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Abstract. A stabilizing algorithm issilent if starting from an arbitrary state
it converges to a global state after which the values stored in the communi-
cation registers are fixed. Many silent stabilizing algorithms have appeared
in the literature. In this paper we show that there cannot exist constant mem-
ory silent stabilizing algorithms for finding the centers of a graph, electing
a leader, and constructing a spanning tree. We demonstrate a lower bound
of Ω(log n) bits per communication register for each of the above tasks.

1 Introduction

The large number of processors and the often unreliable communication
media of a distributed system force its implementors to look for a fault-
tolerant design. A desirable property is automatic recovery following the
occurrence of faults. Automatic recovery is guaranteed when the system is
designed to bestabilizing[5,25]. A stabilizing distributed system converges
to a desired behavior starting from any state.

In this research we define and investigate a specific class of stabilizing
algorithms, namelysilent stabilizing algorithms. A stabilizing algorithm is
silent if it converges to a global state after which the values stored in the
communication registers are fixed. While some problems are inherently non-
silent: e.g. mutual exclusion over a network, other problems can afford silent
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or non-silent solutions: e.g. leader election. Many problems that require
stabilization have elegant silent solutions.

Beyond the simplicity implied by the silence property, a silent algorithm
may utilize less communication operations and communication bandwidth.
Following the convergence stage of a silent stabilizing algorithm, proces-
sors need only verify that the value of the communication registers are not
changed — thus write operations may be totally eliminated. Moreover, when
message passing is used to deliver the value of the communication registers
(port buffers) as described in [9] it would be enough to send some encrypted
proof that the value is not changed. At each delivery a key is chosen ran-
domly and the checksum relatively to this key is sent together with the key. In
this way the communication bandwidth usage can be dramatically reduced.

The interest in distributed and parallel systems of (identical) processors
with small memory size is motivated by current microprocessor technol-
ogy (See e.g., [22], [1]). The mass production of microprocessors motivates
multiprocessing systems in which each processor is equipped with a small
amount of memory. Even in case the memory size of the microprocessors
is not too restricted, the communication bandwidth, or the size of the com-
munication port, and in fact the number of wires connected to a communi-
cation port, is a matter of serious concern in devising massive parallelism
machines1. In another context, microprocessors are used in switches of high-
speed networks to support the distributed coordination (See e.g. [22]). Ide-
ally, the amount of memory that such microprocessors are equipped with,
is small.

This research examines the memory requirements of silent stabilizing
algorithms to achieve several fundamental tasks, including finding the cen-
ters of a graph, leader election, and spanning tree construction. There is a
class of tasks that are inherently non-silent. An example of such a task is
mutual-exclusion or token passing where the contents of the communication
registers must be changed over time e.g. [10,11,18,23].

In order to prove our lower bounds we assume the existence of a silent
legitimate global state and use this state to construct a silent global state that
is illegitimate2. Silence is a property of the system following the conver-
gence to a legitimate global state. The means by which the silent legitimate
global state is reached are not utilized in our proofs3. Thus, our lower bound
results apply to deterministic, nondeterministic and randomized stabilizing

1 We thank the anonymous referee for bringing this motivation to our attention.
2 A similar approach has been proposed in [18] for proving the memory required to avoid

silence (deadlock in the case of mutual exclusion), also see [24] for different techniques for
proving impossibility results in uniform systems.

3 In contrast see [12] for several impossibility results based upon convergence.
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algorithms for synchronous systems, asynchronous systems and systems
that are controlled by a central-demon (See e.g. [5]).

We consideruniform, semi-uniformand id-basedsystems as we now
define informally (See [10]). In auniform system all the processors with
the same number of neighbors are identical, in asemi-uniformsystem all
the processors are identical except for a single distinguished leader, and
in an id-basedsystem each processor has a unique identifier. Processors
communicate between each other through shared communication registers.
All registers have an identical number of bits. The number of bits in the
communication registers from which processors read and write implies a
lower bound on the local memory required per a processor — processors
need to store the communication register values. To make our lower bound
results stronger we prove the lower bounds for the minimal number of bits
in the communication registers.

