Sources and Monitors:
A Trust Model for Peer-to-Peer Networks

Yan Li and Mohamed G. Gouda
Department of Computer Sciences, The University of Texasustin
Email: {yanli, goudg @cs.utexas.edu

Abstract—In this paper, we introduce an objective model of of them sends back wrong information. Over time, p[i] can
trust in peer-to-peer networks. Based on this model, we del@ accurately estimate the trust value of each of these pdérs. (
protocols that can be used by the peers in a peer-to-peer o¢ he end pli] detects that any of these peers is a bad peer,

network to compute the trust values of other peers in these ; . .)
networks. According to our model, the trust value of a peer is then pfi] drops this peer from the list of good peers that pfi]

the probability that this peer sends correct messages to otn Keeps track of and may add other peers to the list.) Clearly,
peers, provided that this probability is at least 0.6. (A pee this is an expensive task to perform, and so each peer cannot

whose probability of sending correct messages is less than60 afford to perform this task except for a small number of good
is regarded as a bad peer that cannot be trusted by other peers peers. Now each peer p[i] can send messages, naming the good

in the network.) Each peer actively monitors several good pars in . .
the network and accurately estimates the trust values of edcof peers that p[i] has kept track of and announcing the trusteval

them. The peers then exchange messages about the trust vaig that p[i] has estimated for each of them, to other peers in its
the good peers that they have monitored, and each of them endsnetwork. The net result is that each peer in the network can

up accurately computing the trust values of many good peersni end up with a large list of good peers in the network and with
the network, even though many of the exchanged messages argyn accyrate estimate of the trust value of each of them.

arbitrarily wrong. Through analysis and simulation, we show that S | I h dd d th I
a peer in a network can compute the trust values of about 100 everal earlier papers have addresse € same two ques-

good peers in the network, while keeping the error in computag ~ tions [1]-[6], and we give an overview of their contribut®n
these trust values belowl0~*. in the related work section, Section VI. Here, however, we

highlight the main differences between how we chose to
answer these two questions and how these earlier papers chos
In a peer-to-peer network, a peer p[i] may need to obtaio answer the same questions.
a copy of a particular file, but then it may become aware Regarding the first question, most earlier papers postulate
that copies of this file are stored in several other peerseén tthat each peer pJi] in a network can assign a primitive trust
network. In this case, if peer p[i] can compute a trust valuelue, in the period [0, 1], to any other peer p[j] in the netkyo
for each of these other peers, then p[i] can identify the peeased on the past experience of pJi] in receiving infornmatio
p[i] that has a copy of the needed file and whose trust valuefiem p[j]. These primitive trust values are subjective \eslu
maximum, and then p[i] can download a copy of the file frorthat depend only on the peer which assigned them, but
p[] [1]. This simple example demonstrates the importanice otherwise they have no objective significance. For example,
enabling the peers in a peer-to-peer network to compute thepeer p[i] may choose to assign a primitive trust value of
trust values of other peers in the network. 0.9 to another peer p[j] because pl[i] has received threecbrr
Towards this goal, we address in this paper the followingessages and one wrong message from p[j], whereas under
two questions. First, how to define the trust value of a peertine same situation,a third peer p[k] may choose to assign a
a peer-to-peer network. Second, what protocols can be ysedbimitive trust value of 0.6 to p[j]. By contrast, we adopt an
the peers in a peer-to-peer network so that they can compalgective measure, namely the probability of sending abrre
the trust values of other peers in the network. messages, to be the trust value of a peer. One implication of
To answer the first question, we postulate that each peer @dopting an objective measure for the trust values of peers i
has a fixed probabilityr of telling the truth to any other peerthat we can now objectively distinguish between good peers
in its network. We calltr the trust value of peer p[i]. If tr is (whose trust values by our objective measure is at least 0.6)
at least 0.6, then we call p[i] a good peer. Otherwise, we calhd bad peers (whose trust values by our objective measure is
pli] a bad peer. As explained below, no peer should requédstlow 0.6).
information or accept any message or a file from a bad peer.Regarding the second question, most earlier papers describ
To answer the second question, we postulate that eagmletocols that collect the primitive trust values that hheen
peer p[i] keeps track of a small number of good peers awmdst in the peer-to-peer network and use these primitivugesgal
accurately estimate the trust value of each of them. Pegr gfi compute the trust value of any peer in the network. The
can perform this task by periodically requesting inforrafi problem is that these protocols assume that the collected
that p[i] already has, from each of these peers and checkimgmitive trust values are correct, even though they havanbe
which of them sends back correct information and whickent by mostly imperfect peers, and so using the collected

