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Abstract

A firewall is often placed at the entrance of each pri-
vate network in the Internet. The function of a firewall is
to examine each packet that passes through the entrance
and decide whether to accept the packet and allow it to
proceed or to discard the packet. A firewall is usually de-
signed as a sequence of rules. To make a decision concern-
ing some packets, the firewall rules are compared, one by
one, with the packet until one rule is found to be satisfied
by the packet: this rule determines the fate of the packet.
In this paper, we present the first ever method for design-
ing the sequence of rules in a firewall to be consistent, com-
plete, and compact. Consistency means that the rules are or-
dered correctly, completeness means that every packet satis-
fies at least one rule in the firewall, and compactness means
that the firewall has no redundant rules. Our method starts
by designing a firewall decision diagram (FDD, for short)
whose consistency and completeness can be checked sys-
tematically (by an algorithm). We then apply a sequence of
five algorithms to this FDD to generate, reduce and sim-
plify the target firewall rules while maintaining the consis-
tency and completeness of the original FDD.

1. Introduction

A firewall is often placed at each entry point of private
network in the Internet. The function of this firewall is to
provide secure access to and from the private network. In
particular, any packet that attempts to enter or leave the pri-
vate at some entry point is first examined by the firewall lo-
cated at that point, and depending on the different fields of
the packet, the firewall decides either to accept the packet
and allow it to proceed in its way, or to discard the packet.

To perform its function, a firewall consists of a sequence
of rules; each rule is of the form

〈predicate〉 → 〈decision〉

where the 〈predicate〉 is a boolean expression over the dif-
ferent fields of a packet, and the 〈decision〉 is either “a”
(for accept) or “d” (for discard). To reach a decision con-
cerning a packet, the rules in the sequence are examined
one by one until the first rule, whose 〈predicate〉 is satis-
fied by the packet fields, is found. The 〈decision〉 of this
rule is applied to the packet.

Designing the sequence of rules for a firewall is not any
easy task. In fact, the sequence of rules for any firewall
needs to be consistent, complete, and compact as we illus-
trated by the next (admittedly simple) example.

Example: Figure 1 shows a private network that con-
tains a mail server s and a host h. The private network is
connected to the firewall via interface 1, whereas the rest of
the Internet is connected to the firewall via interface 0. The
rest of the Internet has a malicious hostm.
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Figure 1. A firewall in a simple network

In this example, we assume that each packet has five
fields named as follows:

I is the interface on which the packet reaches the firewall

S is the original source of the packet

D is the ultimate destination of the packet

P is the transport protocol of the packet



T is the destination port of the packet

The firewall in this example consists of the following se-
quence

( I = 0 ∧ S = any ∧D = s ∧ P = tcp ∧ T = 25 → a,
I = 0 ∧ S = any ∧D = s ∧ P = any ∧ T = any → d,
I = 0 ∧ S = m ∧D = any ∧ P = any ∧ T = any → d,
I = 1 ∧ S = h ∧D = any ∧ P = any ∧ T = any → a,
I = 1 ∧ S = any ∧D = any ∧ P = any ∧ T = any → a)

We refer to these five rules as r0 through r4, respectively.
Rule r0 accepts each incoming SMTP packet whose ulti-
mate destination is a mail server s. Rule r1 discards each
incoming non-SMTP packet whose ultimate destination is
s. Rule r2 discards each incoming packet whose original
source is a malicious host m. Rule r3 accepts each outgo-
ing packet whose original source is a host h. Rule r4 accepts
each outgoing packet. Next, we argue that this sequence of
five rules suffers from three types of errors: consistency er-
rors, completeness errors, and compactness errors.