The first task we consider is finding centers of the communication graph.
Theeccentricityof a node in a communication graph is the largest distance
from the node to any other node in the graph. A node with minimum eccen-
tricity is called acenterof the graph. A simple silent stabilizing algorithm for
finding the centers of trees is presented in [21]. The algorithm usesΘ(log n)
memory per processor. Our first result shows that at leastΩ(log n) bits per
communication register (and hence per processor) are required by any silent
stabilizing algorithm to find the centers of an arbitrary graph. This result
also applies to the restricted case of trees and thus the algorithm in [21] is
optimal in its memory requirements.

Recently, relatively intricate randomized algorithms for leader election
with a small amount of memory were proposed by [3] and [19]. Our research
shows that every silent leader election algorithm for arbitrary graphs requires
Ω(log n) bits per communication register in a uniform system. This result
also applies to uniform id-based systems where processors are augmented
with unique identifiers. In the id-based system processors have at leastlog n
bits for the representation of their identifier. Nevertheless, even in such a case
it is still unclear whetherΩ(log n) bits have to be communicated through
the communication registers. Our results show this to be the case.

Constructing a spanning tree of the communication graph in a stabilizing
distributed fashion is addressed in e.g. [10], [2], [13,14] and [26,15]. The
constructed trees are used in [10] for achieving mutual-exclusion, in [2] for
performing distributed reset, in [13,14] for routing virtual circuits with max-
imum bandwidth and in [26,15] for maximizing arbitrary routing metrics.
For a communication graph of diameterd, the stabilizing spanning tree con-
struction for semi-uniform systems, presented in [10] requiresΘ(log d) bits
of memory (note thatn is an upper bound ford). The stabilizing spanning
tree construction in [2] is for id-based systems in contrast to the others and
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includes the election of a distinguished leader in order to construct the tree.
All three algorithms (as well as the algorithms in e.g. [6,4,8]) benefit from
thesilenceproperty: following the convergence, no change to the value of
the communication registers takes place.

A relatively intricate deterministic algorithm for constructing a spanning
tree in a semi-uniform system using constant size communication registers
was presented in [16]. The algorithm of [16] is not silent. Our results show
that at leastΩ(log n) bits per processor are required for any silent stabilizing
spanning tree construction algorithm.

The reminder of the paper is organized as follows. In the next section we
present our definitions. In Sect. 3 we discuss our proof method. In Sect. 4,
Sect. 5 and Sect. 6 we present the lower bounds for finding the centers, leader
election and tree construction, respectively. We present our conclusions in
Sect. 7.

2 Silent stabilizing systems

A distributed system consists ofn processors denoted byP1, P2, · · · , Pn.
Each processor in a system resides on a distinct node of the system’scom-
munication graphG = (V, E). Two processors connected by an edge of
G areneighbors. Communication among neighboring processors is carried
out bycommunication registers. In the sequel we use the term registers for
communication registers. An edgee = (i, j) of G stands for two registers
ri,j andrj,i. For every such edgee = (i, j), Pi andPj can read the contents
of ri,j andrj,i. Pi (Pj) can also write intori,j (rj,i, respectively). We refer
to the registers in whichPi writes asPi’s registers.

The environmentof Pi consists of its local topology in the communi-
cation graph and the set of registers it can read from.Pi’s set of readable
registers consists of its own (writable) registers and the (readable) registers
that its neighbors share with it (see Fig. 2.).

Thestateof Pi consists of its internal variables.
Configuration: Denote bySi the set of states ofPi, and denote byRi the
set of values that can be stored in the registerri. A configuration, c ∈ (S1 ×
S2 × · · ·Sn × R1 × R2 · · ·Rm) of the system is a vector of states of all the
processors, and the values of all the registers. In this paper we consider rings,
chains, and trees of processors and for each such particular graph we use a
simplified representation. For instance, in a chain of processorsP1, · · · , Pn,
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each processorPi, 1 ≤ i ≤ n, can communicate with its left neighbor
Pi−1 (not applicable toP1) and its right neighborPi+1 (not applicable to
Pn). Between any two processorsPi and Pi+1 lie their communication
registersri,i+1 andri+1,i. The configuration of a chain is represented as
(S1 × R1,2 × R2,1 × S2 × · · ·Rn−1,n × Rn,n−1 × Sn).
Transition: Each processor processorPi has atransition function(that may
be defined by a program executed byPi). Thetransition functionof a pro-
cessor is a set ofactions. Each action of a processorPi can be executed
only when the state of the processor and the content of its registers and the
neighbors registers have predefined values (that are chosen for this partic-
ular action). Anactionof Pi changes the state ofPi and the values of one
or more of its own (writable) registers based upon the current state ofPi

