
Sources and Monitors:
A Trust Model for Peer-to-Peer Networks

Yan Li and Mohamed G. Gouda
Department of Computer Sciences, The University of Texas atAustin

Email: {yanli, gouda}@cs.utexas.edu

Abstract—In this paper, we introduce an objective model of
trust in peer-to-peer networks. Based on this model, we develop
protocols that can be used by the peers in a peer-to-peer
network to compute the trust values of other peers in these
networks. According to our model, the trust value of a peer is
the probability that this peer sends correct messages to other
peers, provided that this probability is at least 0.6. (A peer
whose probability of sending correct messages is less than 0.6
is regarded as a bad peer that cannot be trusted by other peers
in the network.) Each peer actively monitors several good peers in
the network and accurately estimates the trust values of each of
them. The peers then exchange messages about the trust values of
the good peers that they have monitored, and each of them ends
up accurately computing the trust values of many good peers in
the network, even though many of the exchanged messages are
arbitrarily wrong. Through analysis and simulation, we show that
a peer in a network can compute the trust values of about 100
good peers in the network, while keeping the error in computing
these trust values below10−4.

I. I NTRODUCTION

In a peer-to-peer network, a peer p[i] may need to obtain
a copy of a particular file, but then it may become aware
that copies of this file are stored in several other peers in the
network. In this case, if peer p[i] can compute a trust value
for each of these other peers, then p[i] can identify the peer
p[j] that has a copy of the needed file and whose trust value is
maximum, and then p[i] can download a copy of the file from
p[j] [1]. This simple example demonstrates the importance of
enabling the peers in a peer-to-peer network to compute the
trust values of other peers in the network.

Towards this goal, we address in this paper the following
two questions. First, how to define the trust value of a peer in
a peer-to-peer network. Second, what protocols can be used by
the peers in a peer-to-peer network so that they can compute
the trust values of other peers in the network.

To answer the first question, we postulate that each peer p[i]
has a fixed probabilitytr of telling the truth to any other peer
in its network. We calltr the trust value of peer p[i]. If tr is
at least 0.6, then we call p[i] a good peer. Otherwise, we call
p[i] a bad peer. As explained below, no peer should request
information or accept any message or a file from a bad peer.

To answer the second question, we postulate that each
peer p[i] keeps track of a small number of good peers and
accurately estimate the trust value of each of them. Peer p[i]
can perform this task by periodically requesting information,
that p[i] already has, from each of these peers and checking
which of them sends back correct information and which

of them sends back wrong information. Over time, p[i] can
accurately estimate the trust value of each of these peers. (If
at the end p[i] detects that any of these peers is a bad peer,
then p[i] drops this peer from the list of good peers that p[i]
keeps track of and may add other peers to the list.) Clearly,
this is an expensive task to perform, and so each peer cannot
afford to perform this task except for a small number of good
peers. Now each peer p[i] can send messages, naming the good
peers that p[i] has kept track of and announcing the trust value
that p[i] has estimated for each of them, to other peers in its
network. The net result is that each peer in the network can
end up with a large list of good peers in the network and with
an accurate estimate of the trust value of each of them.

Several earlier papers have addressed the same two ques-
tions [1]–[6], and we give an overview of their contributions
in the related work section, Section VI. Here, however, we
highlight the main differences between how we chose to
answer these two questions and how these earlier papers chose
to answer the same questions.

Regarding the first question, most earlier papers postulate
that each peer p[i] in a network can assign a primitive trust
value, in the period [0, 1], to any other peer p[j] in the network,
based on the past experience of p[i] in receiving information
from p[j]. These primitive trust values are subjective values
that depend only on the peer which assigned them, but
otherwise they have no objective significance. For example,
a peer p[i] may choose to assign a primitive trust value of
0.9 to another peer p[j] because p[i] has received three correct
messages and one wrong message from p[j], whereas under
the same situation,a third peer p[k] may choose to assign a
primitive trust value of 0.6 to p[j]. By contrast, we adopt an
objective measure, namely the probability of sending correct
messages, to be the trust value of a peer. One implication of
adopting an objective measure for the trust values of peers is
that we can now objectively distinguish between good peers
(whose trust values by our objective measure is at least 0.6)
and bad peers (whose trust values by our objective measure is
below 0.6).

