
The Mote Connectivity Protocol
Young-ri Choi, Mohamed G. Gouda, and Moon C. Kim

Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712-0233, U.S.A.

Email: {yrchoi, gouda, mckim}@cs.utexas.edu

Anish Arora
Department of Computer and Information Science

The Ohio State University
Columbus, OH 43210-1277, U.S.A.

Email: anish@cis.ohio-state.edu

Abstract— An attractive architecture for sensor networks is to
have the sensing devices mounted on small computers, called
motes. Motes are battery-powered, and can communicate in a
wireless fashion by broadcasting messages over radio frequency.
In mote networks, the connectivity of a mote u can be defined
by those motes that can receive messages from u with high
probability and those motes from which u can receive messages
with high probability. In this paper, we describe a protocol
that can be triggered by any mote in a mote network in order
that each mote in the network computes its connectivity. The
protocol is simple and has several energy saving features. We
implemented this protocol over TinyOS and discuss the results
of some execution runs of this implementation.

I. INTRODUCTION

A sensor network consists of a large number of sensing
devices capable of detecting waves of sound, heat, magnetism,
. . . in their immediate regions [9], [10], [8], [11]. Each sens-
ing device needs to collaborate with its neighboring devices
to perform a given task by disseminating data through the
network. An attractive architecture for sensor networks is to
have each sensing device mounted on a small computer, called
a mote [4]. Motes are battery-powered, and can communicate
in a wireless fashion by broadcasting messages over radio
frequency [1]. They are energy constrained and the range of
their radio transmission is limited to their neighborhood. Thus,
they form a multi-hop network to deliver information.

One of the challenging problems in designing mote net-
works is for any mote u to identify every mote that can receive
messages from u with high probability, and identify every mote
from which u can receive messages with high probability. Note
that because the lists of these motes change over time, mote
u needs to recompute these lists every so often.

In this paper, we give a formal definition of mote con-
nectivity and devise a protocol that can be triggered by any
mote in a mote network in order that each mote in the
network computes its connectivity. In our protocol, each mote
periodically broadcasts hello messages. Also each mote keeps
track of the number of hello messages the mote receives from
every other mote during a certain duration, and computes its
connectivity based on the number of received hello messages.

In the past, several protocols have been proposed to compute
the connectivity of each node in a network, whether the
network is wired or wireless. The most prominent examples
of these protocols are the Ping protocol in the Internet, the
Hello protocol in the OSPF standard, and the channel history

protocol in wireless networks. Next, we briefly describe each
of these protocols and highlight the differences between each
protocol and the mote connectivity protocol.

The Ping protocol [6] allows a node u to check if it can ex-
change messages with another arbitrary node v in the Internet.
In this protocol, node u sends several echo-request messages to
node v, and v replies by sending back an echo-reply message
for each echo-request message it receives from u. If u receives
the echo-reply messages from v, u’s conclusions are sharp: v
can receive messages from u and u can receive messages from
v. On the other hand, if u does not receive the echo-reply
messages from v, u’s conclusions are vague: v cannot receive
messages from u or u cannot receive messages from v. Thus,
this protocol cannot be used to identify asymmetric patterns
of communications between u and v, where v can receive
messages from u but u cannot receive messages from v, or
vice versa. Because these asymmetric communication patterns
are common in mote networks, the Ping protocol cannot be
used to measure connectivity in mote networks. (Note that
the asymmetric communication patterns are not common in
the Internet; this should explain the effectiveness of the Ping
protocol in the Internet.)

The Hello protocol in the OSPF standard [5] requires that
each node (in this case a router) periodically sends hello
messages to every other node in its subnetwork. The periodic
exchange of hello messages between two neighboring nodes
allows each of the two nodes to identify the pattern of possible
communication between the two nodes, even if this pattern
is asymmetric where only one of the two nodes can receive
messages from the other node. Our mote connectivity protocol
is similar, but not identical, to this hello protocol. Our protocol
differs from the hello protocol in two important ways:

i) The hello protocol can detect whether or
not a node u can receive messages from
a neighboring node v. However, it cannot
measure the percentage of messages that u
can receive from v. By contrast, our mote
connectivity protocol accurately measures the
percentage of messages that u can receive
from v.

ii) The hello protocol is designed to be executing
all the time since the nodes (i.e. routers in
the Internet) do not need to save their energy.