|I. INTRODUCTION

values directly, without checking whether they are cormct Some explanations of the three assumptions are as follow.
not, to compute the trust values can lead to wrong trust galu€irst, if the trust valudr of a peer p[i] is at most 0.5, then it is
For example, assume that the primitive trust value estichatenpossible for peer p[i] to effectively communicate evereon
by a peer p[i] for a peer p[j] is 0.6, and the primitive trusbit of information to another peer p[j] in the same network.
value estimated by peer p[j] for a third peer p[k] is 0. Assumiéor example, assume that = 0.4 and that p[i] attempts to
also that p[j] reports to p[i] that its estimate of the truatue communicate a bib to another peer pl[j] by sending many
of p[k] is 0.6 instead of 0. (This is possible since p[j] is @ot times to p[j]. In this case, p[j] receives bit b only 40% of the
perfect peer.) Now pl[i] can use the two primitive trust valuetimes, and receives arbitrary bits in the remaining 60% ef th
of 0.6 each to compute the trust value of p[k] as 0.6 or 0.38Bnes. In particular, p[j] can end up receiving l@ithalf the
(depending on whether p[i] computes the trust value of p[kimes and receiving bit half the times, and so p[j] can never
as the minimum or the product of these two primitive trustetermine the value of the sent bit b.
values). Had p[i] received the correct primitive trust \&aftom On the other hand, if the trust value of a peer p[i] is
p[i], it would have computed the trust value of p[k] to be Olarger than 0.5 but less than 0.6, then p[i] can communicate
By contrast, we develop in this paper protocols that can be&ormation to other peers in the network but it will take
used to check whether the received primitive trust value gpofi] a long time and a very large number of messages to
correct or wrong before they use these values in computidg so. Therefore, peers in a network should avoid receiving
the trust values. information from other peers unless they are certain that th
trust values of these other peers are at least 0.6.
Il. ATRUSTMODEL Second, each good peer p[i] uses a source discovery pro-

))) tocol to identify and keep track of several good peers and
In this section, we present our trust model in peer'to'pegécurately estimate their trust values (to ensure that they