Regarding the second question, most earlier papers describe
protocols that collect the primitive trust values that havebeen
cast in the peer-to-peer network and use these primitive values
to compute the trust value of any peer in the network. The
problem is that these protocols assume that the collected
primitive trust values are correct, even though they have been
sent by mostly imperfect peers, and so using the collected



values directly, without checking whether they are corrector
not, to compute the trust values can lead to wrong trust values.
For example, assume that the primitive trust value estimated
by a peer p[i] for a peer p[j] is 0.6, and the primitive trust
value estimated by peer p[j] for a third peer p[k] is 0. Assume
also that p[j] reports to p[i] that its estimate of the trust value
of p[k] is 0.6 instead of 0. (This is possible since p[j] is nota
perfect peer.) Now p[i] can use the two primitive trust values
of 0.6 each to compute the trust value of p[k] as 0.6 or 0.36
(depending on whether p[i] computes the trust value of p[k]
as the minimum or the product of these two primitive trust
values). Had p[i] received the correct primitive trust value from
p[j], it would have computed the trust value of p[k] to be 0.
By contrast, we develop in this paper protocols that can be
used to check whether the received primitive trust value are
correct or wrong before they use these values in computing
the trust values.

II. A T RUST MODEL

In this section, we present our trust model in peer-to-peer
networks. We use this model in later sections to develop
several protocols that allow peers to compute the trust values
of other peers in their peer-to-peer networks.

Our trust model is based on the following three assumptions.

• Trust Values: Each peer in a peer-to-peer network has a
fixed probability of “telling” the truth. We refer to this
probability as thetrust value of the peer. For example,
when a peer p[i], whose trust value istr, is about to send
a message or file to another peer p[j] in its network, p[i]
either sends the correct message or file with probability
tr to p[j], or sends any wrong message or any wrong file
with probability (1-tr) to p[j]. A peer whose trust value
is at least 0.6 is called agood peer; otherwise it is called
a bad peer.

• Sources and Monitors: A good peer uses asource
discovery protocol to actively monitor several good peers
in its network, and accurately estimate the trust values
of each of them. If p[i] monitors a good peer p[j] and
accurately estimates its trust value (to ensure that it is
indeed a good peer), then p[j] is called asource of p[i]
and p[i] is called amonitor of p[j]. Note that a good peer
can have several sources and several monitors, and that
its sources and monitors may overlap.

• The Good Subnetwork: A good peer knows all its
sources, all its monitors and the trust value of everyone
of its sources. A good peer can send messages only to its
monitors and can receive messages only from its sources.
Therefore, the good peers form a subnetwork, called the
good subnetwork, within the peer-to-peer network. Over
the good subnetwork, the good peers execute asource
propagation protocol so that each good peer ends up with
the identities and the trust values of all other good peers
in the (good) subnetwork. Our main focus in this paper is
to develop the source propagation protocol over the good
subnetwork.

Some explanations of the three assumptions are as follow.
First, if the trust valuetr of a peer p[i] is at most 0.5, then it is
impossible for peer p[i] to effectively communicate even one
bit of information to another peer p[j] in the same network.
For example, assume thattr = 0.4 and that p[i] attempts to
communicate a bitb to another peer p[j] by sendingb many
times to p[j]. In this case, p[j] receives bit b only 40% of the
times, and receives arbitrary bits in the remaining 60% of the
times. In particular, p[j] can end up receiving bit0 half the
times and receiving bit1 half the times, and so p[j] can never
determine the value of the sent bit b.

On the other hand, if the trust value of a peer p[i] is
larger than 0.5 but less than 0.6, then p[i] can communicate
information to other peers in the network but it will take
p[i] a long time and a very large number of messages to
do so. Therefore, peers in a network should avoid receiving
information from other peers unless they are certain that the
trust values of these other peers are at least 0.6.