By contrast, the mote connectivity protocol is
executed for a short period of time and only
when one or more motes in the mote network
need to update their connectivity information.
Thus, our connectivity protocol permits the
motes to save their energy.

These differences make our mote connectivity protocol more
complex, and also more interesting, than the hello protocol.

In the channel history protocol [2], a master node in a
wireless network (usually the base station in the network, if
one exits) collects information concerning the communication
errors in all channels in the network and uses the collected
information to determine whether the states of scheduled
channels are good or bad. Because mote sensor networks have
a distributed architecture, rather than a centralized one, this
protocol may not be useful in such networks.

II. CONNECTIVITY IN MOTE NETWORKS

Let u and v be two motes in a mote network. The in-
connectivity of u with respect to v is an integer k in the range
0..100 such that k percent of the messages that v sends are
received correctly by u. Similarly, the out-connectivity of u
with respect to v is an integer k in the range 0..100 such that
k percent of the messages that u sends are received correctly
by v.

The next relation follows from these definitions of in-
connectivity and out-connectivity.

The in-connectivity of u w.r.t. v =
The out-connectivity of v w.r.t. u

We refer to this relation as the mote connectivity relation.
The (in- and out-) connectivity of a mote with respect to any

other mote in its network may change over time, especially
if the two motes are moving and the distance between them
and their relative orientation change over time. The mote
connectivity protocol, described in this paper, is executed
by every mote in a mote network when any mote needs to
compute its current in-connectivity and out-connectivity with
respect to every other mote in the network. Note that the (in-
and out-) connectivity of a mote is computed periodically
(rather than merely once) so that any change in the mote
connectivity can be reflected in future computations of the
connectivity.

Let u and v be two motes in a network and assume that
the in-connectivity of u with respect to v is zero while the in-
connectivity of v with respect to u is larger than zero. Accord-
ing to the mote connectivity protocol, discussed below, each
of the two motes accurately computes its own in-connectivity
and attempts to report it to the other mote. (This is because the
in-connectivity of each mote equals the out-connectivity of the
other mote, by the mote connectivity relation.) However, only
mote u succeeds in reporting its in-connectivity, or the out-
connectivity of v, to mote v (since the in-connectivity of v is
larger than zero). Mote v, on the other hand, does not succeed
in reporting its in-connectivity, or the out-connectivity of u, to

mote u (since the in-connectivity of u is zero). In this case,
mote u cannot determine its out-connectivity and so it assumes
that its out-connectivity is zero.

In summary, if the in-connectivity of a mote u with respect
to another mote v is zero, then mote u cannot determine its
out-connectivity with respect to v and arbitrarily assumes it is
zero. In this case, the mote connectivity relation may not hold
between u and v. (Fortunately, this is the only case where the
mote connectivity relation may not hold between two motes.)

Let u and v be two motes in a network. Mote v is an in-
neighbor of u iff the in-connectivity of u with respect to v is
relatively high, 50% or higher. Mote v is an out-neighbor of
u iff the out-connectivity of u with respect to v is relatively
high, 50% or higher. Mote v is a bi-neighbor of u iff v is both
an in-neighbor and out-neighbor of u.

If the in-connectivity of u with respect to v is 100%, then
u concludes easily that u can hear all messages from v. On
the other hand, if the in-connectivity of u with respect to v is
0%, then u concludes easily that u cannot hear any message
from v at all. Thus, the in-neighbors of u can be defined as the
motes from which u can receive more than 50% of messages.
Note that a mote can send each message twice if it needs to
ensure that the message is received by all its out-neighbors.

In the next section, we describe the mote connectivity pro-
tocol that can be triggered by any mote in a mote network so
that every mote in the network can compute its in-neighbors,
out-neighbors, and bi-neighbors.

III. SPECIFICATION OF THE CONNECTIVITY PROTOCOL

A mote u that participates in the mote connectivity protocol
partitions its time into a sequence of slots of t seconds each.
At the beginning of each slot, mote u executes its timeout
action as follows. First, u broadcasts a hello message. Second,
u schedules its timeout action to be executed next after t
seconds. (A small random jitter can be added to the value
of t to reduce the probability that two or more nearby motes
broadcast their hello messages at the same time causing the
messages to collide and not be received by any mote in the
network.)