and the values of one or more of its readable registers.4 A transition is a
pair of configurations(c, c′) such that executing a subset of all the processor
actions atc yieldsc′. 5

Run: A run is an infinite sequence of configurationsc1, c2, · · · such that each
pair (ci, ci+1) is a transition. Each configurationci is said to bereachable
from the initial configuration of the sequence,c1.

Legitimate and illegitimate configurations: Implicit in the design of any
system is a labeling of its configurations aslegitimateor illegitimate such
that every configuration that is reachable from a legitimate configuration is

4 This definition permitsPi to read the registers from one or more neighbors and write to
any of its own registers in one action. A more common definition is that anactionof Pi may
include only one communication operationread or write (See [10]). Our particular choice
for defining anactionimplies stronger impossibility results — we consider only a subset of
the possible interleaving of the communication operations and still succeed in proving the
memory size lower bounds.

5 Again the choice of this definition strengthens our negative results because it allows
multiple levels of concurrency.
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itself a legitimate configuration. We identify aslegitimatethose configura-
tions which occur under the correct (intended) execution of a system. All
other configurations are consideredillegitimate. It is up to a system designer
to determine which configurations are legitimate and which are not. For ex-
ample, in a token passing system, clearly any configuration with more than
one token would be illegitimate.

Stabilizing and silent stabilizing:A system is calledstabilizingiff each run
of the system has a legitimate state. A configurationc is silent iff each con-
figuration that is reachable fromc has the same values for its communication
registers as inc. A stabilizing system issilent iff its silent configurations are
the same as exactly its legitimate configurations.

In this paper we consider three types of distributed systems. We define
two processors as identical if they both have the same set of states and the
same set of actions. In auniform systemall the processors that have the
same number of neighbors are identical, are identical and the subscripts
1, 2, 3, · · ·n are used for convenience only. In asemi-uniformsystem all
the processors butP1 are identical.P1 may have a different set of states
and a different set of actions. Again the subscripts2, 3, · · ·n are used for
convenience only. We refer toP1 as the distinguished leader in a semi-
uniform system. Finally, in anid-basedsystem each processor,Pi,1 ≤ i ≤ n
has a unique identifier and the actions ofPi are parameterized by this unique
identifier. The unique identifiers in id-based systems are randomly chosen
from a large set of identifiers, a set that is much larger thann, hence no
algorithm can assume that a particular identifier exists in the system.

The focus of this paper is determining the memory requirements of silent
stabilization in relationship to the size of a system. We started off this section
by defining a distributed system to consist ofn processors, each of which
lies on a distinct node in a communication graph. Because we are interested
in memory requirements, we will need to consider system constructions that
work for arbitrary sizen and for arbitrary communication graphs that fit the
constraints of the task at hand. We will use the termalgorithm to refer to
such constructions.

3 Proving the memory requirements for silent stabilization

In each of the theorems in this paper we utilize a common proof method
to obtain our results. A proof of a theorem: “The number of memory bits
per register of any silent stabilizing algorithm for doing X isΩ(log n)”
proceeds as follows. First we assume there is a silent stabilizing algorithm
for doing X usingo(log n) bits per processor. Under this assumption we
construct one or more legitimate silent configurations of arbitrarily large
size for that algorithm. We then show how to combine processors from the
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legitimate silent configurations to construct an illegitimate configuration
of arbitrarily large size. If the environment of each processor remains the
same, the resultant configuration will be silent and illegitimate. Since all
silent configurations are legitimate by the definition of a silent stabilizing
system, we have a contradiction.

