
A Stabilizing Deactivation/Reactivation Protocol
Mehmet Hakan Karaata and Mohamed G. Gouda

Abstract—Consider a distributed system that delivers a set of services (such as message routing, maintenance of a global invariant,

leader election, mutual exclusion, and so forth) to a distributed application. Such a system often provides its services at all times,

regardless of whether or not these services are in demand at any given time. This leads to wasteful use of system resources. In this

paper, we propose a novel stabilizing protocol for deactivating the system services in the absence of demand and reactivating the

services upon demand. The proposed protocol is simple enough. When a process needs a service, it periodically sends messages that

reach every other process in the system and causes every process to reactivate the service. For this purpose, only a single-type

message carrying no information is sent in the system. When no process needs the service, the sending of messages is stopped,

causing every process to deactivate the service. The proposed system has many applications in mobile and sensor networks.

Index Terms—Deactivation/reactivation, fault tolerance, network protocols, sensor networks, stabilization.

Ç

1 INTRODUCTION

CONSIDER a distributed system delivering a set of services
to a distributed application such as message routing,

maintenance of a global invariant, leader election, mutual
exclusion, and so forth. Assume that, in such a system, each
process has two modes of operation, namely, active and
deactivated. A process in the active mode performs all of the
regular process activities, whereas, in the deactivated mode,
the process suspends all regular activities except for the
reactivation activities. A reactivation activity involves either
sensing some activity in the environment of the process or
the receipt of a message that informs the process that
another process in the system is active. Most systems often
keep all processes in the active mode at all times, regardless
of whether or not system services are in demand at any
given time. This leads to the wasteful use of system
resources. Ideally, these services are provided on demand,
that is, all system processes delivering the services are
activated in the presence of these demands and deactivated
in the absence of demands. A deactivation/reactivation
protocol ensures that two conditions are satisfied about the
status of the system processes. First, after the system enters
a system state where no process in the system experiences
local reactivation activity, all system processes are in the
deactivated mode in a bounded time and the system
processes remain deactivated as long as no system process
is experiencing any local reactivation activity. Second, after
the system enters a system state where there exists at least
one system process experiencing local reactivation activity,
all system processes enter the active mode in bounded time
and the system processes remain active as long as there
exists at least one system process experiencing local

reactivation activity. Service deactivation/reactivation is
especially critical in sensor networks for conserving scarce
power. Sensor nodes have a special mode called “inactive”
in which the node consumes a fraction of the regular power
consumption.

Deactivation/reactivation protocols have a wide range of
applications such as leader election and on-demand routing
in distributed systems. For example, consider a distributed
application requiring leader election for some of its tasks for
a limited duration of time. In this system, when the leader
election is required by the distributed application, one or
more of the distributed application processes indicate the
demand for leader election to their corresponding leader
election subsystem processes. Then, upon detecting that the
distributed application requires leader election, a subset of
the leader election subsystem processes spontaneously
wakes up and starts the leader election algorithm by
activating all leader election subsystem processes. With
the participation of all subsystem processes, the leader
election algorithm elects a leader in the system. Upon
completion of the leader election, the distributed applica-
tion completes its task requiring the leader election and
indicates to all of the leader election subsystem processes
the absence of demand for leader election. Then, no process
of the leader election subsystem observes the demand for
the leader election. Consecutively, all of the leader election
processes are deactivated. In addition, to minimize the
control overhead in ad hoc mobile and sensor networks, on-
demand routing tables for interprocess communication are
built only as desired by the source nodes and maintained as
long as they are on demand by sources. For this purpose, all
or some of the system processes are activated to build the
routing tables and to perform the routing. Then, when no
source process remains in the system (or in a locality), the
routing tables are destroyed and all of the system processes
are deactivated.

