
Diverse Firewall Design
Alex X. Liu, Member, IEEE, and Mohamed G. Gouda, Member, IEEE

Abstract—Firewalls are the mainstay of enterprise security and the most widely adopted technology for protecting private networks.

An error in a firewall policy either creates security holes that will allow malicious traffic to sneak into a private network or blocks

legitimate traffic and disrupts normal business processes, which, in turn, could lead to irreparable, if not tragic, consequences. It has

been observed that most firewall policies on the Internet are poorly designed and have many errors. Therefore, how one can design

firewall policies correctly is an important issue. In this paper, we propose the method of diverse firewall design, which consists of

three phases: a design phase, a comparison phase, and a resolution phase. In the design phase, the same requirement specification

of a firewall policy is given to multiple teams who proceed independently to design different versions of the firewall policy. In the

comparison phase, the resulting multiple versions are compared with each other to detect all functional discrepancies between them.

In the resolution phase, all discrepancies are resolved, and a firewall that is agreed upon by all teams is generated. The major technical

challenge in the method of diverse firewall design is how one can discover all functional discrepancies between two given firewall

policies. We present a series of three efficient algorithms for solving this problem: a construction algorithm, a shaping algorithm, and a

comparison algorithm. The algorithms for discovering all functional discrepancies between two given firewall policies can be used to

perform firewall policy change impact analysis as well. Firewall policies often need to be changed, as networks evolve, and new threats

emerge. Many firewall policy errors are caused by the unintended side effects of policy changes. Our algorithms can be used directly to

compute the impact of firewall policy changes by computing the functional discrepancies between the policy before changes and the

policy after changes.

Index Terms—Firewall policy, policy design, design diversity, change impact analysis, network security.

Ç

1 INTRODUCTION

FIREWALLS are crucial elements in network security, and
they have been widely deployed to secure private

networks in businesses and institutions. A firewall is a
security guard placed at the point of entry between a
private network and the outside Internet such that all
incoming and outgoing packets have to pass through it. A
packet can be viewed as a tuple with a finite number of
fields such as source IP address, destination IP address,
source port number, destination port number, and protocol
type. By examining the values of these fields for incoming
and outgoing packets, a firewall accepts legitimate packets
and discards illegitimate ones according to its “policy,” that
is, “configuration.”

A firewall policy consists of a sequence (that is, an
ordered list) of rules, where each rule is of the form
hpredicatei ! hdecisioni. The hpredicatei of a rule is a
Boolean expression over some packet fields such as source
IP address, destination IP address, source port number,
destination port number, and protocol type. The hdecisioni of
a rule can be accept, discard, or a combination of these
decisions with other options such as a logging option. The
rules in a firewall policy often conflict. To resolve such
conflicts, the decision for each packet is the decision of the
first (that is, the highest priority) rule that the packet matches.

1.1 Motivation

Although a firewall policy is a mere sequence of rules,
correctly designing one is, by no means, easy. The rules in a
firewall policy are logically entangled because of conflicts
among rules and the resulting order sensitivity [26].
Ordering the rules correctly in a firewall is critical yet
difficult. The implication of any rule in a firewall cannot be
understood correctly without examining all the rules listed
above that rule. Furthermore, a firewall policy may consist
of a large number of rules. A firewall on the Internet may
consist of hundreds or even a few thousand rules in
extreme cases. One can imagine the complexity of the logic
underlying so many conflicting rules.

An error in a firewall policy, that is, a wrong definition of
being legitimate or illegitimate for some packets, means that
the firewall either accepts some malicious packets, which
consequently creates security holes in the firewall, or
discards some legitimate packets, which consequently
disrupts normal business. Either case could cause irrepar-
able, if not tragic, consequences. Given the importance of
firewalls, such errors are not acceptable. Unfortunately, it
has been observed that most firewalls on the Internet are
poorly designed and have many errors in their policies [26].
Therefore, how one can design firewall policies correctly is
an important issue.

Since the correctness of a firewall policy is the focus of
this paper, we assume that a firewall is correct if and only if
its policy is correct and a firewall policy is correct if and
only if it satisfies its given requirement specification, which
is usually written in a natural language. In the rest of this
paper, we use the term “firewall” to mean “firewall policy”
or “firewall configuration,” unless otherwise specified.

We categorize firewall errors into specification-induced
errors and design-induced errors. Specification-induced

IEEE RANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 8, AUGUST 2008 1

. A.X. Liu is with the Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI 48824-1226.
E-mail: alexliu@cse.msu.edu.

. M.G. Gouda is with the Department of Computer Sciences, The University
of Texas at Austin, 1 University Station (C0500), Austin, TX 78712-0233.
E-mail: gouda@cs.utexas.edu.

Manuscript received 12 Apr. 2007; revised 9 Aug. 2007; accepted 22 Oct.
2007; published online 1 Nov. 2007.
Recommended for acceptance by T. Abdelzaher.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2007-04-0110.
Digital Object Identifier no. 10.1109/TPDS.2007.70802.

1045-9219/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

errors are caused by the inherent ambiguities of informal
requirement specifications, especially if the requirement
specification is written in a natural language. Design-
induced errors are caused by the technical incapacity of
individual firewall designers. Different designers may have
different understandings of the same informal requirement
specification, and different designers may exhibit different
technical strengths and weaknesses. Note that in this paper,
we assume that the given requirement specification of a
firewall is informal. Automatically converting a formal
firewall specification to a deployable firewall policy has
been addressed in [12]. However, the formal specification of a
firewall policy is still difficult to specify correctly. The above
observations motivate our method of diverse firewall design.

1.2 Our Solution

Our diverse firewall design method has the following
phases:

1. Design phase. In this phase, the same requirement
specification of a firewall is given to multiple teams
who proceed independently to design different
versions of the firewall. In the industry, firewalls
are typically designed and maintained by a group of
people rather than just one person. To apply the
method of diverse firewall design, we can divide
one group into several teams.

2. Comparison phase. In this phase, the resulting multi-
ple versions are compared with each other to
determine all functional discrepancies among them.
The functional discrepancies need to be presented in
human readable format in order to be used in the
next step.

3. Resolution phase. In this phase, first, every discre-
pancy is discussed and resolved by all teams.
Second, a firewall that is unanimously agreed upon
by all teams is generated.

The major technical challenge in the method of diverse
firewall design is how one can discover all functional
discrepancies between two given firewalls in human read-
able format. Our solution to this problem consists of a series of
three efficient algorithms for solving this problem: a con-
struction algorithm, a shaping algorithm, and a comparison
algorithm.

After all functional discrepancies are computed, the
teams need to discuss the correct decision for each
discrepancy. After all discrepancies are resolved, the
technical question that we need to answer is: How do we
generate the final firewall that reflects the resolved
functional discrepancies? We present two methods for this
purpose in Section 6.

1.3 Other Applications: Firewall Change
Impact Analysis

The algorithms presented in this paper can be used in other
applications as well, such as firewall change impact
analysis. Firewall policies are always subject to change
due to a variety of reasons. Making policy changes is a
major routine task for firewall administrators. For example,
new network threats such as worms and viruses may
emerge. To protect a private network from new attacks,
firewall policies need to be changed accordingly. Modern
organizations also continually transform their network

infrastructure to maintain their competitive edge by adding
new servers, installing new software and services, expand-
ing connectivity, etc. In accordance with network changes,
firewall policies need to be changed as well to provide
necessary protection.

Unfortunately, making changes is a major source of
firewall policy errors. Making correct firewall policy changes
is remarkably difficult due to the interleaving nature of
firewall rules. For example, when a firewall administrator
inserts a new rule to a firewall policy, the meaning of the
rules listed under this rule could be incorrectly changed,
without the administrator noticing. Furthermore, firewall
policy changes are made by human administrators, and it is
common that human administrators make mistakes. It has
been shown that administrator errors are the largest cause of
failure for Internet services, and policy errors are the largest
category of administrator errors [21].