networks. We use this model in later sections to develop, indeed good peers and be able to download files from
several protocqls thqt allow peers to compute the truste\ssaIL{hem)_ The source discovery protocol that pli] can employ to
of other peers in their peer-to-peer networks. _accurately estimate the trust values of each of these goers pe
Our trust model is based on the following three assumptions 4 periodically request some files, that p[i] already Hiesn
« Trust Values: Each peer in a peer-to-peer network has @ach of these good peers, then determine whether or not each
fixed probability of “telling” the truth. We refer to this returned file is correct.
probability as thetrust value of the peer. For example, Third, the topology of the good subnetwork can be repre-
when a peer p[i], whose trust valuetis is about to send sented by a directed graph, where each node represents a good
a message or file to another peer p[j] in its network, p[ipeer, and where each directed edge from a node pJ[i] to a node
either sends the correct message or file with probabilipfj] indicates that pl[i] is a source of p[j] and so p[i] can sen
tr to p[j], or sends any wrong message or any wrong filmessages to p[j]. As mentioned above, we assume that each
with probability (1-tr) to p[j]. A peer whose trust value good peer has already used the source discovery protocol to
is at least 0.6 is called good peer; otherwise it is called identify the identities of its sources and accurately eaterthe
a bad peer. trust values of each of them. Now, the good peers need to use
« Sources and Monitors: A good peer uses a&ource the source propagation protocol (which is presented besow)
discovery protocol to actively monitor several good peerghat each good peer ends up with the identities and trusesalu
in its network, and accurately estimate the trust values all the good peers in the good subnetwork.
of each of them. If p[i] monitors a good peer p[j] and The source propagation protocol is not as straightforward
accurately estimates its trust value (to ensure that it as it may seem at first. This is because each good peer can
indeed a good peer), then p[j] is calledsaurce of p[i] send wrong messages to its monitor up to 40% of the time.
and p[i] is called amonitor of p[j]. Note that a good peer Therefore, whenever a good peer receives a message from
can have several sources and several monitors, and thagource, it cannot immediately assume that the message is
its sources and monitors may overlap. correct. However, if the good peer receives the same message
o The Good Subnetwork: A good peer knows all its from the same source several times, then it can conclude that
sources, all its monitors and the trust value of everyorke message is correct (with high probability). The communi
of its sources. A good peer can send messages only todégion pattern from a source to a monitor is described intgrea
monitors and can receive messages only from its sourceetail in the next section.
Therefore, the good peers form a subnetwork, called the
good subnetwork, within the peer-to-peer network. Over . THE SOURCEMONITOR NETWORK
the good subnetwork, the good peers execusmuace In this section, we describe the communication pattern from
propagation protocol so that each good peer ends up witla peer p[0] to a peer p[1], where p[0] is a source of p[1] and
the identities and the trust values of all other good peep§l] is a monitor of p[0] [7]. This communication pattern fno
in the (good) subnetwork. Our main focus in this paper & source to a monitor in this simple network is adopted in our
to develop the source propagation protocol over the godésign of the source propagation protocols which we describ
subnetwork. in Sections IV and V.

Assume that peer p[0] has an integer constdnthat it Protocol 2 for monitor peer p[1]
needs to communicate to peer p[1]. To achieve this goal, p[Oonst cmax : integer {cmax = 2¢
periodically sends an integer valu¢o p[1]. With a probability ~ variable ¢ : 0.cmax {counter, init. §
that equals the trust value of p[0], the sents the correct o :2:23:: }chrg}'j;evigﬁp
value of constantl. And with a probability that equals (1 - sv : integer {stable valug
the trust value of p[0]), the sentis an arbitrary integer. Peer begin
p[1] receives the sentintegers, one by one, and maintains at rcv v from p[0] —
most one “candidate” for the value of constahtEventually, if ¢ = Othen
p[1] reaches the conclusion that its maintained candidate f gv"::lv
the value ofvl equals, with high probability, the correct value else ifcv # v then
of constani in p[O]. elsg =c-1

The source p[0] in this simple network is specified in ¢ := min(c+1, cmax)
Protocol 1. Note that p[0] has two constatitsand vl. The end if
value of constantr, in the range 60..99, is a measure of the if ¢ = cmaxthen
trust value of p[0]. In particular, the trust value of p[0Q] is encf\i/f'_ <
tr/100. Note also that p[0] has only one action that executegnd

over and over, since the guard of the actiortrige.

Protocol 1 for source peer p[0] variablesc, cv, andsv in p[1].
const tr: 60.99 {trust value of p[0} An execution step of the source-monitor network consists
vl : integer of two parts. First, the source peer p[0] executes its action
variable 1 : 0.99 {random numbgr Second, the monitor peer p[1] executes its action.
v : integer {sent valug - .
. The probability of error, denoted PE, of the source-monitor
bedn true — network is defined as the probability that the network reaehe
r := random global state where the computed stable valui the monitor
if r > tr then p[1] is different from the value of constant in the source
p[0]. The following theorem, whose proof is in [8], specifies
V= vl the value of PE.