Because each mote in the network broadcasts a hello
message at the beginning of each slot, a mote u can compute
its in-connectivity with respect to another mote v by keeping
track of the number of hello messages that u received from
v during its last 10 slots. Also, each mote includes its in-
connectivity (computed based on the number of hello messages
that the mote has received during the last 10 slots) in each
hello message it broadcasts. Thus, when a mote u receives a
hello message from a mote v and finds in the message the in-
connectivity of v with respect to u, u stores this information
as its own out-connectivity with respect to v.

Each mote u stores its in-connectivity in an array named
inc, and stores its out-connectivity in an array named outc.
These two arrays are declared in u as follows,

var inc, outc : array [0..n-1] of 0..100



In this declaration, n is the total number of motes in
the network. Each element inc[v], where v �= u, in the
first array stores the in-connectivity of u with respect to v.
Similarly, each element outc[v], where v �= u, in the second
array stores the out-connectivity of u with respect to v.

Each mote u also has an array named slot to keep track
of the number of hello messages that u received from every
other mote during the last 10 slots that preceded the current
slot named x.

var slot : array [0..n-1, 0..10] of integer,

x : 0..10

Thus, the element slot[v,x] stores the number of hello
messages that u receives from v during the current slot. In
general, the element slot[v, x-k mod 11] stores the number
of hello messages that u received from v during the k-th slot
that preceded the current slot.

When the value of element slot[v,x] is zero, the sum of all
v-elements, slot[v,0] + ... + slot[v,10], is the number of hello
messages that mote u received from mote v during the last
10 slots. In this case, this sum can be used to compute the
in-connectivity inc[v] of u with respect to v as follows.

inc[v] :=

10 * min(slot[v,0]+ .. + slot[v,10], 10)

Note that in some cases, the sum slot[v,0] +...+ slot[v,10] is
larger than 10, and in those cases, the sum is reduced to 10
(by the function min) before it is multiplied by 10 to produce
the in-connectivity inc[v] of u with respect to v.

When a mote u participates in the mote connectivity
protocol, mote u executes at most D + 10 slots of this
protocol, where D is an upper bound on the network
diameter. Thus, each mote u maintains a variable named ns to
store the number of remaining slots that u needs to execute in
its current execution round of the mote connectivity protocol.
Variable ns is declared as follows in mote u.

var ns : 0..D+9

Note that when ns becomes 0, mote u terminates its current
execution round of the mote connectivity protocol. At this
instant, the two arrays inc and outc in mote u have “correct”
values and mote u records the current time in an integer
variable named recordt. We assume that for the next T seconds
after a mote u terminates its execution round of the mote
connectivity protocol, the two arrays inc and outc in mote
u have correct values and u has no reason to initiate another
execution round of the protocol. Later on, however, when the
current time exceeds the value of recordt by more than T
seconds, the values in the two arrays inc and outc in mote
u become old (and possibly incorrect), and u may need to
initiate the next execution round of the protocol.

Each hello message that is broadcasted by a mote u has
three fields as follows

hello(u,s,c)

The first field is the name u of the mote that broadcasts the
message. The second field is the current value of variable ns
in mote u. The third field is the current value of array inc in
mote u.

When a mote u receives a hello(v,s,c) message, u checks
whether the value of its ns variable is 0. In one hand, if
the value of its ns is larger than 0, then u recognizes that
it is participating in the current execution round of the mote
connectivity protocol. In this case, u uses the received message
to update its two arrays outc and slot. In the other hand,
if the value of ns equals 0, then u recognizes that it is not
participating in the current execution round of the protocol.
In this case, depending on the value of s in the received
message, u decides whether to join the current execution round
of the protocol. If s < 10, u decides that there is not enough
remaining slots in the current execution round to justify joining
(the current execution round of the protocol). In this case, u
discards the received hello(v,s,c) message. If s ≥ 10, u joins
the current execution round of the protocol.

Below, we give a formal specification of the program of a
mote u in the mote connectivity protocol. This specification
is written using a notation similar to the Abstract Protocol
notation described in [3]. A program is specified in this
notation as a set of actions. Each action is of the form

<condition> -> <statement>

The <statement> of an action is executed only when the
<condition> is true. Each <statement> of an action is
a sequence of

assignment statements,
broadcast statements,
if ... fi statements, and

for ... do .. od statements

The program of a mote u consists of three actions. In the first
action, u detects that it can initiate the next execution round
of the protocol and it does so. In the second action, u times-
out and executes the next slot in the current execution round
of the protocol. In the third action, u receives a hello(v,s,c)
message and processes it.