The two rules r0 and r2 are conflicting because there are
packets whose fields satisfy the predicates of both r0 and
r2 (for example, a packet where I = 0, S = m, D = s,
P = tcp, and T = 25 satisfies the predicates of both r0 and
r2) and these two rules have different decisions. Therefore,
the relative order of these two rules with respect to one an-
other in the sequence of rules becomes very critical. For ex-
ample, by placing rule r2 behind rule r0 in the above rule
sequence, the firewall accepts all incoming SMTP packets
even those that originated at the malicious hostm. This rel-
ative order of rules r0 and r2 is likely a consistency error.
This error can be corrected by placing rule r2 at the begin-
ning of the sequence of rules ahead of rule r1. This correc-
tion will cause the firewall to discard all incoming packets,
including SMTP packets, that originated at the malicious
hostm.

The second error in the above rule sequence is that any
packet where I = 0, S 6= m, and D 6= s does not satisfy
the predicate of any of the five rules r0 through r5. We re-
fer to such an error as a completeness error. This error can
be corrected by adding the following new rule immediately
before rule r3

I = 0 ∧ S = any ∧D = any ∧ P = any ∧ T = any → a

The third error in the above rule sequence is that rule r3
is redundant; i.e., this rule can be removed without affect-
ing the set of all packets accepted by the rule sequence and
without affecting the set of all packets discarded by the rule
sequence. We refer to such an error as a compactness er-
ror. This error can be corrected by removing rule r3 from
the above rule sequence.

After we preform these corrections, we end up with the
following sequence of rules.

( I = 0 ∧ S = m ∧D = any ∧ P = any ∧ T = any → d,
I = 0 ∧ S = any ∧D = s ∧ P = tcp ∧ T = 25 → a,
I = 0 ∧ S = any ∧D = s ∧ P = any ∧ T = any → d,
I = 0 ∧ S = any ∧D = any ∧ P = any ∧ T = any → a,
I = 1 ∧ S = any ∧D = any ∧ P = any ∧ T = any → a)

In this paper, we present a method for designing the se-
quence of rules of a firewall to be consistent, complete,
and compact. According to this method, a firewall designer
starts by specifying what we call a firewall decision dia-
gram whose consistency and completeness can be checked
systematically (by an algorithm). Then, the designer applies
a sequence of five algorithm to this firewall decision dia-
gram to generate a compact sequence of firewall rules while
maintaining the consistency and completeness of the origi-
nal diagram.

2. Related Work

Design errors in existing firewalls have been reported in
[3]. Yet, most of the research in the area of firewalls and
packet classifiers was not dedicated to the problem of how
to design correct firewalls. Rather, most of the research in
this area was dedicated to developing efficient data struc-
tures that can speed up the checking of firewall rules when
a new packet reaches a firewall. Examples of such data
structures are the trie data structures in [12], area-based
quadtrees [6], fat inverted segment trees [8]. A good sur-
vey of these data structures is presented in [9].

Another research direction in the area of firewall design
has been dedicated to the development of high-level spec-
ification languages that can be used in specifying firewall
rules. Examples of such languages are the simple model
definition language in [3], the Lisp-like language in [10],
the declarative predicate language in [4], and the high level
firewall language in [1]. However, none of these specifica-
tion languages is able to simplify the task of ensuring con-
sistency, completeness, and compactness of the firewalls be-
ing specified.

Perhaps the research direction that is closest to the spirit
of the current papers is reported in [11], [7], [2]. This re-
search direction is dedicated to detecting every pair of con-
flicting rules in a firewall. Each detected pair of conflict-
ing rules is then presented to the firewall designer who de-
cides whether the two rules need to be swapped or a new
rule need to be added. However, these methods do not deal
with the completeness and compactness errors of a firewall.

According to the firewall design method in the current
paper, firewalls are first specified as firewall decision dia-
grams. These decision diagrams are similar, but not iden-
tical, to other types of decision diagrams such as the Bi-
nary Decision Diagrams in [5] and the Interval Decision Di-
agrams in [13].



3. Firewall Decision Diagrams (FDDs)

A field Fi is a variable whose value is taken from a pre-
defined interval of nonnegative integers, called the domain
of Fi and denoted by D(Fi).

A packet over the fields F0, · · · , Fn−1 is an n-tuple
(p0, · · · , pn−1) where each pi is taken from the domain
D(Fi) of the corresponding field Fi.