Theorem 1. (probability of error)
sendv to p[1] o . .
end The probability of error of the source-monitor network PE is
1.2 x 1076, |

The monitor p[1] in this network is specified in Protocol The convergence span of the source-monitor network is the
2. Peer p[1] has one constastnax, whose value is chosenaverage number of steps need to be executed in order to change
to be 20, and four variables, v, cv and sv. Variablec is the global state of the network from one where= cmax
a counter whose value is in the rangecmax. Variablev andsv # vl to one wherec = cmaz and sv = vl. The
stores the latest received value from p[0]. Variablestores following theorem, whose proof is in [8], gives a formula for
the latest candidate for the value dfin p[0]. And variable approximately computing the convergence span of the seurce
sv stores the stable value. The value of courgendicates Mmonitor network.

whether peer p[1] can conclude that the current valuevof Theorem 2.(convergence span of the source-monitor network)
equals, with high probability, the value df in p[0]. Peer p[1]

reaches this conclusion when, and only when, the value of convergence span 2 X cmax steps
counterc is equal tocmax. 2xtr — 1 '
Peer p[1] has only one action that is executed each time m
p[1] receives an integev from p[0]. When an integev is
received, peer p[1] checks the value of its counter ¢.#4 0, IV. COMPUTING A TRUST VALUE ON A RING
then variablecv is assignedv and counterc is assigned 1. i i i i
If ¢ > 0 andcv is different from the received. thenc is In this section, we describe the source propagation protoco

decreased by 1. If > 0 andcv equals the received thenc @n the s_p(_acial_ case yvhere the topqlogy of the good subnetwork
is increased by 1 (provided that ¢ does not exceed its maximUhf unidirectional ring as shown in Figure 1.

value cmax). Then p[1] compares the values ofwith cmax.

If ¢ = cmazx, then p[1] concludes that the current value of @ 4

its variablecv equals, with high probability, the value ©f in

p[0], and assignsv to the stable valuev.

A global state of the source-monitor network is defined by
the value of constantl in p[0] and the values of the three Fig. 1. A ring good subnetwork

This ring subnetwork has n good peers. Each good peer giptocol 3 for peer pfi] to compute trust of p[0] on ring

is a source of peer p[i+1 mod n] and is a monitor of peer p[i-1lconst tr : 60.99 {trust value of p[i}
mod n]. Thus, each p[i] can send messages to p[i+1 mod n] pr: 60.99 {trust value of p[i-1 mod rj
. . cmax : integer {cmax = 2¢
and can receive messages from p[i-1 mod n]. variable 1 : 0.99 {random numbér
The peers in this ring exchange messages according to the ¢ : O.cmax {counter, init. ¢
source propagation protocol, described in this sectiorthab v 59.99 {sent or received valje

cv @ 59.99 {candidate valup

each peer can compute the trust value of one peer, namely p[0] sv : 59.99 {stable trust valug

Because peer p[1] is a monitor of p[0], p[1] already knowsbegin
the trust value of p[0] using the source discovery protocol true = random
discussed earlier. Thus, p[1l] sends messages periodically ’

if r > tr then
p[2] in order to inform p[2] of the trust value of p[0], and v = any
p[2] sends messages periodically to p[3] in order to inform eIst\a/ oy
p[3] of the trust value of p[0], and so on. end if
Each peer pli] has two constantsandpr whose values are sendv to p[i+1 mod n]
in the range 60..99. The values of these constants indibate t|| rev v from p[i-1 mod n] —
trust values of peers p[i] and p[i-1 mod n]. In particular the if i =1 then
trust value of p[i] itself istr/100, and the trust value of p[i-1 en(;/ it o
mod n] is pr/100. (Recall that p[i] is a monitor of p[i-1 mod if ¢ =0then
n] and so it already knows the trust value of p[i-1 mod n].) gv::lv
Each peer pJ[i] stores the latest “stable” estimate of thsttru else ifcv # v then
value of p[0] in a variablesv whose value is in the range ci=c-1
59..99. The value 59 in this range has a special meaning: when else
. o . . ¢ := min(c+1, cmax)
the value ofsv in p[i] is 59, it indicates that p[i] does not know end if
any estimate of the trust value of p[0]. For example, irifial if ¢ = cmaxthen
the value ofsv in p[1] is pr, which is the correct trust value of en;“i’f:: v

p[0], and the value oév in each other peer is 59 since none gng
of those peers knows the trust value of p[0] in the beginning.