The program of mote u is specified next. Note that
this program specification contains three statements named
INITIALIZE, SCHEDULE, and RECORD. The definitions
of these three statements are given below the program speci-
fication.

mote u:0..n-1

var inc, outc : array [0..n-1] of 0..100,
slot : array [0..n-1, 0..10] of integer,
x : 0..10,
ns : 0..D+9,
recordt : integer,



t : integer,
v : 0..n-1,
s : 0..D+9,
c : array [0..n-1] of 0..100

begin
ns = 0 and recordt+T < "currenttime" ->

ns := D+9;
INITIALIZE;
broadcast hello(u,ns,inc);
SCHEDULE

[] timeout is activated ->
x := x+1 mod 11;
for every v, v in 0..n-1 and v != u do

slot[v,x] := 0;
inc[v] := 10 *
min(slot[v,0]+ .. + slot[v,10], 10);
if inc[v]=0 -> outc[v] := 0
[] inc[v]>0 -> skip
fi

od;
ns := ns-1;
broadcast hello(u,ns,inc);
if ns>0 -> SCHEDULE
[] ns=0 -> recordt := "currenttime"
fi

[] rcv hello(v,s,c) ->
if ns>0 -> RECORD
[] ns=0 and s<10 -> skip
[] ns=0 and s>=10 ->

ns := s-1;
INITIALIZE;
RECORD;
inc[v] := 10;
broadcast hello(u,ns,inc);
SCHEDULE

fi
end

The three statements INITIALIZE, SCHEDULE, and
RECORD that appeared in this specification are defined as
follows.

INITIALIZE
x := 0;
inc := 0;
outc := 0;
slot := 0

SCHEDULE
activate timeout in t seconds

RECORD
outc[v] := c[u];
slot[v,x] := slot[v,x]+1

Using this protocol, mote u can decide at time r that another
mote v is its neighbor as follows.

i) v is an in-neighbor of u at r iff
in u, recordt+T ≥ r and inc[v] ≥ 50

ii) v is an out-neighbor of u at r iff

in u, recordt+T ≥ r and outc[v] ≥ 50

iii) v is a bi-neighbor of u at r iff
v is an in-neighbor and out-neighbor of u at r

In Section 4, we discuss some energy saving features
of this protocol. In Section 5, we discuss how we use an
implementation of this protocol to investigate the connectivity
properties of a class of motes, called Mica motes [7].

Ad-hoc On Demand Distance Vector Routing (AODV)
protocol [12] uses hello messages to maintain the local con-
nectivity of nodes in a network. The AODV protocol is similar
to our protocol, but our protocol is different in the following
ways:

i) The AODV protocol computes only the
bi-neighbors of each mote. By contrast, the
mote connectivity protocol computes the
in-neighbors, out-neighbors and bi-neighbors
of each mote.

ii) Similar to the hello protocol in the OSPF
standard [5], the AODV protocol is designed
to be executing all the time. By contrast, the
mote connectivity protocol executes only on-
demand (to save energy).

IV. ENERGY SAVING FEATURES

The above mote connectivity protocol has four features
intended to reduce the energy consumption of motes. These
four features are as follows.

• On-demand execution
• Short execution time
• Small number of messages
• Small message size

Next, we discuss how each of these features contributes to
save the mote’s energy.

a) On-demand execution: A mote does not start to
execute the mote connectivity protocol until the mote needs
its current neighbor information and until the connectivity
values stored in the mote are no longer valid. If no mote
needs neighbor information for a long period of time, no mote
needs to send hello messages during that period. Once a mote
starts the mote connectivity protocol, every mote executes a
fixed number of slots and then terminates the protocol. After
the protocol is terminated, the mote considers the computed
connectivity values valid for the next T seconds.

b) Short execution time: A mote executes at least 10 slots
and at most (D+10) slots in one run of the mote connectivity
protocol, where D is an upper bound on the network diameter.
If the duration of each slot is t seconds, the execution time
of one run of the mote connectivity protocol is between 10 ∗
t seconds and (D + 10) ∗ t seconds. If a mote sends hello
messages every 5 seconds in the mote network, and if the
network diameter is 50, each mote executes one run of the
mote connectivity protocol in between 50 seconds and 300
seconds. Thus, the average execution time of a mote is 175
seconds.