On-demand routing protocols have been proposed for
sensor, mobile, and radio networks. For instance, Perkins and
Royer designed an ad hoc on-demand distance vector routing
algorithm for ad hoc mobile networks, implementing both
unicast and multicast routing [1]. Their algorithm builds
routes between nodes only as desired by source nodes and

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 7, JULY 2007 881

. M.H. Karaata is with the Department of Computer Engineering, Kuwait
University, PO Box 5969, Safat 13060, Kuwait.
E-mail: karaata@eng.kuniv.edu.kw.

. M.G. Gouda is with the Department of Computer Science, University of
Texas at Austin, 1 University Station (C0500), Austin, TX 78712-0233.
E-mail: gouda@cs.utexas.edu.

Manuscript received 7 Dec. 2005; revised 7 June 2006; accepted 20 Nov. 2006;
published online 2 Apr. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0434-1205.
Digital Object Identifier no. 10.1109/TC.2007.1048.

0018-9340/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

maintains these routes as long as they are in demand by the
sources. In a related work, Hu et al. propose a secure on-
demand routing protocol for ad hoc networks [2]. In [3],
Kravets and Zheng propose an extensible on-demand
power management framework for ad hoc networks that
adapts to traffic load.

Stabilization is a desirable property for a deactivation/
reactivation protocol to eliminate the system initialization
and withstand transient faults. A stabilizing system guaran-
tees that, regardless of the current configuration, the system
reaches a legal state in a bounded number of steps and the
system state remains legal thereafter. Due to this attribute,
stabilizing algorithms are able to withstand transient
failures. We view a fault that perturbs the state of the
system but not the program as a transient fault. Due to these
features, devising stabilizing distributed sensor and mobile
network protocols is desirable.

In the area of stabilization, the concept of stabilizing
deactivation/reactivation is related to the silent stabilization
paradigm of Dolev et al. [4]. A silent stabilizing system is
guaranteed to enter a state where all of the actions of the
processes are disabled. In such a state, although the guards
that check some local invariants over the state of the process
and its neighbors are disabled, in order to detect any
perturbation of the global state, a silent stabilizing system
continuously reevaluates certain local invariants to discover
whether or not the invariants hold. This leads to the
“pseudotermination” of stabilizing systems, where,
although the global invariant has been satisfied and the
state of the system has stabilized, the message transmission
and/or the verification of the local invariants continues,
causing the waste of the channel bandwidth, battery power,
and other resources in the absence of demand for these
services. A deactivation/reactivation protocol distinguishes
itself from a silent stabilizing protocol in the following way:
In a silent stabilizing system, upon system termination, the
message exchange among system processes continues,
whereas, in a deactivation/reactivation system, after reach-
ing a state where no active process remains, the message
exchange among system processes is suspended.

A related problem, the wake-up problem, is a well-studied
problem in distributed computing [5]. Starting in a system
state where all processes are asleep, a distributed wake-up
protocol activates all the system processes after one or more
of the system processes spontaneously wake up. In [6],
Gasieniec et al. propose a wake-up protocol for synchro-
nous broadcast systems. Fischer et al. in [7] present a
solution to a variation of the wake-up problem resembling
the consensus problem. They present a t-resilient protocol
for n asynchronous processes in a shared-memory environ-
ment such that at least p processes eventually learn that at
least � processes have awakened and have begun partici-
pating in the protocol. In addition, protocols that determine
the set of processes to set to sleep exist in the literature [8],
[9], [3]. The stabilizing deactivation/reactivation protocol
distinguishes itself from most existing wake-up and
deactivation (sleeping) protocols in three ways. First, the
stabilizing deactivation/reactivation protocol combines the
deactivation and reactivation protocols. Second, the proto-
col achieves deactivation and reactivation of the system
processes in bounded time. Third, these upper bounds are
obtained starting from any arbitrary system configuration
or after a transient fault in the system.