The algorithms for discovering all functional discrepan-
cies between two given firewalls can be directly used to
perform firewall change impact analysis. The impact of the
changes can literally be defined as the functional discre-
pancies between the firewall before changes and the
firewall after changes.

1.4 Relationship to Prior Art

Some firewall design and analysis methods have been
proposed previously [1], [5], [11], [12], [15], [19], [20], [29].
However, none of them has ever explored design diversity.
Furthermore, none of them has ever tackled the problem of
change impact analysis for firewall policies. The proposed
diverse firewall design method is complementary to the
previous work, because these methods can assist each
individual team to design and analyze their firewall in the
design phase before cross comparison.

Note that the scope of this paper is on firewalls
and not Intrusion Detection Systems/Prevention Systems
(IDSs/IPSs). Although the distinction between IDSs/IPSs
and firewalls is blurry sometimes in the commercial
world, IDSs/IPSs fundamentally differ from firewalls in that
IDSs/IPSs check packet payloads, whereas firewalls do not.

1.5 Key Contributions

We make four key contributions in this paper:

1. We propose the method of diverse firewall design.
This paper represents the first effort to apply the
well-known principle of diverse design to firewalls.

2. We present a method that can compare two given
firewalls and output all functional discrepancies
between them in human readable format. This is the
first method created for this purpose.

3. We present a method to compute firewall change
impacts by computing all functional discrepancies
between the firewalls before and after changes. This
is the first method for doing firewall change impact
analysis.

4. We implemented our algorithms in Java, and we
evaluated their performance on both real-life and
synthetic firewalls of large sizes. The experimental
results show that our algorithms only use a few
seconds to compare two different firewalls, where
each firewall has up to 3,000 rules.

2 IEEE RANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 8, AUGUST 2008

The rest of this paper is organized as follows: We start
with an overview of our diverse firewall design method in
Section 2. In Sections 3, 4, and 5, we present a series of
three algorithms for discovering all functional discrepancies
between two firewalls. In Section 6, we discuss how we can
generate a firewall that is agreed upon by all teams after all
discrepancies are resolved. We discuss some further issues
in Section 7. In Section 8, we present the experimental
results that show the effectiveness and efficiency of our
diverse firewall design method. Our conclusions are given
in Section 10.

2 OVERVIEW

In this section, we present an overview of our diverse
firewall design method by using an illustrative example,
which will be used throughout this paper.

In our example, for simplicity, we assume that a firewall
maps every packet to either decision: accept or discard.
Most firewall software supports more than two decisions
such as accept, accept and log, discard, and discard and log.
Our diverse firewall design method can support any
number of decisions.

2.1 Design Multiple Firewalls

Consider the simple network in Fig. 1. This network has a
gateway router with two interfaces: interface 0, which
connects the gateway router to the outside Internet, and
interface 1, which connects the gateway router to the inside
local network. The firewall for this local network resides in
the gateway router.

Suppose that the requirement specification for this
firewall is given as follows: The mail server with IP address

192.168.0.1 can receive e-mail packets. The packets from an

outside malicious domain 224.168.0.0/16 should be blocked. Other

packets should be accepted and allowed to proceed.
Suppose that we give this specification to two teams

—Team A and Team B—which design the firewalls, as shown
in Tables 1 and 2, respectively.

2.2 Compare Multiple Firewalls

Next, we briefly show our method for computing the
functional discrepancies between two given firewalls.
For example, given the two firewalls in Tables 1 and 2,
our method produces all the functional discrepancies, as
shown in Table 3.

The core data structure used in this paper for comparing
multiple firewalls is Firewall Decision Diagrams (FDDs).
FDDs were introduced in [10] as a notation for specifying
firewalls. An FDD with a decision set DS and over fields
F1; � � � ; Fd is an acyclic and directed graph that has the
following properties:

1. There is exactly one node that has no incoming
edges. This node is called the root. The nodes that
have no outgoing edges are called terminal nodes.

2. Each node v has a label, denoted F ðvÞ, such that

F ðvÞ 2 fF1; � � � ; Fdg; if v is a nonterminal node;
DS; if v is a terminal node:

�

3. Each edge e : u! v is labeled with a nonempty set of
integers, denoted IðeÞ, where IðeÞ is a subset of the
domain of u’s label (that is, IðeÞ � DðF ðuÞÞ).

4. A directed path from the root to a terminal node is
called a decision path. No two nodes on a decision
path have the same label.

5. The set of all outgoing edges of a node v,
denoted EðvÞ, satisfies the following conditions:

. Consistency. IðeÞ \ Iðe0Þ ¼ ; for any two distinct
edges e and e0 in EðvÞ.

. Completeness.
S
e2EðvÞ IðeÞ ¼ DðF ðvÞÞ.

A decision path in an FDD f is represented by
v1e1 � � � vkekvkþ1, where v1 is the root, vkþ1 is a terminal

LIU AND GOUDA: DIVERSE FIREWALL DESIGN 3

Fig. 1. A firewall.

TABLE 1
Firewall Designed by Team A

TABLE 2
Firewall Designed by Team B

node, and each ei is a directed edge from node vi to
node viþ1. A decision path ðv1e1 � � � vkekvkþ1Þ in an FDD
defines the following rule:

F1 2 S1 ^ � � � ^ Fn 2 Sn ! F ðvkþ1Þ;

where

Si ¼

IðejÞ; if there is a node vj in the decision
path that is labeled with field Fi;

DðFiÞ; if no node in the decision path is
labeled with field Fi:

8>><
>>:

For an FDD f , we use f:rules to denote the set of all rules
that are defined by all the decision paths of f . For any packetp,
there is only one rule in f:rules that p matches because of
the consistency and completeness properties of an FDD.

Our method for computing the functional discrepancies
between two given firewalls consists of the following steps:

Step 1: conversion. In this step, we convert each firewall
to an equivalent FDD. Figs. 2 and 3 show the two FDDs that
are converted from the two firewalls in Tables 1 and 2,
respectively. Note that the example FDDs used in this paper
are presented as trees for ease of understanding. The
algorithm for constructing an equivalent FDD from a
sequence of rules is presented in Section 3.

In this example, we suppose that each packet has the
following fields:

1. interface,
2. source IP address,
3. destination IP address,
4. destination port, and
5. protocol type.

For ease of presentation, we assume that each packet has a
field called “interface,” whose value is the identification of
the network interface on which a packet arrives. The

shorthand for the five packet fields is listed in the following

table, and for simplicity, we assume that the protocol type
value in a packet is either 0 (TCP) or 1 (UDP):

In our examples, we also use the following shorthand.
Note that � denotes the integer formed by 4 bytes of the
IP address 224.168.0.0. This applies similarly for � and �:

Step 2: shaping. In this step, we transform each FDD
into another FDD without changing its semantics such that
the two resulting FDDs are semi-isomorphic. Two FDDs are
semi-isomorphic if and only if they are exactly the same,
except for the labels of their terminal nodes. Figs. 4 and 5
show the two semi-isomorphic FDDs converted from the
FDDs in Figs. 2 and 3, respectively. The algorithm for
making two FDDs semi-isomorphic without changing their
semantics is presented in Section 4.

Step 3: comparison. In this step, we compare the
two semi-isomorphic FDDs in Figs. 4 and 5 for functional
discrepancies. Table 3 shows all the functional discrepan-
cies between the two semi-isomorphic FDDs in Figs. 4 and
5, which are also the functional discrepancies between the
two firewalls in Tables 1 and 2. The algorithm for

4 IEEE RANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 8, AUGUST 2008

TABLE 3
Functional Discrepancies between the Two Firewalls Designed by Teams A and B

Fig. 2. The FDD constructed from the firewall designed by Team A in

Table 1.