Peer p[i] in this ring is specified in Protocol 3. Note thasthi) ! i
protocol has two actions. In the first action, which is calted variablesv in peer pli-1 mod nj has a wrong value and pfi-1

. . ; od n] sends it as is to p[i]. The probability of occurrence of
source action, peer p[i] acts a source of peer p[i+1 mod r{ﬂe first scenario iS°E x (1 — PR(i — 1)), wherePE is the

and so it composes and sends a message to peer p[i+1 rpasbability of error of the source-monitor network disces
n]. In the second action, peer p[i] acts as a monitor of per Theorem 1. The probability of occurrence of the second
p[i-1 mod n], and so it receives and processes a message fR§ignario is(1 — PE) x PR(i —1). Therefore,
pli-1 mod n]. PR(i)=PEx (1-PR(i—1))+ (1 — PE) x PR(i—1)

The sent message in the source action of a peer p[i] consists ~ PE+ PR(i—1)
a.valuev, Whergv is the current value of variablsy in p[.i] Given that PR(1) = 0 and PE = 1:210-5, we get
with a probability that equals the trust value of p[i], wiis
any arbitrary value in the range 59..99 with a probabilittth PR(2) = PE =12x10"°,
equals (1 - the trust value of p[i]). PR(3)=2x PE =24x10°,

When a peer pJi] receives a message that consists of a value))
v, p[i] recognizes that with a high probability the receiveid We also simulated a ring that ha_ls 100 peers, nqmely p[O] to
the trust value of p[0]. (But if p[i] is p[1] who already knowsp[gg]’ qnd calcu_lated the probability of error PR(|). for ewe
the trust valuepr of p[0], then p[i] usespr instead ofv in peer p[i], where i=1, 19, 39, 59, 79, 99. The simulation resul

what follows.) Then p[i] checks its countersimilarly as that shown in l_:lgure 2, are of the same order O.f mag_nltude as
in Protocol 2. those obtained from the above analysis. The simulatiorltsesu

Each execution step of this network consists of two paer. F!gure 2 '”d'C?‘Fe (as expect_ed)_that peeﬁrS P[99] has the
First, every peer in the network executes its source actighax!Imum probz_;tbmty of error which i5.6 x 10 L
Second, every peer in the network executes its monitormactio So fa?“ we discussed the source propagatlon protocol for
Let PR() denote the probability that variabde in a peer cOMPuting the trust value of a single peer in a good subnet-
p[i] in the ring has a value that is different from the correct/ork whose topology is a unidirectional ring, where eactrpee
trust value of peer p[0]. This implies that PR(1) = 0 sinchas exactly one source and one monitor. This protocol can be

the value of variablev in peer p[1] is always the correct trustextended so that every peer on the ring computes the trust
value of p[0]. Next, we derive a formula to compute PR(i) 8@y ,es of all peers on the ring. Details of this extension are
function of PR(I-1). There are two scenarios that can ledid p eported in [8]. And through simulation, we showed in [8]ttha
to assign a wrong value to its varialse In the first scenario, P o oug X '

variablesv in peer p[i-1 mod n] has a correct value but pl[i-the probability of error in computing the stable trust vedty

mod n] sends any wrong value to p[i]. In the second scenarit)0 good peers in the ring is abold—*.

,_.

S
=
S

Probability of error of pl[i]
5

Probability of error of pli]
I
o,

H

O\
e
O\

107 107
10 20 30 40 50 60 70 80 90 100 4 5 6
Index i of a peer pl[i] Height of a peer p[i] in the outgoing tree subnetwork

Fig. 2. Probability of error for computing a trust value onregrsubnetwork Fig. 4. Probability of error versus height of a peer in an oirg tree
subnetwork

V. COMPUTING THE TRUST VECTOR OF A GENERAL @ @ @ @ $
NETWORK .. Height of

p[63],...p[126] = 1
In this section, we briefly describe the results of extending @ e
the source propagation protocols for computing the trust
vectors in a general good subnetwork, where each peer has any
number of sources and any number of monitors. The details @ @
of this extension can be found in the technical report [8].
In general, the protocol for a peer p[i] has exactly one seurc
action iff p[i] has one or more monitors, and it has s monitor @

actions iff p[i] has s sources.