A firewall decision diagram f (or FDD f , for short) over
the fields F0, · · · , Fn−1 is an acyclic and directed graph that
satisfies the following five conditions:

1. f has exactly one node that has no incoming edges,
called the root of f , and has two or more nodes that
have no outgoing edges, called the terminal nodes of
f .

2. Each nonterminal node v in f is labelled with a
field, denoted by F (v), taken from the set of fields
F0, · · · , Fn−1. Each terminal node v in f is la-
belled with a decision that is either accept (or “a” for
short) or discard (or “d” for short).

3. A directed path from the root to a terminal node in f
is called a decision path. No two nodes on a decision
path in f have the same label.

4. Each edge e, that is outgoing of a node v in f , is la-
belled with an integer set I(e), where I(e) is a subset
of the domain of field F (v).

5. Let v be any terminal node in f . The set E(v) of all
outgoing edges of node v satisfies the following two
conditions:

(a) Consistency: For any distinct ei and ej in E(v),

I(ei) ∩ I(ej) = ∅

(b) Completeness:
⋃

e∈E(v) I(e) = D(F (v))

where ∅ is the empty set and D(F (v)) is the domain
of the field F (v).

Figure 2 shows an FDD over two fields F0 and F1. The
domain of each field is the interval [0, 9]. Each edge in this
FDD is labelled with a set of integers that is represented by
one or more non-overlapping intervals (that cover the set of
integers). For example, one outgoing edge of the root is la-
belled with the two intervals [0, 3] and [8, 9] that represent
the set {0, 1, 2, 3, 8, 9}.

Let f be an FDD over the fields F0, · · · , Fn−1. A deci-
sion path in f is denoted (v0e0 · · · vk−1ek−1vk) where v0 is
the root node in f , vk is a terminal node in f , and each ei is
a directed edge from node vi to node vi+1 in f .

Each decision path (v0e0 · · · vk−1ek−1vk) in an FDD f
over the packet fields F0, · · · , Fn−1 can be represented as a
rule of the form:

F0 ∈ S0 ∧ · · · ∧ Fn−1 ∈ Sn−1 → 〈decision〉

a

[6,7]

d

[2,3]

[0,3][4,5] [8,9]

[5,7]
[0,1]
[4,4]
[8,9][8,9]

da

[2,3] [0,1]
[4,4][5,7]

dd

[0,4] [5,9]   PSfrag replacements

F0

F1F1 F1

Figure 2. An FDD

where 〈decision〉 is the label of the terminal node vk in the
decision path and each field Fi satisfies one of the following
two conditions:

1. No node in the decision path is labelled with field Fi

and Si is the domain of Fi.

2. There is one node vj in the decision path that is la-
belled with field Fi and Si is the label of edge ej in the
decision path.

An FDD f over the fields F0, · · · , Fn−1 can be repre-
sented by a sequence of rules, each of them is of the form

F0 ∈ S0 ∧ · · · ∧ Fn−1 ∈ Sn−1 → 〈decision〉

such that the following two conditions hold. First, each rule
in the sequence represents a distinct decision path in f . Sec-
ond, each decision path in f is represented by a distinct rule
in the sequence. Note that the order of the rules in the se-
quence is immaterial.

We refer to a sequence of rules that represents an FDD f
as a firewall of f .

A packet (p0, · · · , pn−1) over the fields F0, · · · , Fn−1 is
said to be accepted by an FDD f over the same fields iff a
firewall of f has a rule

F0 ∈ S0 ∧ · · · ∧ Fn−1 ∈ Sn−1 → accept

such that the condition p0 ∈ S0∧ · · · ∧pn−1 ∈ Sn−1 holds.
Similarly, a packet (p0, · · · , pn−1) over the fields

F0, · · · , Fn−1 is said to be discarded by an FDD f over the
same fields iff a firewall of f has a rule

F0 ∈ S0 ∧ · · · ∧ Fn−1 ∈ Sn−1 → discard

such that the condition p0 ∈ S0∧ · · · ∧pn−1 ∈ Sn−1 holds.
Let Σ denote the set of all packets over the fields

F0, · · · , Fn−1, and let f be an FDD over the same fields.
The accept set of f , denoted f.accept , is the subset of
Σ that contains all the packets accepted by f . Simi-
larly, the discard set of f , denoted f.discard , is the subset
of Σ that contains all the packets discarded by f .