Second, each good peer p[i] uses a source discovery pro-
tocol to identify and keep track of several good peers and
accurately estimate their trust values (to ensure that they
are indeed good peers and be able to download files from
them). The source discovery protocol that p[i] can employ to
accurately estimate the trust values of each of these good peers
is to periodically request some files, that p[i] already has,from
each of these good peers, then determine whether or not each
returned file is correct.

Third, the topology of the good subnetwork can be repre-
sented by a directed graph, where each node represents a good
peer, and where each directed edge from a node p[i] to a node
p[j] indicates that p[i] is a source of p[j] and so p[i] can send
messages to p[j]. As mentioned above, we assume that each
good peer has already used the source discovery protocol to
identify the identities of its sources and accurately estimate the
trust values of each of them. Now, the good peers need to use
the source propagation protocol (which is presented below)so
that each good peer ends up with the identities and trust values
of all the good peers in the good subnetwork.

The source propagation protocol is not as straightforward
as it may seem at first. This is because each good peer can
send wrong messages to its monitor up to 40% of the time.
Therefore, whenever a good peer receives a message from
a source, it cannot immediately assume that the message is
correct. However, if the good peer receives the same message
from the same source several times, then it can conclude that
the message is correct (with high probability). The communi-
cation pattern from a source to a monitor is described in great
detail in the next section.

III. T HE SOURCE-MONITOR NETWORK

In this section, we describe the communication pattern from
a peer p[0] to a peer p[1], where p[0] is a source of p[1] and
p[1] is a monitor of p[0] [7]. This communication pattern from
a source to a monitor in this simple network is adopted in our
design of the source propagation protocols which we describe
in Sections IV and V.



Assume that peer p[0] has an integer constantvl that it
needs to communicate to peer p[1]. To achieve this goal, p[0]
periodically sends an integer valuev to p[1]. With a probability
that equals the trust value of p[0], the sentv is the correct
value of constantvl. And with a probability that equals (1 -
the trust value of p[0]), the sentv is an arbitrary integer. Peer
p[1] receives the sentv integers, one by one, and maintains at
most one “candidate” for the value of constantvl. Eventually,
p[1] reaches the conclusion that its maintained candidate for
the value ofvl equals, with high probability, the correct value
of constantvl in p[0].

The source p[0] in this simple network is specified in
Protocol 1. Note that p[0] has two constantstr and vl. The
value of constanttr, in the range 60..99, is a measure of the
trust value of p[0]. In particular, the trust value of p[0] is
tr/100. Note also that p[0] has only one action that executes
over and over, since the guard of the action istrue.

Protocol 1 for source peer p[0]

const tr : 60..99 {trust value of p[0]}
vl : integer

variable r : 0..99 {random number}
v : integer {sent value}

begin
true →

r := random
if r ≥ tr then

v := any
else

v := vl
end if
sendv to p[1]

end

The monitor p[1] in this network is specified in Protocol
2. Peer p[1] has one constant,cmax, whose value is chosen
to be 20, and four variables,c, v, cv and sv. Variable c is
a counter whose value is in the range0..cmax. Variable v
stores the latest received value from p[0]. Variablecv stores
the latest candidate for the value ofvl in p[0]. And variable
sv stores the stable value. The value of counterc indicates
whether peer p[1] can conclude that the current value ofcv
equals, with high probability, the value ofvl in p[0]. Peer p[1]
reaches this conclusion when, and only when, the value of
counterc is equal tocmax.

Peer p[1] has only one action that is executed each time
p[1] receives an integerv from p[0]. When an integerv is
received, peer p[1] checks the value of its counter c. Ifc = 0,
then variablecv is assignedv and counterc is assigned 1.
If c > 0 and cv is different from the receivedv, then c is
decreased by 1. Ifc > 0 andcv equals the receivedv, thenc
is increased by 1 (provided that c does not exceed its maximum
valuecmax). Then p[1] compares the values ofc with cmax.
If c = cmax, then p[1] concludes that the current value of
its variablecv equals, with high probability, the value ofvl in
p[0], and assignscv to the stable valuesv.

