned firewall tends to be easier than understanding an
equivalent monolithic firewall.

We end this section by stating (and verifying) a sufficient
condition for ensuring that two monolithic firewalls can be
components in the same partitioned firewall.

Theorem 5. Let F and G be two (monolithic) firewalls. If for
every accept rule r in F and every accept rule s in G, r does
not overlap s, then F and G can be components in the same
partitioned firewall.

Proof: Assume that for every accept rule r in F and every
accept rule s in G, r does not overlap s. Thus, for every accept
rule r in F and every accept rule s in G, there is no packet that
matches both r and s. In other words, the set of packets that
match accept rules in F is disjoint from the set of packets that
match accept rules in G. Moreover, because the set of packets
that are accepted by a firewall is a subset of the set of packets



that match accept rules in the firewall, we conclude that the
set of packets that are accepted by F is disjoint from the set
of packets that are accepted by G. Therefore F and G satisfy
the oneness condition and they can be firewall components in
the same partitioned firewall.

Note that any two components of a partitioned firewall, that
is designed using the method outlined at the beginning of this
section, do satisfy the sufficient condition in Theorem 4.

VII. MODULAR FIREWALLS

In the previous two sections, we presented two classes of
firewalls, namely simple firewalls and partitioned firewalls,
whose inversion metrics are small. In this section, we present
a class of firewalls, called modular firewalls, that have similar
characteristics to those of simple and partitioned firewalls.
Therefore, the inversion metrics of modular firewalls are also
small.

A modular firewall MF is a partitioned firewall
{MF1, ..,MFr} where each component MFk, called a fire-
wall module, is a simple firewall. It follows that the inversion
metric of each firewall module MFk is 1 or 2 and the inversion
metric of the modular firewall MF is 1 or 2.

A modular firewall {MF1, ..,MFr} can be designed in two
steps as follows.

1) The set of all packets is partitioned into r non-
overlapping classes: PC1, .., PCr.

2) Each module MFk in the modular firewall is designed
to accept some (or all) of the packets that belong to the
packet class PCk under the restriction that MFk, being
a simple firewall, must consist of three bands: a discard
band B0, followed by a accept band B1, followed by a
band B2 that consists of a discard-all rule

The main thesis of this paper is that designing a modular
firewall is easier than designing an equivalent monolithic
firewall. To give some evidence to this thesis, we discuss next
an algorithm that can take, as input, a monolithic firewall F
and produce, as output, an equivalent modular firewall MF .
Because the time complexity of this algorithm is small O(n2),
where n is the number of rules in the input firewall F , one
concludes that designing a modular firewall is not harder than
designing an equivalent monolithic firewall.

The algorithm for modularizing a monolithic firewall is
shown in Algorithm 2.

The correctness of Algorithm 2 follows from the following
two theorems.

Theorem 6. Assume that Algorithm 2 is applied to a
monolithic firewall F and produced the simple firewalls
{MF1, ..,MFr}. Then no two distinct firewalls MFi and
MFk accept the same packet (indicating that the produced
simple firewalls satisfy the oneness condition).

Proof: Without loss of generality, assume that i is less
than k. This means that the accept rules in band B1 of firewall
MFi occur as discard rules in band B0 of firewall MFk. Thus,
each packet that is accepted by (band B1 in) firewall MFi is
discarded by (band B0 in) firewall MFk. Also, each packet

Algorithm 2 Modularizing Monolithic Firewalls
Input: A monolithic firewall F with r accept bands (r is at

least 1)
Output: A modular firewall MF with r modules
{MF1, ..,MFr} such that F and MF are equivalent.
Let the r accept bands of firewall F be AB1, .., ABr in
order.
for every accept band ABk in F do

Design the three bands B0, B1, and B2 of module MFk

as follows.
• B0 is the sequence of all rules that precedes ABk in

F after modifying their decisions to become ”discard”
• B1 is the sequence of all (accept) rules in ABk

• B2 is the discard-all rule;
Apply Algorithm 1 to remove the irrelevant rules from
MFk

end for

that is accepted by (band B1 in) firewall MFk is discarded
by (band B2 in) firewall MFi. In other words, no packet is
accepted by both MFi and MFk.