Theorem 1 (Theorem of FDDs) For any FDD f over the
fields F0, · · · , Fn−1,



1. f.accept ∩ f.discard = ∅, and

2. f.accept ∪ f.discard = Σ

where ∅ is the empty set and Σ is the set of all packets over
the fields F0, · · · , Fn−1. 2

Two FDDs f and f ′ over the same fields are said to be
equivalent iff they have identical accepts sets and identical
discard sets, i.e.,

f.accept = f ′.accept , and
f.discard= f ′.discard .

4. Reduction of FDDs

As discussed in the precious section, the number of rules
in a firewall of an FDD f equals the number of decision
paths in f . Thus, it is advantageous to reduce the number of
decision paths in an FDD without changing its semantics,
i.e., without changing its accept and discard sets. The pro-
cedure for reducing the number of decision paths in an FDD
without changing its accept and discard sets is called a re-
duction of this FDD. This procedure is discussed in this sec-
tion. But before we introduce the concept of a reduced FDD,
we need to introduce the concept of isomorphic nodes in an
FDD.

Two nodes v0 and v1 in an FDD f are called isomorphic
in f iff v0 and v1 satisfy one of the following two condi-
tions:

1. Both v0 and v1 are terminal nodes with identical labels
in f .

2. Both v0 and v1 are nonterminal nodes and there is
a one-to-one correspondence between the outgoing
edges of v0 and the outgoing edges of v1 such that ev-
ery pair of corresponding edges have identical labels
and are incoming of the same node in f .

An FDD f is called reduced iff it satisfies the following
three conditions:

1. f has no node with exactly one outgoing edge.

2. f has no two edges that are outgoing of one node and
are incoming of another node.

3. f has no two distinct isomorphic nodes.

The reduction procedure of FDDs is presented next.

Algorithm 1: (Reduction of FDDs)
input : an FDD f
output: a reduced FDD that is equivalent to f
steps:

Repeatedly apply the following three reductions to f
until none of them can be applied any further.

1. If f has a node v0 with only one outgoing edge e
and if e is incoming of another node v1, then remove

v0 and e from f and make the incoming edges of
v0 incoming of v1.

2. If f has two edges e0 and e1 that are outgoing of node
v0 and incoming of node v1, then remove e0 and make
the label of e1 be the integer set I(e0) ∪ I(e1),
where I(e0) and I(e1) are the integer sets that labelled
edges e0 and e1 respectively.

3. If f has two isomorphic nodes v0 and v1, then
remove node v1 and its outgoing edges, and make
the incoming edges of v0 incoming of v1.

Applying Algorithm 1 to the FDD in Figure 2 yields the
reduced FDD in Figure 3. Note that a firewall of the FDD in
Figure 2 consists of six rules, whereas a firewall of the FDD
in Figure 3 consists of three rules.
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Figure 3. A reduced FDD

5. Marking of FDDs

In section 8, we describe an algorithm for replacing each
rule in the firewall of a reduced FDD f by a sequence of
“simple” rules. The total number of the resulting simple
rules in the firewall equals the “degree” of a “marked ver-
sion” of f . Next, we define what we mean by a marked ver-
sion of an FDD and its degree.

A marked version f ′ of a reduced FDD f is the same as
f except that exactly one outgoing edge of each nontermi-
nal node in f ′ is marked “ALL”. We adopt the convention:

f.accept = f ′.accept , and
f.discard= f ′.discard .

We sometimes refer to f ′ as a marked FDD.
Figure 4 shows two marked versions f ′ and f ′′ of the

reduced FDD in Figure 3. In f ′, the edge labelled [4, 7]
and the edge labelled [0, 1][4, 4][8, 9] are both marked ALL.
In f ′′, the edge labelled [0, 3][8, 9] and the edge labelled
[0, 1][4, 4][8, 9] are both both marked ALL.