A global state of the source-monitor network is defined by
the value of constantvl in p[0] and the values of the three

Protocol 2 for monitor peer p[1]

const cmax : integer {cmax = 20}
variable c : 0..cmax {counter, init. 0}

v : integer {received value}
cv : integer {candidate value}
sv : integer {stable value}

begin
rcv v from p[0] →

if c = 0 then
c := 1
cv := v

else if cv 6= v then
c := c - 1

else
c := min(c+1, cmax)

end if
if c = cmaxthen

sv := cv
end if

end

variablesc, cv, andsv in p[1].
An execution step of the source-monitor network consists

of two parts. First, the source peer p[0] executes its action.
Second, the monitor peer p[1] executes its action.

Theprobability of error, denoted PE, of the source-monitor
network is defined as the probability that the network reaches a
global state where the computed stable valuesv in the monitor
p[1] is different from the value of constantvl in the source
p[0]. The following theorem, whose proof is in [8], specifies
the value of PE.

Theorem 1. (probability of error)
The probability of error of the source-monitor network PE is
1.2 × 10−6. �

The convergence span of the source-monitor network is the
average number of steps need to be executed in order to change
the global state of the network from one wherec = cmax

and sv 6= vl to one wherec = cmax and sv = vl. The
following theorem, whose proof is in [8], gives a formula for
approximately computing the convergence span of the source-
monitor network.

Theorem 2.(convergence span of the source-monitor network)

convergence span ≈
2 × cmax

2 × tr − 1
steps.

�

IV. COMPUTING A TRUST VALUE ON A RING

In this section, we describe the source propagation protocol
in the special case where the topology of the good subnetwork
is a unidirectional ring as shown in Figure 1.

p[0] p[1] p[2] p[n-1]

Fig. 1. A ring good subnetwork



This ring subnetwork has n good peers. Each good peer p[i]
is a source of peer p[i+1 mod n] and is a monitor of peer p[i-1
mod n]. Thus, each p[i] can send messages to p[i+1 mod n]
and can receive messages from p[i-1 mod n].

The peers in this ring exchange messages according to the
source propagation protocol, described in this section, sothat
each peer can compute the trust value of one peer, namely p[0].
Because peer p[1] is a monitor of p[0], p[1] already knows
the trust value of p[0] using the source discovery protocol
discussed earlier. Thus, p[1] sends messages periodicallyto
p[2] in order to inform p[2] of the trust value of p[0], and
p[2] sends messages periodically to p[3] in order to inform
p[3] of the trust value of p[0], and so on.

Each peer p[i] has two constantstr andpr whose values are
in the range 60..99. The values of these constants indicate the
trust values of peers p[i] and p[i-1 mod n]. In particular the
trust value of p[i] itself istr/100, and the trust value of p[i-1
mod n] is pr/100. (Recall that p[i] is a monitor of p[i-1 mod
n] and so it already knows the trust value of p[i-1 mod n].)

Each peer p[i] stores the latest “stable” estimate of the trust
value of p[0] in a variablesv whose value is in the range
59..99. The value 59 in this range has a special meaning: when
the value ofsv in p[i] is 59, it indicates that p[i] does not know
any estimate of the trust value of p[0]. For example, initially,
the value ofsv in p[1] is pr, which is the correct trust value of
p[0], and the value ofsv in each other peer is 59 since none
of those peers knows the trust value of p[0] in the beginning.

Peer p[i] in this ring is specified in Protocol 3. Note that this
protocol has two actions. In the first action, which is calleda
source action, peer p[i] acts a source of peer p[i+1 mod n],
and so it composes and sends a message to peer p[i+1 mod
n]. In the second action, peer p[i] acts as a monitor of peer
p[i-1 mod n], and so it receives and processes a message from
p[i-1 mod n].

The sent message in the source action of a peer p[i] consists
a valuev, wherev is the current value of variablesv in p[i]
with a probability that equals the trust value of p[i], orv is
any arbitrary value in the range 59..99 with a probability that
equals (1 - the trust value of p[i]).

When a peer p[i] receives a message that consists of a value
v, p[i] recognizes that with a high probability the receivedv is
the trust value of p[0]. (But if p[i] is p[1] who already knows
the trust valuepr of p[0], then p[i] usespr instead ofv in
what follows.) Then p[i] checks its counterc similarly as that
in Protocol 2.