0 10 20 30 40 50 60 70 80

distance (inches)

0

20

40

60

80

100

in
-c

on
ne

ct
iv

it
y 

(%
)

Fig. 1. In-connectivity of mote0 with respect to mote1.

0 10 20 30 40 50 60 70 80

distance (inches)

0

20

40

60

80

100

ou
t-

on
ne

ct
iv

it
y 

(%
)

Fig. 2. Out-connectivity of mote0 with respect to mote1.

c) Small number of messages: A mote sends at least 10
hello messages and at most (D+10) hello messages in one run
of the mote connectivity protocol, where D is an upper bound
on the network diameter. If the diameter of a network is 50, a
mote in the network sends at most 60 hello messages and at
least 10 hello messages in one run of the protocol. Thus, the
average number of hello messages for a mote to send is 35.

d) Small message size: In the specification of Section
3, the third field of each hello message is the current value
of array inc whose size is proportional to the total number
of motes in the network. We can reduce the size of each
hello message, specially when a network is large, such that a
mote only includes the in-connectivity of motes whose value
is bigger than zero. Thus, the size of the third field becomes
proportional to the number of the motes whose in-connectivity
is bigger than zero.

V. CONNECTIVITY MEASUREMENTS

We have implemented the above mote connectivity protocol
over TinyOS and embedded our implementation on Mica
motes [7]. We used the implemented protocol, with t around
5 seconds, to measure the connectivity of two motes, named
mote 0 and mote 1, over distances that range from 10 inches
to 80 inches. The two motes were supplied with relatively
new batteries to ensure that the difference in batteries does
not cause any asymmetric communication patterns. The exper-
iments were carried out in a lab without any obstacles between
the two motes. The relative orientation between the two motes
remained the same during the experiments.

0 10 20 30 40 50 60 70 80

distance (inches)

id
ea

liz
ed

 in
-c

on
ne

ct
iv

it
y 

low

high

Fig. 3. Idealized in-connectivity of mote0 with respect to mote1.

0 10 20 30 40 50 60 70 80

distance (inches)
id

ea
liz

ed
 o

ut
-c

on
ne

ct
iv

it
y 

low

high

Fig. 4. Idealized out-connectivity of mote0 with respect to mote1.

Fig. 1 and 2 respectively show the in-connectivity and out-
connectivity of mote 0 with respect to mote 1. Each mark in
Fig. 1 represents a value of the in-connectivity of mote 0 after
executing 50 slots. Similarly, each mark in Fig. 2 represents
a value of the out-connectivity of mote 0 after executing 50
slots.

Referring to Fig. 1, one observes that the in-connectivity (of
mote 0 with respect to mote 1) partitions the range of possible
distances (between mote 0 and mote 1) into three intervals:

i) In the first interval, the distance is less than
38 inches. In this interval, the in-connectivity
is consistently high between 90% and 100%.

ii) In the second interval, the distance is between
38 inches and 67 inches. In this interval, the
in-connectivity is unstable in the following
sense. A slight change in the distance within
this interval leads to a large change in the
in-connectivity. For example, if the distance
is changed from 60 inches to 60.5 inches,
the in-connectivity changes from 10% to 100%.

iii) In the third interval, the distance is larger than
67 inches. In this interval, the in-connectivity
is consistently low between 0% and 10%.

From these observations, the relationship between the dis-
tance and in-connectivity, depicted in Fig. 1, can be “idealized”
as shown in Fig. 3. Note that in Fig. 3, if the distance is less



than 38 inches, then the in-connectivity is “high”. Moreover,
if the distance is between 38 inches and 67 inches, then the
in-connectivity can have any value. Finally, if the distance is
larger than 67 inches, then the in-connectivity is “low”.

Similarly, the relationship between the distance and out-
connectivity, depicted in Fig. 2, can be “idealized” as shown
in Fig. 4. Note that in Fig. 4, if the distance is less than 38
inches, then the out-connectivity is “high”. Moreover, if the
distance is between 38 inches and 63 inches, then the out-
connectivity can have any value. Finally, if the distance is
larger than 63 inches, then the out-connectivity is “low”.