4 Centers of a graph

A simple silent stabilizing algorithm for finding the centers of trees is pre-
sented in [21]. The algorithm is designed for uniform systems and uses
Θ(log n) memory bits per a processor. In this section we show this is a tight
lower bound for any such algorithm in a uniform system. We also show that
any algorithm for finding the centers of a graph in an id-based or a semi-
uniform system requiresΩ(log n) memory bits per communication register
as well.

Our impossibility results are proven for a chain (i.e. line) of identical
processors. We prove that the size of a communication register is at least
Ω(log n) bits. This lower bound implies thatΩ(log n) bits is a bound on
the memory size of a processor that reads the contents of the registers.

Theorem 4.1 The number of memory bits per register of any silent stabi-
lizing centers finding algorithm for uniform systems isΩ(log n).

Proof. Assume that there exists a silent stabilizing centers finding algorithm
for uniform systems. Denote the number of values that can be stored in a
register byk.

Consider a chain ofn processors where a processorPi, 1 ≤ i ≤ n,
can communicate with its left neighborPi−1 (not applicable toP1) and its
right neighborPi+1 (not applicable toPn). Let c = x1, a1, b1, x2, a2, b2,
· · · , xi, ai, bi, · · · , xn be a silent configuration of the chain wherexi is the
state of the processorPi and ai (bi) is the value stored inri,i+1 (ri+1,i,
respectively).

Assumen = k2 + 2. We claim that there existi, andj, i 6= j, such that
ai = aj andbi = bj . Consider that the number of possible combinations
for a pair(ai, bi) is k2. Thus out ofk2 + 1 register pairs, at least one pair of
registers(ai, bi) appears more than once. In a chain ofn processors there
aren − 1 register pairs. Solving forn − 1 = k2 + 1 we getn = k2 + 2.

We use the notationc = L1, ai, bi, L2, ai, bi, L3 to denote a silent config-
uration of a chain in which their existsi andj such thatai = aj andbi = bj .
In the above notationLi represents a sequence of processor states and register
values that is a portion of the configuration. Recall that asilentsystem con-
figuration is a configuration such that any run that starts in this configuration
is silent. Construct the configurationc′ = L1, ai, bi, L2, ai, bi, L2, ai, bi, L3
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of a system with less than2 ∗ n processors. The environment of every pro-
cessor inc′ is kept unchanged with respect toc, i.e. each processorP in
c′ reads the same values in its neighboring registers inc′ as it does inc.
Therefore, no processor writes a new value to its registers andc′ is a silent
configurations.

Without loss of generality assume that the number of processors inc is
even. Otherwise we can assumen = k2 +3. Since the number of processors
in c is assumed to be even,c′ either contains more than two centers (whenL2
contains a center) or the centers are not located at the center of the system
represented byc′ (whenL2 does not contain a center). Letn′ be the number
of processors inc′. In either case we have a contradiction based upon the
assumption thatn′ ≥ 2(k2 +3). Thus, in a uniform system ofn processors,
each register must be able to store at leastk > (n/2 − 3)1/2 values. Hence,
the number of bits in each register isΩ(log n).

Since a chain is a type of tree as well as a type of arbitrary graph the
above theorem applies to trees as well.

Theorem 4.2 The number of memory bits per register of any silent stabi-
lizing centers finding algorithm for id-based systems isΩ(log n).

Proof. To prove the impossibility result for id-based systems we need to en-
sure that no identifier appears twice in the silent configuration we construct.
In particular,c′ cannot be a valid configuration of an id-based system since
the processors inL2 of Theorem 4.1 appear twice. The result is attained as
follows. We use two configurationsc1 andc2 of chain systems ofk2 +2 pro-
cessors each, and we require that the set of processor identifiers inc1 does not
include any processor identifier inc2 (and vice versa). We choosec1 andc2
out of infinitely many possible systems ofk2 +2 processor chains such that
c1 = L1, ai, bi, L2, ai, bi, L3 andc2 = L′

1, ai, bi, L
′
2, ai, bi, L

′
3. To apply the

arguments of Theorem 4.1 we definec′ = L1, ai, bi, L2, ai, bi, L
′
2, ai, bi, L3

Theorem 4.3 The number of memory bits per register of any silent stabi-
lizing centers finding algorithm for semi-uniform systems isΩ(log n).