Each execution step of this network consists of two parts.
First, every peer in the network executes its source action.
Second, every peer in the network executes its monitor action.

Let PR(i) denote the probability that variablesv in a peer
p[i] in the ring has a value that is different from the correct
trust value of peer p[0]. This implies that PR(1) = 0 since
the value of variablesv in peer p[1] is always the correct trust
value of p[0]. Next, we derive a formula to compute PR(i) as a
function of PR(i-1). There are two scenarios that can lead p[i]
to assign a wrong value to its variablesv. In the first scenario,
variablesv in peer p[i-1 mod n] has a correct value but p[i-1
mod n] sends any wrong value to p[i]. In the second scenario,

Protocol 3 for peer p[i] to compute trust of p[0] on ring

const tr : 60..99 {trust value of p[i]}
pr : 60..99 {trust value of p[i-1 mod n]}
cmax : integer {cmax = 20}

variable r : 0..99 {random number}
c : 0..cmax {counter, init. 0}
v : 59..99 {sent or received value}
cv : 59..99 {candidate value}
sv : 59..99 {stable trust value}

begin
true →

r := random
if r ≥ tr then

v := any
else

v := sv
end if
sendv to p[i+1 mod n]

|| rcv v from p[i-1 mod n] →
if i = 1 then

v := pr
end if
if c = 0 then

c := 1
cv := v

else if cv 6= v then
c := c - 1

else
c := min(c+1, cmax)

end if
if c = cmaxthen

sv := cv
end if

end

variablesv in peer p[i-1 mod n] has a wrong value and p[i-1
mod n] sends it as is to p[i]. The probability of occurrence of
the first scenario isPE × (1 − PR(i − 1)), wherePE is the
probability of error of the source-monitor network discussed
in Theorem 1. The probability of occurrence of the second
scenario is(1 − PE) × PR(i − 1). Therefore,

PR(i) = PE × (1 − PR(i − 1)) + (1 − PE) × PR(i − 1)

≈ PE + PR(i − 1)

Given that PR(1) = 0 and PE = 1.2×10−6, we get

PR(2) = PE = 1.2 × 10−6
,

PR(3) = 2 × PE = 2.4 × 10−6
, . . .

We also simulated a ring that has 100 peers, namely p[0] to
p[99], and calculated the probability of error PR(i) for every
peer p[i], where i=1, 19, 39, 59, 79, 99. The simulation results,
shown in Figure 2, are of the same order of magnitude as
those obtained from the above analysis. The simulation results
in Figure 2 indicate (as expected) that peer p[99] has the
maximum probability of error which is5.6 × 10−5.

So far, we discussed the source propagation protocol for
computing the trust value of a single peer in a good subnet-
work whose topology is a unidirectional ring, where each peer
has exactly one source and one monitor. This protocol can be
extended so that every peer on the ring computes the trust
values of all peers on the ring. Details of this extension are
reported in [8]. And through simulation, we showed in [8] that
the probability of error in computing the stable trust vector for
100 good peers in the ring is about10−4.



10 20 30 40 50 60 70 80 90 100
10

−7

10
−6

10
−5

10
−4

10
−3

Index i of a peer p[i]

P
ro

ba
bi

lit
y 

of
 e

rr
or

 o
f p

[i]

Fig. 2. Probability of error for computing a trust value on a ring subnetwork

V. COMPUTING THE TRUST VECTOR OF A GENERAL

NETWORK

In this section, we briefly describe the results of extending
the source propagation protocols for computing the trust
vectors in a general good subnetwork, where each peer has any
number of sources and any number of monitors. The details
of this extension can be found in the technical report [8].

In general, the protocol for a peer p[i] has exactly one source
action iff p[i] has one or more monitors, and it has s monitor
actions iff p[i] has s sources.