Fig. 3. The FDD constructed from the firewall designed by Team B in

Table 2.

discovering all functional discrepancies between two semi-
isomorphic FDDs is presented in Section 5.

3 CONSTRUCTION ALGORITHM

In this section, we discuss how we can construct an
equivalent FDD from a sequence of rules.

3.1 Firewalls

We first formally define the concepts of fields, packets, and

firewalls. A field Fi is a variable whose domain, denoted

DðFiÞ, is a finite interval of nonnegative integers. For

example, the domain of the source address in an IP packet

is ½0; 232 � 1�. A packet over the d fields F1; � � � ; Fd is a

d-tuple ðp1; � � � ; pdÞ, where each pi ð1 � i � dÞ is an element

of DðFiÞ. We use � to denote the set of all packets over

fields F1; � � � ; Fd. It follows that � is a finite set and

j�j ¼ jDðF1Þj � � � � � jDðFdÞj, where j�j denotes the number

of elements in set �, and jDðFiÞj denotes the number of

elements in set DðFiÞ for each i.

A firewall rule has the form hpredicatei ! hdecisioni. A
hpredicatei defines a set of packets over the fields F1

through Fd specified as F1 2 S1 ^ � � � ^ Fd 2 Sd, where each
Si is a nonempty interval that is a subset of DðFiÞ. If
Si ¼ DðFiÞ, we can replace Fi 2 Si by Fi 2 all or remove the
conjunct Fi 2 DðFiÞ altogether. A packet p1; � � � ; pd matches a
predicate F1 2 S1 ^ � � � ^ Fd 2 Sd and the corresponding
rule if and only if the condition p1 2 S1 ^ � � � ^ pd 2 Sd
holds. We use � to denote the set of possible values that
hdecisioni can be. Typical elements of � include accept,
discard, accept with logging, and discard with logging.
A firewall rule F1 2 S1 ^ � � � ^ Fd 2 Sd ! hdecisioni is simple
if and only if every Si ð1 � i � dÞ is an interval of
consecutive nonnegative integers.

A firewall f over the d fields F1; � � � ; Fd is a sequence
of firewall rules. The size of f , denoted jfj, is the number
of rules in F . A sequence of rules hr1; � � � ; rni is
comprehensive if and only if for any packet p, there is at
least one rule in the sequence that p matches. A sequence
of rules needs to be comprehensive for it to serve as a
firewall. To ensure that a firewall is comprehensive, the

LIU AND GOUDA: DIVERSE FIREWALL DESIGN 5

Fig. 4. The FDD transformed from the one in Fig. 2.

Fig. 5. The FDD transformed from the one in Fig. 3.

predicate of the last rule in a firewall is specified as
F1 2 DðF1Þ ^ � � �Fd 2 ^D ðFdÞ.

Two rules in a firewall may overlap; that is, a single
packet may match both rules. Furthermore, two rules in
a firewall may conflict; that is, the two rules not only
overlap but also have different decisions. To resolve such
conflicts, firewalls typically employ a first-match resolu-
tion strategy, where the decision for a packet p is the
decision of the first (that is, the highest priority) rule that
p matches in f . The decision that firewall f makes for
packet p is denoted fðpÞ.

We can think of a firewall f as defining a many-to-one
mapping function from � to �. Two firewalls f1 and f2 are
equivalent, denoted f1 � f2, if and only if they define the
same mapping function from � to �; that is, for any packet
p 2 �, we have f1ðpÞ ¼ f2ðpÞ. For any firewall f , we use ffg
to denote the set of firewalls that are semantically
equivalent to f .

3.2 Construction of FDDs

Next, we discuss how we can construct an equivalent FDD
from a sequence of rules hr1; � � � ; rni, where each rule is of
the format ðF1 2 S1Þ ^ � � � ^ ðFd 2 SdÞ ! hdecisioni. Note
that all the d packet fields appear in the predicate of each
rule, and they appear in the same order.

We first construct a partial FDD from the first rule. A
partial FDD is a diagram that has all the properties of an
FDD, except the completeness property. The partial FDD
constructed from a single rule contains only the decision
path that defines the rule. Suppose that from the first i rules,
r1 through ri, we have constructed a partial FDD,
whose root v is labeled F1. Suppose also that v has
k outgoing edges e1; � � � ; ek. Let riþ1 be the rule
ðF1 2 S1Þ ^ � � � ^ ðFd 2 SdÞ ! hdecisioni. Next, we consider
how we can append rule riþ1 to this partial FDD.

At first, we examine whether we need to add another
outgoing edge to v. If S1 � ðIðe1Þ [� � � [IðekÞÞ 6¼ ;, we need
to add a new outgoing edge with label S1 � ðIðe1Þ [� � � [
IðekÞÞ to v, because any packet whose F1 field is an element
of S1 � ðIðe1Þ � � � [IðekÞÞ does not match any of the first
i rules but matches riþ1, provided that the packet satisfies
ðF2 2 S2Þ ^ � � � ^ ðFd 2 SdÞ. Then, we build a decision path

from ðF2 2 S2Þ ^ � � � ^ ðFd 2 SdÞ ! hdecisioni and make the
new edge of the node v point to the first node of this
decision path.

Second, we compare S1 and IðejÞ for each j, where
1 � j � k. This comparison leads to one of the following
cases:

1. S1 \ IðejÞ ¼ ;. In this case, we skip edge ej, because
any packet whose value of field F1 is in set IðejÞ does
not match riþ1.

2. S1 \ IðejÞ ¼ IðejÞ. In this case, for a packet whose
value of field F1 is in set IðejÞ, it may match one of
the first i rules, and it also may match rule riþ1.
Thus, we append the rule ðF2 2 S2Þ ^ � � � ^ ðFd 2
SdÞ ! hdecisioni to the subgraph rooted at the node
to which ej points.

3. S1 \ IðejÞ 6¼ ;, and S1 \ IðejÞ 6¼ IðejÞ. In this case, we
split edge e into two edges: e0 with label IðejÞ � S1

and e00 with label IðejÞ \ S1. Then, we make
two copies of the subgraph rooted at the node to
which ej points. Let e0 and e00 point to one copy each.
We then deal with e0 by the first case and with e00 by
the second case.

The pseudocode of the FDD construction algorithm is
shown in Fig. 7. Here, we use e:t to denote the (target) node
to which the edge e points.

As an example, consider the sequence of rules in
Table 1. Fig. 6 shows the partial FDD that we construct
from the first rule and the partial FDD after we append
the second rule. The FDD after we append the third rule
is shown in Fig. 2.

Theorem 1. Given a firewall of n simple rules, the maximum
number of paths in the FDD constructed using the

FDD construction algorithm is ð2n� 1Þd, where d is the
number of the fields in each rule.

Proof. Let the n simple rules be r1; r2; � � � ; rn, where each
rule ri is denoted

ri ¼ F1 2 Si1 ^ F2 2 Si2 ^ � � � ^ Fd 2 Sid ! decisioni:

For each field Fi, S
i
1 has two end points (the minimum

and the maximum values of the range). Thus, there are

6 IEEE RANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 8, AUGUST 2008

Fig. 6. Appending rule ðI 2 f0gÞ ^ ðS 2 ½�; ��Þ ^ ðD 2 allÞ ^ ðN 2 allÞ ^ ðP 2 allÞ ! d.

at most 2n points in the range of Fi, and the total number
of intervals separated by the 2n points is at most 2n� 1,
which means that the number of outgoing edges of a
node labeled Fi is at most 2n� 1. Because the total
number of fields is d, the number of paths in the
constructed FDD is at most ð2n� 1Þd. tu

4 SHAPING ALGORITHM

In this section, we discuss how we can transform
two ordered but not semi-isomorphic FDDs fa and fb into
two semi-isomorphic FDDs f 0a and f 0b such that fa is
equivalent to f 0a and fb is equivalent to f 0b. Informally, an
FDD is ordered if and only if along every path from the root
to a terminal node, the labels of the nonterminal nodes obey
the same order. Two FDDs are semi-isomorphic if and only
if they are exactly the same, except for the labels of their
terminal nodes. The formal definitions of ordered FDDs and
semi-isomorphic FDDs are given as follows: Note that the
FDDs constructed by the construction algorithm in Section 3
are ordered.