Proof. For the case of semi-uniform system we cannot assume thatc′ and
c′′ are valid configurations since it is possible that one of the processors in
L2 is the special processor. In such a casec′ includes two special processors
andc′′ includes none. To apply the arguments of Theorem 4.1 we choose
c out of those system configurations in which the special processor is the
leftmost processor in the chain.
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5 Leader election

Recently, relatively intricate stabilizing randomized algorithms for leader
election with a small amount of memory were proposed by [3] and [19].
These algorithms are not silent. Our research shows that every silent stabi-
lizing leader election algorithm for arbitrary graphs requiresΩ(log n) bits
per communication register in a uniform or id-based system. Leader election
in a semi-uniform system is a trivial task that does not require communica-
tion — the special processor is a natural candidate for a leader.

In an id-based system, it is clear that processors must be equipped with
Ω(log n) bits to store their unique identifiers. Still it is not clear whether
the size of the communication registers of a silent stabilizing leader election
algorithm can be constant. Our lower bound implies that even for id-based
systems the size of the registers must be logarithmic in the number of proces-
sors. Thus, for instance, there is no algorithm with constant size registers that
(somehow, say serially) communicates the identifiers and then converges to
a silent configuration.

Stabilizing leader election algorithms for prime sized uniform rings with
constant memory per processor are presented in [20]. The algorithm in [20]
assumes that the activities in the system are controlled by a central demon
[5]. The central demon activates a single processor at a time. Note that the
algorithm of [20] cannot be applied to a synchronous system since symmetry
cannot be broken if all processors simultaneously execute an action [5]. We
also show that regardless of the level of concurrency, there is not a silent
stabilizing leader election algorithm for primed sized rings with constant
memory per processor.

We prove our lower bound for a ring of processors. We prove that the
size of a communication register is at leastΩ(log n). This implies a bound
of Ω(log n) on the memory size of a processor.

Theorem 5.1 The number of memory bits per register of any silent stabiliz-
ing leader election algorithm for uniform or id-based systems isΩ(log n).

Proof. Assume that there exists a silent stabilizing leader election algo-
rithm. Denote the number of values that can be stored in a register byk.

Consider a ring ofn processors, where a processorPi, 1 ≤ i ≤ n, can
communicate with its left neighborPi−1 (the left neighbor ofP1 isPn) and its
right neighborPi+1 (the right neighbor ofPn isP1). Letx1, a1, b1, x2, a2, b2,
· · · , xi, ai, bi, · · · , xn, an, bn be a silent configuration of the system, where
xi is the state of the processorPi, ai (bi) is the value stored inri,i+1 (ri+1,i,
respectively).

Assumen = k2 + 1. We claim that there existi andj, i 6= j, such that
ai = aj andbi = bj . Consider that the number of possible combinations for
a pair(ai, bi) is k2. Thus out ofk2 +1 register pairs, at least one pair of pair
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Fig. 3. Constructing two rings from one

of registers(ai, bi) appears more than once. In a ring ofn processors there
aren register pairs and thusn = k2 + 1.

We use the notationc = L1, ai, bi, L2, ai, bi to denote a silent system
configuration of a ring in which there existi andj such thatai = aj and
bi = bj . Construct two configurationsc′ = L1, ai, bi andc′′ = L2, ai, bi.
If c′ andc′′ correspond to rings then it is easy to see that they are silent
configurations.

It is possible however that eitherc′ orc′′ does not correspond to ring. This
can only happen if the two register pairs are not separated by three or more
processors. In order to ensure that the register pairs are separated by three or
more processors we can consider a ring of sizen ≥ 6(k6 + 1)/2. We claim
that in every ring of sizen ≥ 6(k6+1)/2 there exist two identical sequences
of six register values that do not overlap. The claim is proved by counting
the number of possible combinations for a six-tuple which isk6. To ensure
one six-tuple appears twice we need to accommodate6(k6 + 1) registers in
ring. This requires6(k6 +1)/2 processors. Thus, in casek ≤ (2n/6−1)1/6

there must exist two identical and non-overlapping sequences of six register
values. This will ensure that the register pairs are separated by three or more
processors (see Fig. 3. for an example).