We simulated the source propagation protocol as it executed
over different classes of good subnetworks. The objective of
this simulation is to measure the probability of error of each
good peer executing the protocol and ensure that the measured
probability is small enough.

p[0]

p[2]p[1]

p[63]

p[127] p[128]

p[126]

p[253] p[254]

Fig. 3. An outgoing tree good subnetwork

First, we simulated the source propagation protocol as it
executed over a good subnetwork, of 255 good peers, whose
topology is an outgoing binary tree as shown in Figure 3. In
this subnetwork, theheight of each good peer p[i] is measured
from the root peer p[0]. Clearly, all good peers that have the
same height in the subnetwork have the same probability of
error. The results of this simulation is plotted in Figure 4.
Note that the good peers with the maximum height have the
maximum probability of error which is on the order of10−5.

Second, we simulated the source propagation protocol as it
executed over a good subnetwork, of 255 good peers, whose
topology is an incoming binary tree as shown in Figure 5. In

3 4 5 6 7
10

−7

10
−6

10
−5

10
−4

10
−3

Height of a peer p[i] in the outgoing tree subnetwork

P
ro

ba
bi

lit
y 

of
 e

rr
or

 o
f p

[i]

Fig. 4. Probability of error versus height of a peer in an outgoing tree
subnetwork

p[0]

p[2]p[1]

p[63]

p[127] p[128]

p[126]

p[253] p[254]

Fig. 5. An incoming tree good subnetwork

3 4 5 6 7
10

−7

10
−6

10
−5

10
−4

10
−3

Height of a peer p[i] in the incoming tree subnetwork

P
ro

ba
bi

lit
y 

of
 e

rr
or

 o
f p

[i]

Fig. 6. Probability of error versus height of a peer in an incoming tree
subnetwork

this subnetwork, theheight of each good peer p[i] is measured
from one of the leaf peers p[127], p[128], ..., p[254]. The
results of this simulation is plotted in Figure 6. Note that
the good peer with the maximum height has the maximum
probability of error which is on the order of10−4.

VI. RELATED WORK

The distributed nature of peer-to-peer networks makes it
a popular architecture for content distribution and file shar-
ing [9], [10]. However, this scalable architecture also brings
vulnerabilities to malicious behaviors. As recent studies[11]–
[13] show that in peer-to-peer networks, there are quite a lot of
inauthentic files injected into the network either deliberately
(pollution or poisoning) or unconsciously by non-malicious



users. Another easier way to attack peer-to-peer networks is
to add bogus records into the indices to mislead search [14].

EigenTrust [1], based on the transitive trust concept, applies
power method to compute a single global trust value for each
peer. EigenTrust handles malicious peers lying about their
trust values using a Distributed Hash Tables which greatly
complicates the system. In our model, we do not assume
there is such an underlying structure. Also, the trust value
in EigenTrust is relative for each peer. That is, given the
computed global trust for a peer, a requesting peer can not
tell how much it should trust that peer. In our model, the trust
value for a peer does represent how much you can trust that
peer.

In NICE [2], trust for each transaction is stored in a signed
cookie. Also based on transitive trust concept, NICE searches
for a cookie chain to compute the aggregated peer trust. This
scheme needs each peer to store tens of both positive and
negative cookies and initiate positive cookies and negative
cookies search for each request if no cookie is found in its
cache.

[3]–[6] introduce personalized credibility of feedbacks
when infer trusts. The feedback credibility is computed as the
similarity of feedbacks on common interacted peers. However,
those common interacted peers sets are hard to find because
of the size of the network and the high degree of replication.

XRep [4], X2Rep [5] and Credence [15] all propose to
leverage object trust. However, malicious peers can easily
inject inauthentic files or indices into the system as pointed in
[11]–[14] which makes the object trust hard to maintain.

In TrustGuard [16], Srivatsa and Liu intend to handle the
oscillation behavior of malicious peers using some control
theory. But it relies on an existing trust inference algorithm to
compute the basic trust value.

VII. C ONCLUDING REMARKS

In this paper, we proposed an objective measure of trust
in peer-to-peer networks. According to our measure, the trust
value of a peer is the probability that this peer sends correct
messages (or files) to other peers in its network.

Based on this measure, a peer whose trust value is at least
0.6 is considered a good peer and other peers in the network
can accept messages from it, or download files from it. On
the other hand, a peer whose trust value is less than 0.6 is
considered a bad peer that should be avoided by other peers.