Figures 3 and 4 show that the idealized in-connectivity
and out-connectivity are consistent, i.e. both are high or both
are low, provided that the distance is outside the interval of
instability between 38 inches and 67 inches.

VI. CONCLUDING REMARKS

In this paper, we gave a formal definition of connectivity in
mote networks: let u and v be two motes in a mote network.
The in-connectivity of u with respect to v is an integer k in the
range 0..100 such that k percent of the messages that v sends
are received correctly by u. Similarly, the out-connectivity of
u with respect to v is an integer k in the range 0..100 such that
k percent of the messages that u sends are received correctly
by v.

We presented a protocol that can be triggered by any mote
in a mote network in order that each mote in the mote
network computes its connectivity. Our protocol can identify
asymmetric communication patterns (i.e., a mote u can receive
messages from another mote v but v cannot receive from u)
as well as symmetric communication patterns. Our protocol
has several energy saving features: on-demand execution, short
execution time, small number of messages and small message
size. Finally, we implemented our protocol over TinyOS and
measured the connectivity of two motes over a variety of
distances.

A mote sends hello messages every t seconds during the
execution of the mote connectivity protocol. It is possible
that a mote piggybacks hello messages on any application
messages sent by the mote at this time. In this way, a mote
can reduce the number of messages to send and save energy.

In the mote connectivity protocol, a mote considers the
computed connectivity values valid for the next T seconds,
after the mote terminates the protocol. The range of T is
between 0 and infinity. If T equals 0, then a mote needs
to execute the protocol whenever the mote needs neighbor
information. If T equals infinity, then a mote needs to execute
the protocol only once during its lifetime. The value of T can
be selected based on the type of the mote network. On one
hand, if the network is stationary, then motes can execute the
protocol less frequently (i.e., by choosing T large). On the
other hand, if the network is mobile, then the motes need to
execute the protocol frequently (i.e., by choosing T small).

The neighbor information provided by the mote connectivity
protocol can be utilized on many applications in mote net-

works. Several applications that can utilize the protocol were
discussed in [13].

REFERENCES

[1] D. E. Culler, J. Hill, P. Buonadonna, R. Szewczyk, and A. Woo. A
network-centric approach to embedded software for tiny devices. In
EMSOFT 2001: First International Workshop on Embedded Software,
October 2001.

[2] S. Deb, M. Kapoor, and A. Sarkar. Error avoidance in wireless networks
using link state history. In INFOCOM, pages 786–795, 2001.

[3] M. G. Gouda. Elements of Network Protocol Design. John Wiley and
Sons, Inc., New York, New York, 1998.

[4] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges:
Mobile networking for ”smart dust”. In Proceedings of the fifth annual
ACM/IEEE international conference on Mobile computing and network-
ing, pages 271–278, 1999.

[5] J. Moy. The OSPF specification RFC 1131, 1989.
[6] J. Postel. Internet control message protocol RFC 792, 1981.
[7] TinyOS. http://today.cs.berkeley.edu/tos/.
[8] A. Perrig, R. Szewczyk, V. Wen, D. E. Culler, and J. D. Tygar. SPINS:

Security Protocols for Sensor Networks. In Proceedings of the 7th
annual international conference on Mobile Computing and Networking
(MobiCom 2001), ACM Press, New York, pages 189–199, 2001.

[9] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless
Sensor Networks: A Survey. Computer Networks, Elsevier Science, Vol.
38, No. 4, pages 393–422, March 2002.

[10] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A Survey
on Sensor Networks. IEEE Communications Magazine, Vol. 40, No. 8,
pages 102–114, August 2002.

[11] L. Zhou and Z. J. Hass. Securing Ad Hoc Networks. IEEE Network,
Vol. 13, no. 6, pages 24–30, 1999.

[12] Charles E. Perkins and Elizabeth M. Royer. Ad hoc On-Demand
Distance Vector Routing. In Proceedings of the 2nd IEEE Workshop
on Mobile Computing Systems and Applications, pages 90–100, February
1999.

[13] Young-ri Choi, Mohamed G. Gouda, Moon C. Kim and Anish Arora.
The Mote Connectivity Protocol. Technical Report TR03-08, Department
of Computer Sciences, the University of Texas at Austin, 2003