In this paper, we propose a novel synchronous self-
stabilizing protocol for the deactivation of the distributed
system services in the absence of demand and the
reactivation of these services on demand. The proposed
protocol is referred to as the stabilizing deactivation/reactiva-
tion protocol and has many applications in sensor, mobile,
and ad hoc networks. Only a single-type message carrying
no information is sent in the system and the message buffer
for receiving these messages in each process can store at
most one message.

The paper is organized as follows: Section 2 defines the
properties of the deactivation/reactivation protocol. Sec-
tion 3 contains an in-depth discussion of the system model,
namely, the communication primitives used in the algo-
rithm, the input, the variables, and the actions of the
deactivation/reactivation system. Section 4 presents our
self-stabilizing deactivation/reactivation protocol. In Sec-
tions 5 and 6, we provide a correctness proof of the
deactivation/reactivation and determine the values of
system parameters. We conclude the paper in Section 7
with some final remarks.

2 PROPERTIES OF DEACTIVATION/REACTIVATION

PROTOCOLS

A deactivation/reactivation protocol is one that can be used
by the processes in a distributed protocol to “deactivate” and
“reactivate” all of the processes in the protocol. The main idea
of such a protocol is as follows: When a process p½i� needs to
reactivate all of the processes in the protocol, process p½i�
becomes active and starts to broadcast “tick” messages
periodically to its neighboring processes. When a neighbor-
ing process receives a tick message, the neighboring process
becomes active or stays active and broadcasts a tickmessage
to its neighboring processes. Then, the cycle repeats.
Eventually, all of the processes in the protocol start to receive
tick messages periodically and stay active. Later, when
process p½i� no longer needs to keep all of the protocol
processes active, p½i�becomes inactive and stops broadcasting
the tick messages. When a process in the protocol does not
receive any tick message for some specified time period, the
process becomes inactive. Thus, eventually, all of the
processes in the protocol become inactive.

Our deactivation/reactivation protocol is also required
to satisfy two real-time properties. First, there is a time
period Td such that, if no process needs to activate the
protocol processes at any time during the interval ½t; tþ T �,
where T � Td, then all of the protocol processes are inactive
during the time interval ½tþ Td; tþ T �. Second, there is a
time period Tr such that, if one or more processes need to
activate the protocol processes at any time during the
interval ½t; tþ T �, where T � Tr, then all of the protocol
processes are active during the time interval ½tþ Tr; tþ T �.
The time period Td is called the time period to deactivation
and the time period Tr is called the time period to reactivation.

In order that our deactivation/reactivation protocol will
satisfy these real-time properties, the processes in the
protocol need to execute synchronously (rather than
asynchronously) and the message propagation delay
between neighboring processes needs to be bounded from
above. Next, we give an overview of the processes and their
synchronous execution in our protocol.

882 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 7, JULY 2007

Each process in our protocol has a Boolean input named
“wakeup” and a Boolean variable named “active.” The
wakeup input in each process p½i� acts as the interface
between the application and our protocol in p½i�. For
instance, when the application in p½i� needs to activate all
of the processes in the protocol, the application assigns the
value true to the wakeup input in p½i�. Then, within Tr time
units, each active variable in each process in the protocol is
assigned the value true. Later, when the application in p½i�
no longer needs to keep all the processes active, the
application assigns the value false to the wakeup input in
p½i�. One of two outcomes is possible in this case. Within Td
time units, either the active variable in p½i� continues to have
the value true (indicating that the application in another
process still needs to keep all of the processes in the
protocol active) or the active variable in p½i� is assigned the
value false (indicating that no application in any process
needs to keep all of the processes in the protocol active).

Each process in our protocol has two actions. Each action
can read but not write the wakeup input in its process and it
can both read and write each variable in its process.

We assume that the real time is defined by an infinite
sequence of discrete instants: instant 0, instant 1, instant 2,
and so on. The time period between any two consecutive
instants t and tþ 1, also called a time unit, is denoted by the
time interval ðt; tþ 1Þ. We assume that the enabled actions
in all processes in the protocol are executed only at the
discrete instants of real time and not during the time
intervals between instants. (This implies that action execu-
tion takes zero time.)