The degree of a set of integers S, denoted deg(S),
is the smallest number of non-overlapping integer in-
tervals that cover S. For example, the degree of the set
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Figure 4. Two marked FDDs

{0, 1, 2, 4, 7, 8, 9} is 3 because this set is covered by the
three integer intervals [0, 2], [4, 4] and [7, 9].

The degree of an edge e in a marked FDD, denoted
deg(e), is defined as follows. If e is marked ALL, then
deg(e) = 1. If e is not marked ALL, then deg(e) = deg(S)
where S is the set of integers that labels edge e.

The degree of a node v in a marked FDD, denoted
deg(v), is defined recursively as follows. If v is a termi-
nal node, then deg(v) = 1. If v is a nonterminal node with
k outgoing edges e0, · · · , ek−1 that are incoming of nodes
v0, · · · , vk−1 respectively, then

deg(v) =

k−1∑

i=0

deg(ei)× deg(vi)

The degree of a marked FDD f , denoted deg(f), equals
the degree of the root node of f .

For example, deg(f ′) = 5 where f ′ is the marked FDD
in Figure 4(a), and deg(f ′′) = 4 where f ′′ is the marked
FDD in Figure 4(b).

From the above examples, a reduced FDD may have
many marked versions, and each marked version may have
a different degree. As mentioned earlier, the number of sim-
ple rules in the firewall of a marked FDD equals the degree
of the marked FDD. Thus, it is advantageous, when gener-
ating a marked version of a reduced firewall, to generate the
marked version with the smallest possible degree. This is
achieved by the following algorithm.

Algorithm 2: (Marking of FDDs)
input : a reduced FDD f
output: a marked version f ′ of f such that for every

marked version f ′′ of f , deg(f ′) ≤ deg(f ′′)
steps:

1. Compute the degree of each terminal node v in f as
follows:

deg(v) = 1
2. while f has a node v whose degree has not yet been

computed and v has k outgoing edges e0, · · · , ek−1

that are incoming of the nodes v0, · · · , vk−1, respec-
tively, whose degrees have already been computed
do

(1) Find an outgoing edge ej of v whose quantity
(deg(ej)− 1)× deg(vj)

is larger than or equal to the corresponding
quantity of every other outgoing edge of v.

(2) Mark edge ej with “ALL”.
(3) Compute the degree of v as follows:

deg(v) =
∑k−1

i=0 (deg(ei)× deg(vi))
end

If Algorithm 2 is applied to the reduced FDD in Figure
3, we obtain the marked FDD in Figure 4(b).

6. Firewall Generation

In this section, we present an algorithm, Algorithm 3,
for generating a firewall of a marked FDD f , which is gen-
erated by Algorithm 2 in section 5. The generated firewall is
a sequence of rules where each rule corresponds to a deci-
sion path in the marked FDD f . Algorithm 3 computes for
each rule in the generated firewall a binary number, called
rank of the rule, and two predicates, called exhibited and
original predicates of the rule. The rule ranks are used to
order the computed rules in the generated firewall. The ex-
hibited and original predicates of the rules are used in the
next section to make the generated firewall “compact”.

A firewall r over the fields F0, · · · , Fn−1 is a sequence
of rules r0, · · · , rm−1 where each rule is of the form

F0 ∈ S0 ∧ · · · ∧ Fn−1 ∈ Sn−1 → 〈decision〉

Each Si is either the mark ALL or a nonempty set of inte-
gers taken from the domain of field Fi (which is an interval
of consecutive nonnegative integers). The 〈decision〉 is ei-
ther a (for accept) or d (for discard). The last rule, rm−1, in
firewall r is of the form:

F0 ∈ S0 ∧ · · · ∧ Fn−1 ∈ Sn−1 → 〈decision〉

where each Si is either the mark ALL or the entire domain
of field Fi.