Definition 4.1 (ordered FDDs). Let 	 be the total order over
the packet fields F1; � � � ; Fd, where F1 	 � � � 	 Fd holds. An
FDD is ordered if and only if for each decision path
ðv1e1 � � � vkekvkþ1Þ, we have F ðv1Þ 	 � � � 	 F ðvkÞ.

Definition 4.2 (semi-isomorphic FDDs). Two FDDs f and f 0

are semi-isomorphic if and only if there exists a one-to-one
mapping � from the nodes of f onto the nodes of f 0 such that
the following conditions hold:

1. For any node v in f , either both v and �ðvÞ are
nonterminal nodes with the same label or both of them
are terminal nodes.

2. For each edge e in f , where e is from a node v1 to a
node v2, there is an edge e0 from �ðv1Þ to �ðv2Þ in f 0,
and the two edges e and e0 have the same label.

The algorithm for transforming two ordered FDDs into
two semi-isomorphic FDDs uses the following basic
operations (note that none of these operations changes the
semantics of the FDDs):

1. Node insertion. If along all the decision paths
containing a node v, there is no node that is labeled
with a field F , then we can insert a node v0 labeled F
above v as follows: Make all incoming edges of
v point to v0, create one edge from v0 to v, and label
this edge with the domain of F .

2. Edge splitting. For an edge e from v1 to v2, if
IðeÞ ¼ S1 [S2, where neither S1 nor S2 is empty,
then we can split e into two edges as follows:
Replace e by two edges from v1 to v2, label one edge
with S1, and label the other with S2.

3. Subgraph replication. If a node v has m ðm
 2Þ
incoming edges, we can make m copies of the
subgraph rooted at v and make each incoming edge
of v point to the root of one distinct copy.

4.1 FDD Simplifying

Before applying the shaping algorithm, presented in the
following, to two ordered FDDs, we need to transform each
of them into an equivalent simple FDD. A simple FDD is
defined as follows:

Definition 4.3 (simple FDDs). An FDD is simple if and only if
each node in the FDD has at most one incoming edge and each
edge in the FDD is labeled with a single interval.

It is straightforward that the two operations of edge
splitting and subgraph replication can be applied repeti-
tively to an FDD in order to make this FDD simple. Note
that the graph of a simple FDD is an outgoing directed tree.
In other words, each node in a simple FDD, except the root,
has only one parent node and has only one incoming edge
(from the parent node).

4.2 Node Shaping

Next, we introduce the procedure for transforming
two shapable nodes into two semi-isomorphic nodes, which
is the basic building block in the shaping algorithm for
transforming two ordered FDDs into two semi-isomorphic
FDDs. Shapable nodes and semi-isomorphic nodes are
defined as follows:

Definition 4.4 (shapable nodes). Let fa and fb be two ordered

simple FDDs, va be a node in fa, and vb be a node in fb.

Nodes va and vb are shapable if and only if one of the following

conditions holds:

1. Both va and vb have no parents; that is, they are the
roots of their respective FDDs.

2. Both va and vb have parents, their parents have the
same label, and their incoming edges have the same
label.

LIU AND GOUDA: DIVERSE FIREWALL DESIGN 7

Fig. 7. FDD construction algorithm.

Definition 4.5 (semi-isomorphic nodes). Let fa and fb be
two ordered simple FDDs, va be a node in fa, and vb be a
node in fb. The two nodes va and vb are semi-isomorphic if
and only if one of the following conditions holds:

1. Both va and vb are terminal nodes.
2. Both va and vb are nonterminal nodes with the same

label, and there exists a one-to-one mapping � from the
children of va to the children of vb such that for each
child v of va, v and �ðvÞ are shapable.

For example, the two nodes labeled F1 in Fig. 8 are
shapable, since they have no parents, and the two nodes
labeled F1 in Fig. 9 are semi-isomorphic nodes.

The algorithm for making two shapable nodes va and vb
semi-isomorphic consists of two steps:

Step 1. This step is skipped if va and vb have the same
label or both of them are terminal nodes. Otherwise,
without loss of generality, assume that F ðvaÞ 	 F ðvbÞ. It is
straightforward to show that in this case, along all the
decision paths containing node vb, no node is labeled F ðvaÞ.
Therefore, we can create a new node v0b with label F ðvaÞ,
create a new edge with label DðF ðvaÞÞ from v0b to vb, and
make all incoming edges of vb point to v0b. Now, va has
the same label as v0b. (Recall that this node insertion
operation leaves the semantics of the FDD unchanged.)

Step 2. From the previous step, we can assume that
va and vb have the same label. In the current step, we use
the two operations of edge splitting and subgraph replication
to build a one-to-one correspondence from the children
of va to the children of vb such that each child of va and the
corresponding child of vb are shapable.

Suppose that DðF ðvaÞÞ ¼ DðF ðvbÞÞ ¼ ½a; b�. We know that
each outgoing edge of va or vb is labeled with a single
interval. Suppose that va has m outgoing edges fe1; � � � ; emg,
where IðeiÞ ¼ ½ai; bi�, a1 ¼ a, bm ¼ b, and every aiþ1 ¼ bi þ 1.
In addition, suppose that vb has n outgoing edges
fe01; � � � ; e0ng, where Iðe0iÞ ¼ ½a0i; b0i�, a01 ¼ a, b0n ¼ b, and every
a0iþ1 ¼ b0i þ 1.

Comparing edge e1, whose label is ½a; b1�, and e01, whose
label is ½a; b01�, we have the following cases:

1. b1 ¼ b01. In this case, Iðe1Þ ¼ Iðe01Þ; therefore, nodes
e1:t and e01:t are shapable. (Recall that we use e:t to
denote the node to which edge e points.) Then, we
can continue comparing e2 and e02, since both Iðe2Þ
and Iðe02Þ begin with b1 þ 1.

2. b1 6¼ b01. Without loss of generality, we assume that
b1 < b01. In this case, we split e01 into two edges e and
e0, where e is labeled ½a; b1�, and e0 is labeled
½b1 þ 1; b01�. Then, we make two copies of the

subgraph rooted at e01:t and let e and e0 point to
one copy each. Thus, Iðe1Þ ¼ IðeÞ, and the
two nodes, e1:t and e:t are shapable. Then, we can
continue comparing the two edges e2 and e0, since
both Iðe2Þ and Iðe0Þ begin with b1 þ 1.

The above process continues until we reach the last
outgoing edge of va and the last outgoing edge of vb.
Note that each time that we compare an outgoing edge of va
and an outgoing edge of vb, the two intervals labeled on the
two edges begin with the same value. Therefore, the last
two edges that we compare must have the same label,
because they both end with b. In other words, this edge
splitting and subgraph replication process will terminate.
When it terminates, va and vb become semi-isomorphic.

Fig. 10 shows the pseudocode for making two shapable
nodes in two ordered simple FDDs semi-isomorphic. We
use IðeÞ < Iðe0Þ to indicate that every integer in IðeÞ is less
than every integer in Iðe0Þ.

If we apply the above node shaping procedure to the
two shapable nodes labeled F1 in Fig. 8, we make them
semi-isomorphic, as shown in Fig. 9.

4.3 FDD Shaping

To make two ordered FDDs fa and fb semi-isomorphic,
we first make fa and fb simple and then make fa and fb
semi-isomorphic as follows: Suppose that we have a
queue Q, which is initially empty. At first, we put the
pair of shapable nodes consisting of the root of fa and the
root of fb into Q. As long as Q is not empty, we remove
the head of Q, feed the two shapable nodes to the above
Node_Shaping procedure, and then put all the pairs of
shapable nodes returned by the Node_Shaping procedure
into Q. When the algorithm finishes, fa and fb become
semi-isomorphic. The pseudocode for this shaping algo-
rithm is shown in Fig. 11.