We may now proceed by case analysis. If the leader is inL1 thenc′′ is
a silent configuration with no leader. Otherwise,c′ is a silent configuration
with no leader.

Since the construction preserved the uniqueness of id’s, we have a contra-
diction for the case of a uniform system and the case of an id-based system.
Our contradiction is based upon the assumption thatn ≥ 6(k6 +1)/2. Thus
in a uniform or id-based system ofn processors, each register must be able
to store at leastk > (2n/6−1)1/6 values. Hence the number of bits in each
register isΩ(log n).

The result in [20] is for rings with a prime number of processors. In
Theorem 5.1 we have used one legitimate silent configuration to construct
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another illegitimate silent configuration for a ring of a different (smaller)
number of processors. If the constructed configuration represents a ring
with a composite number of processors then the result of Theorem 5.1 is not
applicable to the algorithm presented in [20]. In the next Theorem we prove
that there is no constant size stabilizing silent algorithm for the restricted
case of prime sized uniform rings.

Theorem 5.2 There is no silent stabilizing leader election algorithm for
prime sized uniform rings with a constant number of bits per register.

Proof. Let p1 andp2 be the number of processors in two ringsR1 andR2,
respectively. Dirichlet’s Theorem (See e.g. [17]) states that any arithmetic
progressiona + bn with gcd(a,b) = 1 contains infinitely many primes. Thus
for infinitely manyz, p1 + zp2 is prime.

Using the silent configurations of rings of sizep1 andp2 we show how
to construct a silent configuration for a ring of sizep1 + zp2 that contains
more than one leader.

Consider two silent configurations,c and c′, of rings with p1 and p2
processors, respectively. Ifc = L1, bi, ai, L2 andc′ = L3, bj , aj , L4 such
thatai = aj andbi = bj thenc andc′ can be combined as follows:c′′ =
L1, bi, ai, L4, L3, bi, ai, L2. The number of processors inc′′ isp1 +p2. Note
that there are infinitely many rings of prime size but onlyk2 combinations
of values forai, bi. Thus, there must be two rings of sizep1 6= p2 that have
silent configurations such asc andc′ above.

Figure 4. illustrates the combining of two rings that share a pair of register
values. The ringP1, P2, P3, P4, P5 is combined with the ringP6, P7, P8 to
produce the ringP1, P2, P3, P4, P5, P6, P7, P8.

The silent configuration of a ring of sizep2 may be combined with itself
arbitrarily many times to produce a silent configuration ofzp2 processors
using the above method. The resulting silent configuration may be combined
with the silent configuration of a ring ofp1 processors to produce a silent
configuration ofp1+zp2 processors. Such a silent configuration will include
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Fig. 5. Triangle graph and its tree

z + 1 leaders. We have proved our contradiction, since for infinitely many
values ofz the above silent configuration represents a ring with a prime
number of processors.

6 Tree construction

Silent stabilizing algorithms for tree construction can be found in [10], [2],
[13,14] and [26,15]. Each of these algorithms usesΘ(log n) bits per register.
The algorithms in [10], [13,14] and [26,15] are designed for semi-uniform
systems. The algorithm in [2] is designed for an id-based system and in-
cludes the election of a distinguished leader in order to construct the tree.
In this section we prove that there is no silent stabilizing algorithm for tree
construction in semi-uniform or id-based systems that useso(log n) bits per
register. Hence we prove that that each of these algorithms is optimal in its
memory requirements.

Theorem 6.1 The number of memory bits per register of any silent stabi-
lizing tree construction algorithm for uniform, semi-uniform and id-based
systems isΩ(log n).

Proof. In the figures that follow filled dots represent processors and lines
represent communication links (implemented by shared communication reg-
isters). The distinguished leader,P1, is marked by a circled dot.

We consider a special graph which is formed by a sequence of triangles
wherein each pair of consecutive triangles is connected by an edge (See
Graph of Fig. 5.). In a spanning tree there is exactly one path from the root
to every processor. Thus, exactly one link of every triangle in the graph does
not belong to the tree (See Tree of Fig. 5.).