We §|mulated the source propagation protocol as |t_executed Fig. 5. An incoming tree good subnetwork
over different classes of good subnetworks. The objective o
this simulation is to measure the probability of error ofteac 10°

good peer executing the protocol and ensure that the mehsure
probability is small enough.

Height of 10°%
p[63],..,p[126] = 6

e 3 2 5 6 7
@ @ Height of a peer pli] in the incoming tree subnetwork
Fig. 6. Probability of error versus height of a peer in an mow tree
subnetwork

Fig. 3. An outgoing tree good subnetwork this subnetwork, théeight of each good peer p[i] is measured
from one of the leaf peers p[127], p[128], ..., p[254]. The
First, we simulated the source propagation protocol asrésults of this simulation is plotted in Figure 6. Note that
executed over a good subnetwork, of 255 good peers, whaise good peer with the maximum height has the maximum
topology is an outgoing binary tree as shown in Figure 3. Wrobability of error which is on the order aD—*.
this subnetwork, theight of each good peer pJ[i] is measured
from the root peer p[0]. Clearly, all good peers that have the
same height in the subnetwork have the same probability ofThe distributed nature of peer-to-peer networks makes it
error. The results of this simulation is plotted in Figure 4a popular architecture for content distribution and filersha
Note that the good peers with the maximum height have tivey [9], [10]. However, this scalable architecture alsonbs
maximum probability of error which is on the order ti—°. vulnerabilities to malicious behaviors. As recent studie§—
Second, we simulated the source propagation protocol a§li8] show that in peer-to-peer networks, there are quite aflo
executed over a good subnetwork, of 255 good peers, whasauthentic files injected into the network either deliliela
topology is an incoming binary tree as shown in Figure 5. Ifpollution or poisoning) or unconsciously by non-malicsou

Probability of error of pli]

V1. RELATED WORK

users. Another easier way to attack peer-to-peer netwarks i Note that the source discovery protocols and the source
to add bogus records into the indices to mislead search [lglopagation protocols are always executing. Thus, if an ex-
EigenTrust [1], based on the transitive trust concept,iappl isting good peer leaves the network, then these protocdis wi
power method to compute a single global trust value for eaelentually drop it from the trust vectors of the other gooerpe
peer. EigenTrust handles malicious peers lying about théirthe network. Also, if a new good peer joins the network,
trust values using a Distributed Hash Tables which greatigen these protocols will eventually add it to the trust vest
complicates the system. In our model, we do not assurakthe other good peers.
there is such an underlying structure. Also, the trust value Through analysis and simulation, we showed that the proba-
in EigenTrust is relative for each peer. That is, given theility of error when our source propagation protocols aredus
computed global trust for a peer, a requesting peer can i@ ring subnetwork of 100 good peers is at most*. This
tell how much it should trust that peer. In our model, thettrusneans that the probability, that a computed trust value by a
value for a peer does represent how much you can trust tgapd peer in the ring subnetwork is correct, is .9999.
peer. We also showed through simulation that the probability of
In NICE [2], trust for each transaction is stored in a signegfror when our protocols are used in an outgoing tree subnet-
cookie. Also based on transitive trust concept, NICE seschwork of height 7 is at mos2 x 10~°, and that the probability
for a cookie chain to compute the aggregated peer trust. Thfserror when our protocols are used in an incoming tree
scheme needs each peer to store tens of both positive aHlinetwork of height 7 is at mogtx 10~*. All these results
negative cookies and initiate positive cookies and negatigonfirm that our source propagation protocols are reasgnabl
cookies search for each request if no cookie is found in i&scurate.
cache.
[3]-[6] introduce personalized credibility of feedbacks
when infer trusts. The feedback credibility is computedras t [S: D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “Téigentrust
. : algorithm for reputation management in p2p networks, WV 03,
similarity of feedbacks on common interacted peers. Howeve may 2003.
those common interacted peers sets are hard to find becal&eS. Lee, R. Sherwood, and B. Bhattacharjee, “Cooperater groups

; ; At in nice,” in IEEE INFOCOM, 2003.
of the size of the network and the high degree of replicatio 3] L. Xiong and L. Liu, “Peertrust: Supporting reputatibased trust for