As an example, if we apply the above shaping algorithm
to the two FDDs in Figs. 2 and 3, we obtain two semi-
isomorphic FDDs, as shown in Figs. 4 and 5.

5 COMPARISON ALGORITHM

In this section, we consider how we can compare two semi-
isomorphic FDDs. Given two semi-isomorphic FDDs fa and
fb with a one-to-one mapping �, each decision path
ðv1e1 � � � vkekvkþ1Þ in fa has a corresponding decision path
ð�ðv1Þ�ðe1Þ � � ��ðvkÞ�ðekÞ�ðvkþ1ÞÞ in fb. Similarly, each rule
ðF ðv1Þ 2 Iðe1ÞÞ ^ � � � ^ ðF ðvkÞ 2 IðekÞÞ ! F ðvkþ1ÞÞ in fa:rules
has a corresponding rule ðF ð�ðv1ÞÞ 2 Ið�ðe1ÞÞÞ ^ ^ � � � ^
ðF ð�ðvkÞÞ 2 Ið�ðekÞÞÞ ! F ð�ðvkþ1ÞÞ in fb:rules. Note that

8 IEEE RANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 8, AUGUST 2008

Fig. 8. Two shapable nodes in two FDDs.

Fig. 9. Two semi-isomorphic nodes.

F ðviÞ ¼ F ð�ðviÞÞ and IðeiÞ ¼ Ið�ðeiÞÞ for each i, where

1 � i � k. Therefore, for each rule ðF ðv1Þ 2 Iðe1ÞÞ ^ � � � ^
ðF ðvkÞ 2 IðekÞÞ ! F ðvkþ1Þ in fa:rules, the corresponding rule

i n fb:rules i s ðF ðv1Þ 2 Iðe1ÞÞ ^ � � � ^ ðF ðvkÞ 2 IðekÞÞ !
F ð�ðvkþ1ÞÞ. Each of these rules is called the companion of

the other.
This companionship implies a one-to-one mapping from

the rules defined by the decision paths in fa to the rules

defined by the decision paths in fb. Note that for each rule

and its companion, either they are identical or they have

the same predicate but different decisions. Therefore,

fa:rules� fb:rules is the set of all the rules in fa:rules that

have different decisions from their companions. This

applies similarly for fb:rules� fa:rules. Note that the set of

all the companions of the rules in fa:rules� fb:rules is

fb:rules� fa:rules, and similarly, the set of all the compa-

nions of the rules in fb:rules� fa:rules is fa:rules� fb:rules.
Since these two sets manifest the functional discrepancies

between the two FDDs, the two design teams can investigate

them to resolve the discrepancies.
Let fa be the FDD in Fig. 4 and fb be the FDD in

Fig. 5. Here, fa is equivalent to the firewall in Table 1

designed by Team A, and fb is equivalent to the firewall

in Table 2 designed by Team B. By comparing fa and fb,

we can discover all functional discrepancies between the

firewalls designed by Teams A and B. The discrepancies

are shown in Table 3, based on which the following

questions need to be investigated:

1. Should we allow the computers from the malicious
domain to send an e-mail to the mail server? Team A
says yes, whereas Team B says no:

2. Should we allow non-TCP packets with destination
port number 25 to be sent from the hosts that are not
in the malicious domain to the mail server? Team A
says yes, whereas Team B says no:

LIU AND GOUDA: DIVERSE FIREWALL DESIGN 9

Fig. 10. Node shaping algorithm.

Fig. 11. Shaping algorithm.

3. Should we allow the packets with a destination port
number other than 25 to be sent from the hosts who
are not in the malicious domain to the mail server?
Team A says yes, whereas Team B says no:

6 DISCREPANCY RESOLUTION

After all functional discrepancies are computed, the teams

need to discuss correct decisions for each discrepancy.

Consider the discrepancies shown in Table 3. Suppose that

these discrepancies are resolved, as shown in Table 4.
The question that we want to answer in this section is:

How do we generate the final firewall that reflects the

resolved functional discrepancies? Of course, if one team

made all the correct decisions according to the discrepancy

resolution, we can simply deploy the firewall designed by

that team. Next, we assume that no team makes all the

correct decisions. In this paper, we propose two methods

for this purpose. Then, we discuss which methods should

be chosen in practice.

6.1 Method 1: Generate Rules from Corrected FDD

This method has two steps. First, correct one of the semi-

isomorphic FDDs by using discrepancy resolution. Second,

generate rules from the resulting FDD by using the
algorithms presented in [12].

Step 1: FDD correction. We can pick either semi-
isomorphic FDD generated by the FDD shaping algorithm
and apply corrections on the labels of the terminal nodes.
Note that after we apply fixes to two semi-isomorphic
FDDs, they become exactly the same. Note that we cannot
directly use the corrected FDD as the configuration of a
firewall, because most existing firewall devices take a
sequence of rules as their configuration.

Step 2: firewall generation. Given the corrected FDD, we
can apply the algorithms in [12] for generating a compact
firewall from an FDD. Table 5 shows the firewall generated
from the corrected FDD. Interested readers can refer to [12]
for more technical details.

6.2 Method 2: Combine Corrections with Original
Firewalls

The second method is to create a new firewall by using the
rules in the discrepancy resolution and one of the original
firewalls. This method consists of the following steps:

Step 1: firewall composition. In this step, we first pick an
original firewall, and then, we take all the rules in the
discrepancy resolution in which the original firewall made
incorrect decisions and add them to the beginning of the
firewall.

Step 2: redundancy removal. In this step, we apply the
firewall compaction algorithm in [19] to remove redundant
rules from the resulting sequence of rules. A rule is
redundant if and only if removing the rule does not change
the semantics of the firewall.

For example, we can pick the firewall in Table 1 designed
by Team A, and on top of that, we can add the first and
third rules from the discrepancy resolution in Table 4. Note
that Team A only made incorrect decisions for the packets
that match the first and third rules in Table 4. By adding
these two rules to the beginning of the original three rules
designed by Team A, all packets are mapped to the correct
decisions. After the above two steps, the resulting firewall is
shown in Table 6. Similarly, we can pick the firewall in
Table 2 designed by Team B and then add the second rule
from the discrepancy resolution in Table 4 to the beginning
of the firewall. After the above two steps, the resulting
firewall is shown in Table 7.

10 IEEE RANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 8, AUGUST 2008

TABLE 4
Resolved Functional Discrepancies

TABLE 5
Firewall Generated from the Corrected FDD

7 DISCUSSION

7.1 Prefix and Intervals

Real-life firewalls usually check five packet fields:

1. source IP address,
2. destination IP address,
3. source port number,
4. destination port number, and
5. protocol type.

Of these five fields, the first two fields are usually
represented using prefix formats, and the last three fields
are usually integer intervals. Note that prefix formats
and interval formats are interconvertable. For example,
IP prefix 192.168.0.0/16 can be converted to the interval
from 192.168.0.0 to 192.168.255.255, where an IP address can
be regarded as a 32-bit integer. As another example, the
interval [2, 8] can be converted to three prefixes: 001�, 01�,
and 1,000.

To use the algorithms presented in this paper, we first
convert the source and destination IP addresses from prefix
formats to integer intervals. Note that every prefix can be
converted to only one integer interval. Second, we run the
three algorithms described in this paper. Note that the
functional discrepancies directly produced by our algo-
rithms are in interval format. Third, for each functional
discrepancy computed, we convert the source and destina-
tion IP addresses from intervals to prefixes. Thus, the
format of outputs are similar to those of original firewall
rules, which are easy to understand for firewall adminis-
trators. (A w-bit integer interval can be converted to at most
2w� 2 prefixes [14].)