A packet (p0, · · · , pn−1) over the fields F0, · · · , Fn−1 is
said to match a rule ri in a firewall over the same fields iff
rule ri is of the form

F0 ∈ S0 ∧ · · · ∧ Fn−1 ∈ Sn−1 → 〈decision〉

and the predicate (p0 ∈ S0 ∧ · · · ∧ pn−1 ∈ Sn−1) holds.
A packet over the fields F0, · · · , Fn−1 is said to be ac-

cepted by a firewall r over the same fields iff r has a rule ri
that satisfies the following three conditions:

1. The packet matches ri.

2. The packet does not match any rule that precedes ri.

3. The 〈decision〉 of ri is a.



Similarly, a packet over the fields F0, · · · , Fn−1 is said
to be discarded by a firewall r over the same fields iff r has
a rule ri that satisfies the following three conditions:

1. The packet matches ri.

2. The packet does not match any rule that precedes ri.

3. The 〈decision〉 of ri is d.

Let r be a firewall over the fields F0, · · · , Fn−1. The set
of all packets accepted by r is denoted r.accept , and the set
of all packets discarded by r is denoted r.discard . The next
theorem follows from these definitions.

Theorem 2 (Theorem of Firewalls) For any firewall r
over the fields F0, · · · , Fn−1,

1. r.accept ∩ r.discard = ∅, and

2. r.accept ∪ r.discard = Σ

where ∅ is the empty set and Σ is the set of all packets over
the fields F0, · · · , Fn−1. 2

Algorithm 3: (Firewall Generation)
input : a marked FDD f over the fields F0, · · · , Fn−1

and assume that along each directed path in f , if a
field Fi appears before field Fj then i < j.

output: a firewall r over the same fields such that
r.accept = f.accept , and
r.accept = f.accept

and for each rule ri in r, the algorithm computes a
binary number of n bits, called the rank of ri, and
two predicates, called the exhibited and original
predicates of ri.

steps:
1. For each decision path in f , compute a rule ri, its

rank, its exhibited predicate epi and its original
predicate opi as follows:
F0 ∈ S0 ∧ · · · ∧ Fn−1 ∈ Sn−1 → 〈decision〉
rank = b0 · · · bn−1

epi = (F0 ∈ S0 ∧ · · · ∧ Fn−1 ∈ Sn−1)
opi = (F0 ∈ T0 ∧ · · · ∧ Fn−1 ∈ Tn−1)

where each bi, Si, and Ti is computed according
to the following three cases:
Case 1:(The decision path has no nodes labelled Fi)

bi = 0
Si =the domain [ai, bi] of Fi

Ti =the domain [ai, bi] of Fi

Case 2:(The decision path has a node labelled Fi,
and its outgoing edge e has no mark)
bi = 0
Si =the integer set that labels e
Ti =the integer set that labels e

Case 3:(The decision path has a node labelled Fi,
and its outgoing edge e has an ALL mark)
bi = 1
Si =ALL

Ti =the integer set that labels e
2. After computing all the rules and their ranks, order

the rules in r in an ascending order of their ranks.

As an example, if Algorithm 3 is applied to the marked
FDD in Figure 4(b), we obtain the firewall in Figure 5. As-
sociated with each of the three rules in this firewall are a
rank, and an exhibited and original predicates. In particu-
lar, associated with the first rules are

rank =00,
exhibited predicate =(F0 ∈ [4, 7] ∧ F1 ∈ [2, 3] ∪ [5, 7]),
original predicate =exhibited predicate.

Associated with the second rule are:

rank =01,
exhibited predicate =(F0 ∈ [4, 7] ∧ F1 ∈ ALL),
original predicate =(F0 ∈ [4, 7] ∧ F1 ∈ [0, 1] ∪ [4, 4] ∪ [8, 9]).

Associated with the third rule are:

rank =10,
exhibited predicate =(F0 ∈ ALL ∧ F1 ∈ [0, 9]),
original predicate =(F0 ∈ [0, 3] ∪ [8, 9] ∧ F1 ∈ [0, 9]).