The state of a process in our protocol during any time
interval ðt; tþ 1Þ is defined by the value of each variable in
this process during the time interval ðt; tþ 1Þ. Note that,
since no action is executed during any time interval, the
value of every variable in every process and the state of
every process in the protocol remain fixed during every
time interval.

The state of our protocol during any time interval ðt; tþ
1Þ is defined by the collection of the states of all processes in
the protocol during the time interval ðt; tþ 1Þ. Note that the
state of the protocol remains fixed during any time interval.

Let S0 denote the state of our protocol during the time
interval (0, 1). (Recall that this state remains fixed during
the time interval (0, 1).) Then, at the next time instant,
instant 1, every action (in every process in the protocol) that
is enabled for execution is executed, yielding the next
protocol state, denoted as S1. State S1 remains fixed during
the time interval (1, 2). Then, at the next time instant,
instant 2, every action (in every process in the protocol) is
executed, yielding the next protocol state, denoted as S2,
and so on. The resulting infinite sequence of protocol states,
S0; S1; S2; � � � , is called a computation of the protocol. We
are now ready to formally specify the two real-time
properties of our protocol:

1. Deactivation. In each computation S0; S1; S2; � � � of the
protocol where the wakeup input in every process in
the protocol has the value false at each protocol
state, the active variable in every process in the
protocol has the value false at each of the protocol
states STd ; STdþ1; STdþ2; � � � .

2. Reactivation. In each computation S0; S1; S2; � � � of the
protocol where the wakeup input in at least one

process in the protocol has the value true at each
protocol state, the active variable in every process in
the protocol has the value true at each of the protocol
states STr ; STrþ1; STrþ2; � � � .

Note that these two properties need to be satisfied for
each protocol computation S0; S1; S2; � � � whose initial
protocol state S0 is arbitrary. This indicates that the
correctness of our protocol does not depend on the initial
state of the protocol. Thus, our protocol is stabilizing.

3 INPUT, VARIABLES, AND ACTIONS

In this section, we discuss the input, variables, and actions
in each process in our deactivation/reactivation protocol.

The topology of the deactivation/reactivation protocol is an
undirected graph where the following conditions hold: First,
there is a one-to-one correspondence between the nodes in the
graph and the processes in the protocol. Second, each edge
between two nodes in the graph indicates that the two
corresponding processes are “neighbors” in the protocol and,
so, can send messages to one another.

Each process in the deactivation/reactivation protocol
has one local input, four local variables, and a set of actions
to be executed by the process. Next, we describe each of
these six items in more detail.

The local input in each process is named wakeup. As
mentioned in the previous section, a process can read but
not write its wakeup input and, so, the value of this input is
determined by the application that uses this deactivation/
reactivation protocol.

Each process has four local variables, named active,
accept, message buffer, and timer. These variables are read
and written only by the actions of their process.

The Boolean variable active in a process indicates
whether or not the process is active.

The Boolean variable accept in a process is used by the
process to limit the number of messages that the process
forwards within the protocol. If the process receives a
message when its accept variable is true, then the process
accepts the message, forwards a copy of the message to
every neighboring process, and assigns false to the accept
variable for some specified time period. If the process
receives a message when its accept variable is false, then the
process discards the message.

The buffer of each process holds at most one incoming
message until that message is received by the process. (We
assumed that these message buffers are used solely by the
deactivation/reactivation protocol. Therefore, when this
protocol is combined with other protocols, these other
protocols need to use independent buffers.)