7.2 Design in FDDs

In our discussion so far, we have assumed that the
two teams both design their firewalls by using a sequence
of rules. In fact, a team can use the structured firewall
design method in [12] to design the firewall by using an
FDD. Such cases are easy to handle by using the FDD
construction algorithm in this paper and the firewall

generation algorithm in [12]. For example, if only one team
designs the firewall by using a nonordered FDD, we can use
the firewall generation algorithm in [12] to generate a
sequence of rules from the FDD first and then apply the
algorithms in this paper. As another example, if two teams
design two ordered FDDs that are in a different order, we
can first generate an equivalent sequence of rules from one
diagram, and then, we can construct an equivalent ordered
FDD from the sequence of rules by using the order of packet
fields from the other FDD.

7.3 More Than Two Teams

In terms of firewall comparison, what we have discussed
so far is how two firewalls can be compared. If we have
N firewalls designed by N teams, where N > 2, there are
two ways of comparing them: cross comparison and direct
comparison. Cross comparison means comparing each of
the N � ðN � 1Þ pairs, where each pair consists of two of
the N firewalls. Direct comparison means extending the
shaping algorithm and the comparison algorithm to
handle N firewalls. This extension is considered fairly
straightforward.

7.4 Complexity Analysis

Let n be the number of rules in a firewall and d be the total
number of distinct packet fields that are examined by a
firewall. Based on Theorem 1, the time and space complex-
ity of the FDD construction algorithm is OðndÞ. Similarly,
the time and space complexity of the FDD shaping
algorithm and the FDD comparison algorithm is
OððnþmÞdÞ, where n and m are the total number of rules
in the two given firewalls, respectively. Despite such
worst case complexities, our algorithms are practical for
two reasons. First, d is typically small. Most real-life
firewalls only examine four packet fields:

1. source IP address,
2. destination IP address,
3. destination port number, and
4. protocol type.

LIU AND GOUDA: DIVERSE FIREWALL DESIGN 11

TABLE 6
Firewall Generated by Combining the Rules in Table 4 and the Rules in Table 1

TABLE 7
Firewall Generated by Combining the Rules in Table 4 and the Rules in Table 2

Second, the worst case of our algorithms is extremely
unlikely to happen in practice. The experimental results in
the next section confirm the above observations.

7.5 Why not BDDs?

Our solution uses FDDs as the basic data structure for
computing the functional discrepancies between two given
firewalls. One question that we need to answer is: Why not
use Binary Decision Diagrams (BDDs) [6]? A BDD is a
rooted directed acyclic graph that represents a Boolean
function. In a BDD, each nonterminal node is labeled by a
Boolean variable, and it has only two outgoing edges
labeled 0 and 1, respectively. Each edge represents an
assignment of 0 or 1. A BDD only has two terminal nodes
labeled 0 and 1, respectively.

The answer is that the functional discrepancies com-
puted by BDDs are not human readable. First, the BDD
itself, that is, the one that represents the functional
discrepancies between two firewalls, is not human readable,
because every node in a BDD represents only a bit of a
packet and not a field of a packet. Second, generating
human readable discrepancies, which are similar to rules,
from a BDD results in an exorbitant number of rules, which
is in terms of millions. We have implemented BDD-based
solutions using the CUDD package [23]. Unfortunately,
comparing two small firewalls results in millions of rules.
Although compressing millions of rules may not be
impossible, it is, by no means, trivial. In contrast, using
the data structure of FDDs, we can easily generate human
readable functional discrepancies in rulelike format.

8 EXPERIMENTAL RESULTS

In this section, we present the results of the experiments
that we conducted to evaluate both the effectiveness and
efficiency of our diverse firewall design method.

8.1 Effectiveness

To evaluate the effectiveness of the diverse firewall design
method, we conducted a real experiment as follows: First, we
obtained a real-life firewall used in a university. This firewall
was maintained by a senior firewall administrator as a
sequence of rules. This firewall, unfortunately, did not have a
requirement specification. However, the rules in this firewall
were well documented in that each rule had some detailed
comments about why the rule was added. Taking the
comments of the rules as the requirement specification, we
let an undergraduate student of computer science design a
firewall by using FDDs. Before the design started, we gave the
student some training on designing firewalls by using FDDs.

The original firewall had 87 rules. The new firewall was
designed as an FDD. Comparing the two firewalls using
the algorithms presented in this paper, we discovered
84 functional discrepancies. Then, the senior firewall
administrator and the undergraduate student discussed
what the correct decision for each of the functional
discrepancies should be. The conclusions of the discussion
were that in 82 functional discrepancies, the original
firewall made incorrect decisions, and in the other
two functional discrepancies, the new firewall made
incorrect decisions. The two functional discrepancies where

the new firewall made incorrect decisions were cause
by incorrect assumptions regarding the requirement speci-
fication of the firewall.

We learned some things from this experiment:

1. The method of diverse firewall design is effective in
practice and can be used flexibly in a variety of
scenarios. For example, it can be used to redesign an
existing firewall as what we did while conducting
the experiment. Many firewall administrators are
afraid of redesigning their firewall due to the
concerns of possible mistakes. Using the method of
diverse firewall design, redesigning an existing
firewall could be an effective way to find errors in
the firewall.

2. A tool that can perform change impact analysis of
firewalls is greatly needed in practice. Out of the
82 functional discrepancies, where the original
firewall made incorrect decisions, 72 of them were
caused by incorrect ordering of rules (and the rest
were caused by missing rules). Most of the incorrect
ordering of rules was caused by the firewall admin-
istrator incorrectly adding new rules to the beginning
of the firewall when making changes. If the firewall
administrator had a tool that could compute the
impact of a change, such errors could be greatly
reduced. The algorithms presented in this paper can
be used to perform firewall change impact analysis by
comparing the firewalls before and after changes.

8.2 Efficiency

We presented three algorithms in this paper, namely,
the construction algorithm, the shaping algorithm, and
the comparison algorithm, for detecting all functional
discrepancies between two given firewalls. We
implemented these algorithms in Java JDK 1.4. To evaluate
the performance of these algorithms, first, we ran our
algorithms on a real-life firewall of fairly large size
(661 rules) and a real-life firewall of average size (42 rules).
Second, we stress tested our algorithms on a large number
of synthetic firewalls of large sizes. These experiments were
carried out on a SunBlade 2000 machine running Solaris 9
with a 1-GHz CPU and 1-Gbyte memory. In both cases, the
experimental results show that our algorithms perform and
scale well.

8.2.1 Real-Life Firewalls

We first ran our algorithms on two real-life firewalls: one of
large size with 661 rules and one of average size with
42 rules. (In real-life firewalls, only 0.7 percent have more
than 1,000 rules, and the average number of rules is 50 [13].)

To simulate two design teams, we conducted the experi-
ments on the two real-life firewalls as follows: For each
firewall, in each experiment, we first randomly selected
x percent of rules from the firewall. LetS be the set of selected
rules. Second, we randomly picked a number y in the range
from 0 to 100. Third, we randomly selected y percent of the
rules in S to change their decisions. Last, for the remaining
1� y percent of the rules in S, we deleted them from the
original firewall. Thus, we obtained two firewalls: the original
firewall and the resulting firewall after the above four steps

12 IEEE RANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 8, AUGUST 2008

were applied. We used our algorithms to compute all
functional differences between them. We let x range from 5
to 50. Note that the original firewall and the resulting firewall
share ð1� x percentÞ � the original firewall size rules. For
each firewall and each value of x, we ran the experiment
100 times, with a random value y each time.

The experimental results are shown in Fig. 12. The x-axis
is the value of x, and the y-axis is the runtime of each
algorithm in milliseconds. Note that the total time includes
constructing two ordered FDDs from two sequences of
rules, shaping the two ordered FDDs to be semi-iso-
morphic, and comparing the two semi-isomorphic FDDs.