Note that the three rules are placed in the firewall in ascend-
ing order of their ranks.

r = ( F0 ∈ [4, 7] ∧ F1 ∈ [2, 3] ∪ [5, 7]→ a,
F0 ∈ [4, 7] ∧ F1 ∈ ALL → d,
F0 ∈ ALL ∧ F1 ∈ [0, 9] → d,

)

Figure 5. A generated firewall

7. Firewall Compactness

Firewalls that are generated by Algorithm 3 in the last
section can have redundant rules, i.e., rules that can be re-
moved from their firewalls without affecting the accept or
discard sets of these firewalls. For example, the second rule
in firewall r in Figure 5 is redundant. Thus, removing this
rule from r yields the equivalent in Figure 6. The two fire-
walls are equivalent since

r′.accept = r.accept , and
r′.accept = r.accept

A firewall is called compact iff it has no redundant rules.
It is straightforward to argue that the firewall in Figure 6 is
compact.

In this section, we present an algorithm, Algorithm 4, for
detecting and removing all redundant rules from the fire-
walls generated by Algorithm 3. Algorithm 4 is based on
the following theorem.



r′ = ( F0 ∈ [4, 7] ∧ F1 ∈ [2, 3] ∪ [5, 7]→ a,
F0 ∈ ALL ∧ F1 ∈ [0, 9] → d,

)

Figure 6. A compact firewall

Theorem 3 (Redundancy of Firewall Rules) Let
(r0, · · · , rm−1) be a firewall over the fields F0, · · · , Fn−1

generated by Algorithm 3 in the last section. A rule ri
in this firewall, i < m − 1, is redundant iff for each j,
i < j ≤ m − 1, at least one of the following two condi-
tions holds:

1. 〈decision〉 of rj = 〈decision〉 of ri.

2. No packet over the fields F0, · · · , Fn−1 satisfies the
predicate

ri.op ∧ (¬ri+1.ep ∧ · · · ∧ ¬rj−1.ep) ∧ rj .ep

where ri.op denotes the original predicate of ri and
rj .ep denotes the exhibited predicate of rj .

2

Algorithm 4: (Firewall Compaction)
input : a firewall r withm rules (r0, · · · , rm−1) over the

fields F0, · · · , Fn−1 generated by Algorithm 3
output: a compact firewall r′ such that

r′.accept = r.accept , and
r′.accept = r.accept

variables
i : 0..m− 2;
j : 0..m;
redundant : array [0..m− 1] of boolean;
np : name of a predicate;

steps:
1. redundant [m− 1] := false;
2. for i = m− 2 to 0 do

j := i+ 1;
let ri.op be named np;
redundant [i] := true

while redundant [i] ∧ j ≤ m− 1 do
if redundant [j]
then j := j + 1;
else if (〈decision〉 of ri = 〈decision〉 of rj)

∨(no packet over the fields F0, · · · ,
Fn−1 satisfies np ∧ rj .ep)

then let np ∧ ¬rj .ep be named np;
j := j + 1;

else redundant [i] := false;
3. Remove from r every rule ri where

redundant [i] := true.

If we apply Algorithm 4 to the firewall in Figure 5, we
obtain the compact firewall in Figure 6.

8. Firewall Simplification

A firewall rule of the form

F0 ∈ S0 ∧ · · · ∧ Fn−1 ∈ Sn−1 → 〈decision〉

is called simple iff every Si in the rule is either the ALL
mark or an interval of consecutive nonnegative integers. A
firewall is called simple off all its rules are simple.

The following algorithm can be used to simplify any fire-
wall generated by Algorithm 3 or Algorithm 4.