The processes in our protocol exchange one type of
message, called a tick message. For a process to send a tick
message, this process executes

broadcast tick:

Execution of this statement by a process causes one tick
message to arrive, after some propagation delay, at the
message buffer of each neighboring process of the sending
process. If a tick message arrives at the buffer of a
neighboring process when this buffer has a ðtickÞ message,
then the newly arrived tick message is lost. Otherwise, the
arrived tick message is stored in the empty buffer. Later,

KARAATA AND GOUDA: A STABILIZING DEACTIVATION/REACTIVATION PROTOCOL 883

this tick message is removed from the buffer of the
neighboring process when this process executes

rcv tick:

For simplicity, we assume that the propagation delay of a tick
message is more than zero and less than one time unit. Thus, if
a process executes broadcast tick at instant t, then the
broadcast tick message arrives at the buffer of a neighboring
process during time interval ðt; tþ 1Þ and the neighboring
process receives the tick message at instant tþ 1.

Each process in the deactivation/reactivation protocol
updates its timer variable as follows: When a process
executes a statement of the form

timeout after < period >;

the value of timer in that process is set to < period > . At
each time instant, the value of each timer in each process in
the protocol is synchronously decremented by one. When
the value of timer in a process p½i� is decremented by one
and becomes 0 at instant t, then p½i� executes its timeout
action at instant t. Each execution of a timeout action
includes an execution of a statement of the form timeout
after < period > . Because we assume that the execution of
an action takes zero time, the value of timer in process p½i�
ends up being the value of < period > at instant t.

Each action in each process in the deactivation/reactiva-
tion protocol is of the form

< guard >! < sequence of statements > :

The < sequence of statements > is executed only at an
instant when the < guard > of that action is true. Each
process has two actions of the form

rcv tick! < sequence of statements >;

timeout! < sequence of statements > :

The first action is executed at instant t if the message
buffer of the process has a tick message at t. The second
action is executed at instant t if the timer of the process has
value 0 at t.

We assume that the execution of an action takes zero time.
Thus, executing the two actions in a process, provided that
their guards are true at t, starts at t and also finishes at t.

At each instant t, the actions of every process in the
protocol are executed at instant t in three steps. First, if the
message buffer of the process has a tick message, then this
message is removed from the buffer and the sequence of
statements in the receiving action of the process is executed.
Second, the value of the timer variable of the process is
decremented by one. Third, if the value of the timer
variable of the process is 0, then the sequence of statements
in the timeout action of the process is executed.

4 THE DEACTIVATION/REACTIVATION PROTOCOL

We are now ready to present our deactivation/reactivation
protocol. The basic idea of this protocol is simple enough.
When the wakeup input of a process p½i� is true, p½i� makes
its active variable true and broadcasts a tick message to all
of its neighbors every Y time units. The broadcast tick

messages end up at the message buffer of every neighbor-
ing process of p½i�. When a process p½j� receives a tick

message from its message buffer and it is ready to accept it,

that is, its accept variable is true, p½j� makes its active

variable true and broadcasts a tick message to all of its
neighbors and the cycle repeats. When a process p½i� detects

that it has not received any tick messages for a long time

period, say, Z time units, process p½i� concludes that the
wakeup input in every process in the protocol is false. In this

case, p½i� makes its own active variable false.
Note that this protocol has two nice features. First, the

protocol processes exchange only one type of message,

namely, the tick message. Second, the exchanged tick

messages have no fields.
Our deactivation/reactivation protocol, as described so

far, has a problem. If a process p½i� broadcasts even one tick

message (possibly because its wakeup input has become
false after broadcasting the first tick message and before

broadcasting the second tick message), then this one

message can, over time, generate an unbounded number

of tick messages that populate the protocol indefinitely.
This problem can be solved as follows: Each process is

provided with a Boolean local variable named accept. If a

process p½i� receives a tickmessage when its accept variable is

true, p½i� handles this message as above, that is, p½i�makes its
activevariable true and broadcasts tickmessages to every one

of its neighbors, but makes its accept variable false for a

period of Y time units. If p½i� receives a tickmessage when its

accept variable is false, p½i� discards the message.
The program for a process p½i� in our deactivation/