8.2.2 Synthetic Firewalls

Firewall configurations are considered confidential due to
security concerns. To further evaluate the performance of
our algorithms on large firewalls, we generated synthetic
firewalls based on the characteristics of real-life firewalls
reported in [13]. Every rule in a synthetic firewall has
five fields:

1. source IP address,
2. destination IP address,
3. source port number,
4. destination port number, and
5. protocol type.

In each experiment, we first generated two firewalls
independently and then ran the three algorithms on them.
Fig. 13 shows the average execution times for the construc-
tion algorithm, the shaping algorithm, and the comparison
algorithm versus the total number of rules. In this figure,
we see that it took less than 5 seconds to detect all
discrepancies between two sequences of 3,000 rules.

In practice, our algorithms are expected to run faster
because of two reasons. First, in real life, the two input
firewalls are likely to be similar if they are from two design
teams based on the same specification or if they are the
two firewalls before and after firewall changes are applied.
According to the shaping algorithm, comparing two firewalls
with more common rules is faster. In comparison, the

runtime data in Fig. 13 is for two firewalls that were generated
independently. Second, in real life, the two input firewalls
are likely to be smaller. In general, our algorithms run faster
for smaller firewalls.

9 RELATED WORK

Some firewall policy design and modeling methods have
been proposed previously. We have proposed using FDDs
for designing firewalls [12] and a model for specifying
stateful firewall policies [11]. Guttman proposed a Lisp-like
language for specifying high-level packet filtering policies
[15]. Bartal et al. proposed a UML-like language for
specifying global filtering policies [5]. Some firewall policy
analysis methods have also been proposed before. We have
proposed analyzing and testing firewall policies using
queries [20] and a method for identifying all the redundant
rules in a firewall policy [19]. In [1] and [29], some
anomalies are defined, and techniques for detecting anoma-
lies were presented. Those anomalies are subjectively
defined and may not be deemed as errors by a firewall
administrator. Using methods similar to firewall analysis,
Hamed et al. studied the analysis and verification of
IPsec policies [16]. The design of high-performance ATM
firewalls were discussed in [27] and [28], with emphasis on
firewall architectures. Firewall vulnerabilities were dis-
cussed and classified in [9] and [18], with emphasis on
firewall software.

The relationship between our diverse firewall design
method and previous firewall design and analysis methods
are twofold. First, none of the previous work has ever
explored design diversity. Furthermore, none of the studies
has ever tackled the problem of change impact analysis for
firewall policies. This paper represents the first attempt in
this direction. Second, our diverse firewall design method is
intended to complement, rather than to replace, the
previous firewall design and analysis methods, as these
methods can assist each individual team to design their
firewall in the design phase before cross comparison.

Our idea of diverse firewall design is inspired by
N-version programming [3], [4] and back-to-back test-
ing [25]. The basic idea of N-version programming is to
give the same requirement specification to N teams to
independently design and implement N programs by using
different algorithms, languages, or tools. Then, the resulting

LIU AND GOUDA: DIVERSE FIREWALL DESIGN 13

Fig. 12. Experimental results on real-life firewalls.

Fig. 13. Experimental results on synthetic firewalls of large sizes.

N programs are executed in parallel. A decision selection
mechanism is deployed to examine the N results for each
input from the N programs and selects a correct or the
“best” result. The key element of N-version programming is
design diversity. The diversity in the N programs should be
maximized such that coincident failure for the same input is
rare. The effectiveness of the N-version programming
method for building fault-tolerant software has been shown
in a variety of safety-critical systems built since the 1970s,
such as railway interlocking and train control [2], airbus
flight control [24], and nuclear reactor protection [7].

Back-to-back testing is a complementary method to
N-version programming. This method is used to test the
resulting N versions before deploying them in parallel. The
basic idea is given as follows: At first, create a suite of test
cases. Second, for each test case, execute the N programs in
parallel. Cross-compare the N results, then investigate each
discrepancy discovered, and apply corrections.

Our diverse firewall design method has two unique
properties that distinguish it from N-version programming
and back-to-back testing. First, only one firewall version
needs to be deployed and executed. This is because all
discrepancies between the multiple firewall versions can be
discovered by the algorithms presented in this paper, and
corrections can be applied to make them equivalent. In
contrast, the N-version programming method requires
deploying all the N programs and executing them in
parallel. Second, the algorithms in this paper can detect all
functional discrepancies between the multiple firewall
versions. In contrast, back-to-back testing is not guaranteed
to detect all functional discrepancies among N programs.

Although numerous studies have been done on analyz-
ing the change impact of general programs in software
engineering communities [17], [22], this paper represents
the first effort to analyze the change impact of firewall
policies. Firewall policies and general programs are
fundamentally different. Although accurately and comple-
tely computing the impact of software changes is nearly
impossible in general, the algorithms presented in this
paper can compute the accurate and complete impact of
firewall policy changes.

Fisler et al. studied change impact analysis of access
control policies in their seminal paper [8]. They proposed a
solution using multiterminal BDDs to compute the impact
of access control policy changes and verify whether an
access control policy satisfies a given property. Their work
is similar to ours in spirit; however, their solution cannot be
applied to firewall policies, because the access control
policies studied in [8] are quite different from firewall
policies. In [8], every attribute-value pair is encoded as one
variable in the MTBDD. This is natural for the access control
policies studied in [8] but is not feasible for firewall policies
because of the explosive number 288 of attribute-value pairs.

10 CONCLUSIONS

In this paper, we make four major contributions. First, we
proposed the method of diverse firewall design. This paper
represents the first effort to apply the well-known principle of
diverse design to firewalls. Second, we presented a method
that can compare two given firewalls and output all

functional discrepancies between them in human readable

format. This is the first method for this purpose. Third, we

presented a method to compute firewall change impacts by

computing all functional discrepancies between the firewall

before changes and the firewall after changes. This is the

first method for performing firewall change impact analysis.

Last, we implemented our algorithms and evaluated

their performance on both real-life and synthetic firewalls

of large sizes. Experimental results demonstrate that our

algorithms are efficient in comparing two firewalls of large

sizes. It is worth emphasizing that the methods and

algorithms presented in this paper are not limited to the

design and analysis of firewall policies. Rather, they can be

applied to other rule based systems as well.

ACKNOWLEDGMENTS

The authors would like to thank the editor Tarek

Abdelzaher and the anonymous referees for their construc-

tive comments and valuable suggestions on improving the

presentation of this paper. The work of Alex X. Liu was

supported in part by the US National Science Foundation

under Grant CNS-0716407. The work of Mohamed G.

Gouda was supported by the US National Science Founda-

tion under Grant 0520250. A preliminary version of this

paper was published in the Proceedings of the IEEE

International Conference on Dependable Systems and

Networks (DSN), pp. 595-604, Florence, Italy, June 2004. It

won the William C. Carter Award.

REFERENCES

[1] E. Al-Shaer and H. Hamed, “Discovery of Policy Anomalies in
Distributed Firewalls,” Proc. IEEE INFOCOM ’04, pp. 2605-2616,
Mar. 2004.

[2] H. Anderson and G. Hagelin, “Computer Controlled Interlocking
System,” Ericsson Rev., vol. 2, 1981.

[3] A. Avizienis, “The N-Version Approach to Fault Tolerant Soft-
ware,” IEEE Trans. Software Eng., vol. 11, no. 12, pp. 1491-1501,
1985.

[4] A. Avizienis, “The Methodology of N-Version Programming,”
Software Fault Tolerance, Chapter 2, M.R. Lyu, ed. Wiley, pp. 23-46,
1995.

[5] Y. Bartal, A.J. Mayer, K. Nissim, and A. Wool, “Firmato: A Novel
Firewall Management Toolkit,” Proc. IEEE Symp. Security and
Privacy (S&P ’99), pp. 17-31, 1999.