Theorem 7. Assume that Algorithm 2 is applied to a mono-
lithic firewall F and produced a modular firewall MF that
consists of the modules {MF1, ..,MFk}.

1) Each packet, that is accepted by F , is also accepted by
MF

2) Each packet, that is accepted by MF , is also accepted
by F

(These two statements indicate that F and MF are equiva-
lent.)

Proof:

1) Assume that a packet p is accepted by F . Thus p is
resolved by a rule in some accept band ABk of F .
This indicates that p is also resolved by a rule in the
accept band B1 in module MFk in MF . Therefore p is
accepted by MF .

2) Assume that a packet p is accepted by a module MFk

in MF . Thus p is resolved by a rule in band B1 of
module MFk. This indicates that p is also resolved by
a rule in the accept band ABk in firewall F . Therefore
p is accepted by F .

VIII. SIMULATION RESULTS

In this paper, we presented two algorithms: Algorithm 1 for
removing irrelevant rules from simple firewalls, and Algorithm
2 for modularizing monolithic firewalls. In fact, the important
role of Algorithm 1 is to be invoked from within Algorithm
2 to remove the irrelevant rules from the firewall modules in
the computed modular firewall. In this section, we report the
results of several simulations that we carried out to measure
the cost and performance of Algorithm 2. (The cost and



performance of Algorithm 1 contribute to those of Algorithm
2.)

Figure 2 shows the execution time of Algorithm 2, when
applied to modularize a monolithic firewall F , as a function
of the number of rules in F . From this figure, the execution
time of Algorithm 2 is very small, less than half a second, even
when the firewall being modularized has up to 2000 rules.

Figure 3 shows the average number of firewall modules, that
result from applying Algorithm 2 to modularize a monolithic
firewall F , as a function of the number of rules in F . From
this figure, a monolithic firewall that has 2000 rules can be
converted into a modular firewall with about 22 modules on
average.

Figure 4 shows the average number of rules in a firewall
module, that results from applying Algorithm 2 to modularize
a monolithic firewall F , as a function of the number of rules
in F . From this figure, a monolithic firewall that has 2000
rules can be converted into a modular firewall where a firewall
module has 800 rules on average.

Consider the case where Algorithm 2 is applied to a mono-
lithic firewall F to produce an equivalent modular firewall
MF . As discussed in Section 6, F can be implemented as
a single thread on a single core architecture, whereas the
firewall modules in MF can be implemented on a multicore
architecture. Let RF denote the rate (in packets per second) of
processing packets by the single core architecture, and RMF
denote the rate (in packets per second) of processing packets
by the multicore architecture. Then RMF/RF is called the
speed-up ratio. Figure 5 shows the speed-up ratio as a function
of the number of rules in F . From this figure, the speed-up
ranges from 1.7 (when the number of rules in F is small) to
2.6 (when the number of rules in F is large).

IX. RELATED WORK

Firewalls are a critical line of defence in cybersecurity, but
tend to be very hard to understand. As firewall correctness is a
hard but important problem, there has been extensive research
in the field, following four main approaches:

1) Firewall Testing: To test a given firewall F , one gener-
ates many packets for which the “expected” decisions of
F , accept or discard, are known a priori. The generated
packets are then sent to F , and the actual decisions of F
for these packets are observed. If the expected decision
for each generated packet is the same as the actual
decision for the packet, one concludes that the given
firewall F is correct. Otherwise, the given firewall F
has errors. Different methods of firewall testing differ in
how the testing packets are generated. For instance, the
test packets can be hand-generated by domain experts to
target specific vulnerabilities in the given firewall F , or
generated from the formal specifications of the security
policy of the given firewall F , as in [3]. A scheme for
targeting test packets for better fault coverage is given
in [4] and [5]. Blowtorch [6] is a framework to generate
packets for testing.

2) Firewall Analysis: To analyze a given firewall F , one
applies an algorithm to identify (some or all of the)
vulnerabilities, conflicts, anomalies, and redundancies in
the given firewall F . A systematic method for analyzing
firewalls is presented in [7]. The concept of conflicts
between rules in a firewall is due to [8] and [9]. A
classification of anomalies, as well as algorithms to
detect them, may be found in [10] and [11]. (This
analysis works for verifying the security policies in IPsec
and VPN as well [12].) A framework for understanding
the vulnerabilities in a single firewall is outlined in [13],
and an analysis of these vulnerabilities presented in [14].
[15] is a quantitative study of configuration errors for
a firewall. An example of an efficient firewall analysis
algorithm is given in FIREMAN [16].