XRep [4], X2Rep [5] and Credence [15] all propose to peer-to-peer electronic communitie$ZEE Transactions on Knowledge
leverage object trust. However, malicious peers can easiI[X] and Data Engineering, vol. 16, no. 7, July 2004.

s - P T - . E. Damiani, D. C. di Vimercati, and S. Paraboschi, “A regiion-based
inject inauthentic files or indices into the system as pdairite approach for choosing reliable resources in peer-to-peasarks” in

[11]-[14] which makes the object trust hard to maintain. CCS 02, October 2002.
In TrustGuard [16], Srivatsa and Liu intend to handle thdS] N. Curtis, R. SafaviNaini, and W. Susilo, ‘%‘ep3hE”h?j”"\’led frust
I semantics for the xrep protocol,” ippli ryptography and Networ
oscillation behavior of malicious peers using some control g iy June 2004.

theory. But it relies on an existing trust inference alduritto [6] F. Cornelli, E. Damiani, S. D. C. di Vimercati, S. Parabois and

REFERENCES

compute the basic trust value. P. Samarati, “Choosing reputable servent in a p2p networhkfMAWV 02,
2002.
[7] M. G. Gouda and Y. Li, “The truth system: Can a system ohdyi
VII. CONCLUDING REMARKS processes stabilize?” 9th International Symposium on ilSation,

Safety, and Security of Distributed Systems(SSS’'07), Ndwer 2007.
In this paper, we proposed an objective measure of trugd] Y. Liand M. G. Gouda, “Sources and monitors: A trust mofiel peer-

; AL ; to-peer networks,” The University of Texas at Austin, UTC&Hfnical
in peer-to-peer networks. According to our measure, th& tru Report TR-07-60. 2007,

value of a peer is the probability that this peer sends cbrre@ vy, chawathe, S. Ratnasamy, L. Breslau, N. Lanham, andh@nigr,
messages (or files) to other peers in its network. “Making gnutella-like p2p systems scalable,” \GCOMM' 03, August

; : 2003.
Bgsed on this measure, a peer whose trust vglue is at least | Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. Mvy, and
0.6 is considered a good peer and other peers in the network j. zahorjan, “Measurement, modeling and analysis of a fepeer file-
can accept messages from it, or download files from it. On sharing workload,” inrACM SOSP, October 2003.

: 14] J. Liang, R. Kumar, Y. Xi, and K. W. Ross, “Pollution in p2ile sharing
the qther hand, a peer whose trust value_ is less than 0.6 systems” iNEEE INFOCOM, 2005,
considered a bad peer that should be avoided by other pegrs. N. Christin, A. S. Weigend, and J. Chuang, “Content lasiity, pollu-
Each good peer uses a standard source discovery protocol to ti?gg&dgzﬁonihgcin file Shafijng pe;(;ggpeef networksPrioceedings
. . P Ol ronic Commerce, June .
aCtlver monitor a _Sma” number of gOOd peers In its networ 3] D. Dumitriu, E. Knightly, A. Kuzmanovic, |. Stoica, and. Zwaenepoel,
and accurately estimate the trust value of each of them. (The “Denial-of-service resilience in peer-to-peer file shgrisystems,” in
source discovery protocol is not the focus of this papergrTh . JS‘?_METR:\ICS;’\I%' June 20%5k W. Ross. “The ind onitack |
. . Llang, N. Naoumov, an . . ROSS, € Index poisol ack In
the good peers use source propagation protocols to exc.haH n2p file sharing systems,” irEEE INFOCOM, 2006.
messages about the good peers that they have monito[es]. K. walsh and E. G. Sirer, “Experience with an object fiagion system
(These source propagation protocols are the main focus of for peer-to-peer filesharing," iNSDI 06, May 2006. rieg vuinerabil
. . . Slivatsa, L. Along, an . Llu, rustguard: Cou vuinerabil-
t_h|s paper.) Eventua"y' ea_Ch gOOd peer ends up with a la ities in reputation management for decentralized overletyvarks,” in
list of good peers and their correct trust values, even thoug \Ww\2005, May 2005.
many of the exchanged messages between the good peers are

arbitrarily wrong.