Algorithm 5: (Firewall Simplification)
input : a firewall r generated by Algorithm 3 or Algorithm 4
output: a simple firewall r′ such that

r′.accept = r.accept , and
r′.accept = r.accept

steps:
while r has a rule of the form

F0 ∈ S0 ∧ · · · ∧ Fi ∈ S ∪ [a, b] ∧ · · · ∧ Fn−1 ∈ Sn−1

→ 〈decision〉
where S is a nonempty set of nonnegative integers that
has neither a− 1 nor b+ 1

do
replace this rule by two consecutive rules of the form:
F0 ∈ S0 ∧ · · · ∧ Fi ∈ S ∧ · · · ∧ Fn−1 ∈ Sn−1

→ 〈decision〉,
F0 ∈ S0 ∧ · · · ∧ Fi ∈ [a, b] ∧ · · · ∧ Fn−1 ∈ Sn−1

→ 〈decision〉
end

If we apply Algorithm 5 to the compact firewall r′ in
Figure 6, we obtain the simple firewall r′′ in Figure 7. Note

r = ( F0 ∈ [4, 7] ∧ F1 ∈ [2, 3]→ a,
F0 ∈ [4, 7] ∧ F1 ∈ [5, 7]→ d,
F0 ∈ ALL ∧ F1 ∈ [0, 9]→ d,

)

Figure 7. A simple firewall

that our firewall running example, illustrated in the Figure
2 through 7, started by the FDD in Figure 2. If we directly
generate and simplified our firewall from this FDD, ignor-
ing Algorithm 1, 2, and 4, then we would have ended up
with a firewall consists of 14 simple rules. Thus the role
of Algorithms 1, 2, and 4 is to reduce the number of sim-
ple rules in the final firewall from 14 to mere 3. A big sav-
ing!

9. Summary of Firewall Design

It is useful to summarize our firewall design method in
this section, Figure 8 shows the different steps of our fire-



wall design method.

PSfrag replacements

A user specified FDD f
Algorithm 1

A reduced FDD f ′

Algorithm 2

A marked FDD f ′′

Algorithm 3

A generated firewall r
Algorithm 4

A compact firewall r′

Algorithm 5

A simple firewall r′′Algorithm 6

Figure 8. Steps of our firewall design method

The method starts by some user specifying an FDD f .
The consistency and completeness properties of f can be
verified systematically, possibly using a computer program.
Although f guarantees that the final firewall is both consis-
tent and complete, f should not be used to directly gener-
ate and simplify this final firewall (otherwise, the number
of simple rules in the final firewall would be very large). In-
stead, f is first reduced (using Algorithm 1), and some of
its edges are marked with the ALL mark (using Algorithm
2), then the firewall is generated from the marked FDD (us-
ing Algorithm 3).

Note that although marking some of the edges in an FDD
introduces conflicts into the FDD, the marking algorithm,
Algorithm 3, maintains the consistency and completeness
conditions of the original FDD.

Unfortunately, the generated firewall can still have some
redundant rules (even though this firewall is generated after
applying the reduction algorithm, Algorithm 1, go get rid
of many redundant rules). Thus, Algorithm 4 is used to de-
tect and remove all the remaining redundant rules from the
generated firewall.

Finally, Algorithm 5 is used to simplify the rules in the
generated firewall. Note that the marking algorithm, Algo-
rithm 2, guarantees that the number of simple rules in the
generated firewall is kept to a minimum.

10. Concluding Remarks

Our contribution in this paper is two-fold. First, we pro-
posed to use firewall decision diagrams to specify firewalls
at the early stage of firewall design. The main advantages

of these diagrams is that their consistency and complete-
ness can be checked systematically. Second, we developed
a sequence of five algorithms that can be applied to a fire-
wall decision diagram to generate a compact sequence of
firewall rules while maintaining the consistency and com-
pleteness of the original firewall diagram.

In our firewall design method, we assume that to each
encountered packet, a firewall assigns one of two decisions:
accept or discard. Nevertheless, this design method can be
easily extended to allow a firewall to select one of any num-
ber decisions. For example, the extended method can be
used to design a firewall that assigns to each encountered
packet a decision taken from the following four decisions:
accept, accept-and-log, discard, and discard-and-log.

The design method discussed in this paper is not re-
stricted to designing firewalls. Rather, this method can also
be applied to the design of general packet classifiers.
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