Each good peer uses a standard source discovery protocol to
actively monitor a small number of good peers in its network
and accurately estimate the trust value of each of them. (The
source discovery protocol is not the focus of this paper.) Then
the good peers use source propagation protocols to exchange
messages about the good peers that they have monitored.
(These source propagation protocols are the main focus of
this paper.) Eventually, each good peer ends up with a large
list of good peers and their correct trust values, even though
many of the exchanged messages between the good peers are
arbitrarily wrong.

Note that the source discovery protocols and the source
propagation protocols are always executing. Thus, if an ex-
isting good peer leaves the network, then these protocols will
eventually drop it from the trust vectors of the other good peers
in the network. Also, if a new good peer joins the network,
then these protocols will eventually add it to the trust vectors
of the other good peers.

Through analysis and simulation, we showed that the proba-
bility of error when our source propagation protocols are used
in a ring subnetwork of 100 good peers is at most10−4. This
means that the probability, that a computed trust value by a
good peer in the ring subnetwork is correct, is .9999.

We also showed through simulation that the probability of
error when our protocols are used in an outgoing tree subnet-
work of height 7 is at most2× 10−5, and that the probability
of error when our protocols are used in an incoming tree
subnetwork of height 7 is at most2 × 10−4. All these results
confirm that our source propagation protocols are reasonably
accurate.

REFERENCES

[1] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “Theeigentrust
algorithm for reputation management in p2p networks,” inWWW’03,
May 2003.

[2] S. Lee, R. Sherwood, and B. Bhattacharjee, “Cooperativepeer groups
in nice,” in IEEE INFOCOM, 2003.

[3] L. Xiong and L. Liu, “Peertrust: Supporting reputation-based trust for
peer-to-peer electronic communities,”IEEE Transactions on Knowledge
and Data Engineering, vol. 16, no. 7, July 2004.

[4] E. Damiani, D. C. di Vimercati, and S. Paraboschi, “A reputation-based
approach for choosing reliable resources in peer-to-peer networks,” in
CCS’02, October 2002.

[5] N. Curtis, R. Safavi-Naini, and W. Susilo, “X2rep: Enhanced trust
semantics for the xrep protocol,” inApplied Cryptography and Network
Security, June 2004.

[6] F. Cornelli, E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and
P. Samarati, “Choosing reputable servent in a p2p network,”in WWW’02,
2002.

[7] M. G. Gouda and Y. Li, “The truth system: Can a system of lying
processes stabilize?” 9th International Symposium on Stabilization,
Safety, and Security of Distributed Systems(SSS’07), November 2007.

[8] Y. Li and M. G. Gouda, “Sources and monitors: A trust modelfor peer-
to-peer networks,” The University of Texas at Austin, UTCS Technical
Report TR-07-60, 2007.

[9] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker,
“Making gnutella-like p2p systems scalable,” inSIGCOMM’03, August
2003.

[10] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and
J. Zahorjan, “Measurement, modeling and analysis of a peer-to-peer file-
sharing workload,” inACM SOSP, October 2003.

[11] J. Liang, R. Kumar, Y. Xi, and K. W. Ross, “Pollution in p2p file sharing
systems,” inIEEE INFOCOM, 2005.

[12] N. Christin, A. S. Weigend, and J. Chuang, “Content availability, pollu-
tion and poisoning in file sharing peer-to-peer networks,” in Proceedings
of ACM Electronic Commerce, June 2005.

[13] D. Dumitriu, E. Knightly, A. Kuzmanovic, I. Stoica, andW. Zwaenepoel,
“Denial-of-service resilience in peer-to-peer file sharing systems,” in
SIGMETRICS’05, June 2005.

[14] J. Liang, N. Naoumov, and K. W. Ross, “The index poisoning attack in
p2p file sharing systems,” inIEEE INFOCOM, 2006.

[15] K. Walsh and E. G. Sirer, “Experience with an object reputation system
for peer-to-peer filesharing,” inNSDI’06, May 2006.

[16] M. Srivatsa, L. Xiong, and L. Liu, “Trustguard: Countering vulnerabil-
ities in reputation management for decentralized overlay networks,” in
WWW2005, May 2005.