3) Firewall Verification: To verify a given firewall F against
a given property R, one applies an algorithm to verify
whether or not F satisfies R. The question of how to
query a given firewall and obtain the answer (whether or
not it satisfies a given property) is discussed in [17] and
[18]. The time and space complexity of these algorithms
are proved to be O(nd) in [19]. In [20], a probabilistic
verification algorithm is provided and shown to have
a time and space complexity of O(nd). In [21], we
provide an elegant algorithm for firewall verification
whose space complexity is O(nd), and whose time
complexity is order O(nd).

4) Firewall Design: To ensure a firewall does not have vul-
nerabilities or other problems, it can be designed from
the outset using structured algorithms. Such algorithms,
that can generate a firewall from its specification, are
provided in [22].

In this paper, we present two new metrics for the complexity
of a firewall, and show that these metrics are related. Further,
we give a new algorithm for implementing firewalls such that
the inversion metric of the firewall is small; this algorithm can
be considered a firewall design algorithm to produce easy-to-
understand firewalls. Our algorithm has the advantage that it
need not be applied at the outset when designing a firewall; any
pre-existing firewall may be converted to a modular firewall
in O(n2) time.

The advantage of a modular firewall is the cleanness of
the design; the low inversion metric makes such firewalls
relatively easy to understand, and permits modification with
no unexpected side effects. A side benefit is that modular
firewalls, being inherently parallel, also process packets faster
than equivalent conventional firewalls.

In this paper, we have dealt with modular firewalls located at
a single interface between two computer networks. However,
we do not see any reason why modular firewalls cannot be used
for distributed firewalls, where firewall policies are distributed
across many systems located at multiple points in the network
[11], [10], [19]. We plan to study the possibility of developing
modular distributed firewalls in future work.
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X. CONCLUDING REMARKS

Firewalls are a very important component of system secu-
rity, but, unfortunately, current firewalls are mostly designed
and modified ad hoc; this makes them very difficult to under-
stand, so it is not uncommon for a large firewall with thousands
of rules to have many vulnerabilities. In this paper, we make
three important contributions to the theory of firewalls and
firewall complexity. Our first contribution is that we define two
metrics for the complexity of a firewall, called the dependency
metric and the inversion metric. We also demonstrate that
the two are correlated, so designing a firewall with a small
value of inversion metric is likely to yield a firewall with a
small value of dependency metric as well. For our second
contribution, we present several classes of firewalls with a
small inversion metric, as well as a method for designing such
firewalls. Our final contribution is that we show that the class
of modular firewalls, which have a low inversion metric (1−2),
is sufficiently powerful to describe any firewall. Algorithm 2,
presented in this paper, can take as input any firewall and
convert it into an equivalent modular firewall.

It may be noted that this paper introduces two separate
concepts, which are interesting in their own right. The first
concept is, of course, firewall metrics - we introduce the
concept of dependency and inversion metrics, and develop a
method to design firewalls that are “easy to understand” by
these measures. The second, independent concept is that of
partitioned firewalls; we show how to decompose any firewall
into multiple simpler firewalls, that together are equivalent to
the original firewall. By combining the concepts of simple
firewalls (which have low inversion metrics) and partitioned
firewalls, we develop the concept of modular firewalls.

Our work naturally suggests several rich problems for
further study. The dependency metric and the inversion metric
are not the only possible metrics for the complexity of a
firewall; it would be an interesting problem to identify other
such metrics, show how they are related, and possibly develop
further algorithms to minimize the complexity of a firewall.
The development of alternate algorithms to partition and mod-
ularize firewalls is another area for further research. By varying
the algorithm, it is possible to produce modular firewalls
with different properties, such as size, performance, length of
modules, and so on. For our own future work, we note that the
method for constructing a partitioned firewall involves dividing
the packet space into partitions and constructing a (simpler)
firewall to classify the packets of each partition independently.
By clearly specifying how to partition the packet space, and
when to stop partitioning and construct a firewall, we aim to
develop a recursive new algorithm for firewall design.
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