Denote the number of values that can be stored in a register byk. In
every graph ofn > k2 + 2 triangles, a silent configuration will contain two
non-triangle edges with the same pair of register values. This is shown in
the top part of Fig. 6. labeled “Tree with Distinguished Leader”.
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We use the tree to construct a cyclical graph without a distinguished
leader. Letr1a andr1b be the pair of registers with valuesa andb on the left
side of Fig. 6., and letr2a andr2b be the registers marked bya andb on the
right side of the Fig. 6.. The construction “disconnects”r1a from r1b and
also “disconnects”r2a fromr2b. It then “connects”r1a with r2b andr2a with
r1b. This construction preserves the environment of every processor in the
resultant graph. Consider that the processor that read the valuea from r1a in
the tree graph reads the valuea from rj,j+1 in the cycle graph. Similarly, the
processor that read the valuebi from rj+1,j in the tree graph reads the value
bi from ri+1,i in the cycle graph. At this stage we can conclude the lower
bound for uniform and id-based systems6 — the obtained configuration of
the cycle graph is a silent configuration and each processor has a unique id
in the case of an id-based system. However, for semi-uniform systems we
must show that a distinguished leader exists in the silent configuration. To
do so we perform an additional construction step.

The last step is illustrated in theNon-Tree with Distinguished Leader
graph of Fig. 7.. In this step the tree with a distinguished leader and the
cycle without a distinguished leader are combined to obtain a non-tree (cycle
containing) graph with a distinguished leader. The idea is to disconnect a
non-tree link from a triangle in both graphs and to connect the tree and the

6 The astute reader will have foreseen this result for the case of rooted tree construction.
Rooted tree construction in a system without a distinguished leader provides an implicit
leader election.
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Fig. 7. Final semi-uniform construction

non-tree (by non-tree links) in a way that ensures that the environment of
every processor is kept unchanged.

Given a graph ofk2 + 2 or more triangles, and its silent configuration
corresponding to a tree, we have constructed a silent configuration corre-
sponding to a non-tree. The construction can be applied to any graph with
more thank2+2 triangles. Since the number of processors in the constructed
graph isΘ(n), the order ofk is Ω(n1/2). Thus, the number of memory bits
required isΩ(log n).

Finally we note that it is possible to consider an id-based system with
a distinguished processor (i.e. semi-uniform id-based). A slight modifica-
tion of the proof for the above theorem may be applied to such a system.
The combined tree with the leader and the non-tree without a leader must
have processors with different identifiers, similar to the technique used in
Theorem 4.2.

7 Concluding remarks

We defined the class of silent stabilizing algorithms and proved that any
centers finding, leader election and tree construction algorithms in this class
requireΩ(log n) bits per communication register and processor.

In order to prove our lower bounds we assumed the existence of a le-
gitimate silent configuration and used this configuration to construct an
illegitimate silent configuration. The means by which the legitimate silent
configuration was reached were not utilized in our proofs. Thus, our results
apply to deterministic, nondeterministic and randomized stabilizing algo-
rithms for synchronous systems, asynchronous systems and systems that
are controlled by a central-demon. In addition, our proofs did not rely on
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the atomicity level of actions. Thus our results apply to any level of action
atomicity.

Our results are also applicable to the case where processors can read the
entire state of their neighbors as proposed in [5]. In such a setting once the
system reaches a silent (safe) configuration no processor changes its state.
If there exists a silent algorithm for, say, finding the centers of a chain that
useso(log n) bits per processor state, then an algorithm in which processors
write their entire state in the registers must also be silent — this is impossible
by our lower bound.

There are silent stabilizing algorithms that require a constant number
of bits per register, one such example is the graph coloring algorithm of
[8]. The classification of tasks according to their memory requirements for
silence configuration may identify the level oflocality of the task. Roughly
speaking, a silent algorithm that useso(log n) bits per register does not
support a global structure such as: the existence of asinglecenter (or two
centers), the existence of asingle leader orsingle tree. We believe that
further research for lower bounds on the memory requirements of other
silent stabilizing algorithms and the design of such algorithms will lead to
important elegant and practical stabilizing algorithms.
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