[6] R.E. Bryant, “Graph-Based Algorithms for Boolean Function
Manipulation,” IEEE Trans. Computers, vol. 35, no. 8, pp. 677-691,
1986.

[7] A. Condor and G. Hinton, “Fault Tolerant and Fail-Safe Design
of Candu Computerized Shutdown Systems,” IAEA Specialist
Meeting on Microprocessors Important to the Safety of Nuclear
Power Plants, May 1988.

[8] K. Fisler, S. Krishnamurthi, L. Meyerovich, and M. Tschantz,
“Verification and Change Impact Analysis of Access-Control
Policies,” Proc. 27th Int’l Conf. Software Eng. (ICSE ’05), May 2005.

[9] M. Frantzen, F. Kerschbaum, E. Schultz, and S. Fahmy, “A
Framework for Understanding Vulnerabilities in Firewalls Using
a Dataflow Model of Firewall Internals,” Computers and Security,
vol. 20, no. 3, pp. 263-270, 2001.

[10] M.G. Gouda and A.X. Liu, “Firewall Design: Consistency,
Completeness and Compactness,” Proc. 24th IEEE Int’l Conf.
Distributed Computing Systems (ICDCS ’04), pp. 320-327, Mar. 2004.

[11] M.G. Gouda and A.X. Liu, “A Model of Stateful Firewalls and
Its Properties,” Proc. IEEE Int’l Conf. Dependable Systems and
Networks (DSN ’05), pp. 320-327, June 2005.

[12] M.G. Gouda and A.X. Liu, “Structured Firewall Design,” Computer
Networks J., vol. 51, no. 4, pp. 1106-1120, Mar. 2007.

14 IEEE RANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 8, AUGUST 2008

[13] P. Gupta, “Algorithms for Routing Lookups and Packet Classifi-
cation,” PhD dissertation, Stanford Univ., 2000.

[14] P. Gupta and N. McKeown, “Algorithms for Packet Classifica-
tion,” IEEE Network, vol. 15, no. 2, pp. 24-32, 2001.

[15] J.D. Guttman, “Filtering Postures: Local Enforcement for Global
Policies,” Proc. IEEE Symp. Security and Privacy (S&P ’97),
pp. 120-129, 1997.

[16] H. Hamed, E. Al-Shaer, and W. Marrero, “Modeling and
Verification of IPsec and VPN Security Policies,” Proc. 13th
IEEE Int’l Conf. Network Protocols (ICNP ’05), pp. 259-278,
Nov. 2005.

[17] S. Horwitz, “Identifying the Semantic and Textual Differences
between Two Versions of a Program,” Proc. ACM Conf. Program-
ming Language Design and Implementation (PLDI ’90), pp. 234-245,
1990.

[18] S. Kamara, S. Fahmy, E. Schultz, F. Kerschbaum, and M. Frantzen,
“Analysis of Vulnerabilities in Internet Firewalls,” Computers and
Security, vol. 22, no. 3, pp. 214-232, 2003.

[19] A.X. Liu and M.G. Gouda, “Complete Redundancy Detection in
Firewalls,” Proc. 19th Ann. IFIP Conf. Data and Applications Security,
pp. 196-209, Aug. 2005.

[20] A.X. Liu, M.G. Gouda, H.H. Ma, and A.H. Ngu, “Firewall
Queries,” Proc. Eighth Int’l Conf. Principles of Distributed Systems
(OPODIS ’04), pp. 124-139, Dec. 2004.

[21] D. Oppenheimer, A. Ganapathi, and D.A. Patterson, “Why Do
Internet Services Fail, and What Can Be Done about It?” Proc.
Fourth Usenix Symp. Internet Technologies and Systems (USITS ’03),
Mar. 2003.

[22] X. Ren, O.C. Chesley, and B.G. Ryder, “Using a Concept Lattice of
Decomposition Slices for Program Understanding and Impact
Analysis,” IEEE Trans. Software Eng., vol. 32, no. 9, pp. 718-732,
2006.

[23] F. Somenzi, Cudd: Cu Decision Diagram Package Release 2.4.1,
http://vlsi.colorado.edu/fabio/cudd/, 2007.

[24] P. Traverse, “Airbus and ATR System Architecture and Specifica-
tion,” Software Diversity in Computerized Control Systems, U. Voges,
ed. Springer Verlag, 1988.

[25] M.A. Vouk, “On Back-to-Back Testing,” Proc. Third Ann. Conf.
Computer Assurance (COMPASS ’88), pp. 84-91, 1988.

[26] A. Wool, “A Quantitative Study of Firewall Configuration Errors,”
Computer, vol. 37, no. 6, pp. 62-67, 2004.

[27] J. Xu and M. Singhal, “Design and Evaluation of a High-
Performance ATM Firewall Switch and Its Applications,”
IEEE J. Selected Areas in Comm., vol. 17, no. 6, pp. 1190-1200,
1999.

[28] J. Xu and M. Singhal, “Design of a High-Performance ATM
Firewall,” ACM Trans. Information and System Security, vol. 2, no. 3,
pp. 269-294, 1999.

[29] L. Yuan, H. Chen, J. Mai, C.-N. Chuah, Z. Su, and P. Mohapatra,
“Fireman: A Toolkit for Firewall Modeling and Analysis,” Proc.
IEEE Symp. Security and Privacy (S&P ’06), May 2006.

Alex X. Liu received the PhD degree in
computer science from the University of Texas
at Austin in 2006. He is currently an assistant
professor in the Department of Computer
Science and Engineering, Michigan State Uni-
versity. His research interests include computer
and network security, dependable and high-
assurance computing, applied cryptography,
computer networks, operating systems, and
distributed computing. He is a member of the

IEEE. He received the 2004 IEEE and IFIP William C. Carter Award, the
2004 National Outstanding Overseas Students Award sponsored by the
Ministry of Education of China, the 2005 George H. Mitchell Award for
Excellence in Graduate Research from the University of Texas at Austin,
and the 2005 James C. Browne Outstanding Graduate Student
Fellowship from the University of Texas at Austin.

Mohamed G. Gouda received the PhD degree
in computer science from the University of
Waterloo. From 1977 to 1980, he was with the
Honeywell Corporate Technology Center, Min-
neapolis. In 1980, he joined the University of
Texas at Austin, where he is currently with the
Department of Computer Sciences as the Mike
A. Myers Centennial Professor of Computer
Sciences. He has supervised 19 PhD disserta-

tions. He was the founding editor in chief (from 1985 to 1989) of the
Springer-Verlag journal Distributed Computing. From 1996 to 1999, he
served on the editorial board of Information Sciences, and he is currently
on the editorial boards of Distributed Computing and the Journal of High-
Speed Networks. His research interests include distributed and
concurrent computing and network protocols. In these areas, he has
been working on abstraction, formality, correctness, nondeterminism,
atomicity, reliability, security, convergence, and stabilization. He has
published more than 60 journal papers and more than 80 conference
and workshop proceedings. He is the author of Elements of Network
Protocol Design (John Wiley & Sons, 1998). He received the Kuwait
Award in Basic Sciences in 1993, two IBM Faculty Partnership Awards
for the academic years 2000-2001 and 2001-2002, and the IBM Austin
Center for Advanced Studies Fellowship in 2002. He is a corecipient
(with C.K. Wong and S.S. Lam) of the 2001 IEEE Communication
Society William R. Bennet Best Paper Award for the paper Secure
Group Communications Using Key Graphs, published in the February
2000 issue of the IEEE/ACM Transactions on Networking. He is also a
corecipient (with Alex X. Liu) of the 2004 William C. Carter Award for the
paper Diverse Firewall Design, published in the Proceedings of the
International Conference on Dependable Systems and Networks. He is
a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LIU AND GOUDA: DIVERSE FIREWALL DESIGN 15