reactivation protocol is specified in Fig. 1. Note that the

program of process p½i� has two actions. The first action is

executed only when the message buffer of p½i� has a tick

message, and the second action is executed only when the

timer variable of p½i� has the value zero.
Note that the value of timer in each process p½i� is updated

as follows: First, the value of timer becomes Y or Z when the

statement timeout after Y or timeout afterZ (respectively) is
executed. Second, the value of timer in each process p½i� is

decremented by one after each time unit. Because Y < Z, the

range of values of timer in each process p½i� is 0 . . .Z.
The above specification of our deactivation/reactivation

protocol is not complete. To complete this specification, we
need to define four time periods: Y , Z, the time period to

deactivation Td, and the time period to reactivation Tr. In

the next section, we choose a reasonable value for Y and use
this value to compute Td as a function of Y and Z. Then, in

Section 6, we choose a reasonable value for Z and use this

value to compute Tr as a function of Y and Z.

5 ANALYSIS OF DEACTIVATION

Assume that the value of Y in our protocol satisfies the

following condition:

Y ¼ N; ð1Þ

where N is the number of processes in the protocol.
In this section, we show that, under (1), the above protocol

satisfies the deactivation property discussed in Section 2. In

884 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 7, JULY 2007

order to facilitate the presentation of Theorems 1 and 2
(below), we need the following definition.

Let M be a tick message received and accepted by a
process i at some instant. We know that, upon receipt of
message M, process i may broadcast a tick message M1. In
this case, messageM1 is said to be an offspring of messageM,
that is, M1 ¼ offspringðMÞ. This definition can be recur-
sively generalized as follows: A message M 0 is said to be an
offspring of messageM iff there exists a sequence of messages
M1;M2; � � � ;Mk for k > 1 such that the following conditions
hold: M1 ¼M, for every 1 < i < k, Mi ¼ offspringðMi�1Þ,
and Mk ¼M 0.

In other words, M 0 is said to be an offspring of M iff M
directly or indirectly causes M 0 through a number of tick
messages.

Theorem 1. If a process in the deactivation/reactivation protocol
receives and accepts a message and later receives any offspring
of this message, the process is guaranteed to discard the
offspring.

Proof. If process Pi receives an offspring of message M that
Pi sent at time t, then a cycle C of processes
Pi; P1; P2; � � � ; Pk; Pi exists such that P1 receives and
accepts message M sent by Pi at time t, for each
process l, where 0 < l < k, Plþ1 receives and accepts an
offspring of message M sent by Pl, and Pi receives an
offspring of message M sent by Pk. Without loss of
generality, let cycle C be of length at most N . Since the
length of the cycle is at most N and each message
transmission takes at most one time unit, an offspring of
M arrives at Pi in the time interval ½t; tþN�. Since
process Pi assigns false to its accept variable at time t and
the accept value remains false until the rcv action is
executed at time tþ Y ¼ tþN (see the algorithm), the

offspring of M is discarded by process Pi. Hence, the
theorem follows. tu

Theorem 2. If a process times out and broadcasts a tick message
at a state St, then no offspring of this tick message is in some
message buffer in the protocol at state StþY .

Proof. Let P0; P1; P2; � � �Pk be a maximal sequence of
processes such that P1 receives and accepts message M
sent by P0 at time t, P2 receives and accepts an offspring
of message M sent by P1 at time tþ 1, P3 receives and
accepts an offspring of message M sent by P2 at time
tþ 2, and so on.

By Theorem 1, we know that this sequence cannot
contain a cycle. Therefore, the sequence does not have
any repetitions. Since the number of processes is
bounded by N , k < N holds. Then, an offspring of M
can be received but not accepted by a process after time
tþN � 1. Consecutively, if an offspring of M is received
at time tþN by a process, it is removed from the
message buffer and discarded and no offspring of M is
sent by this process at time tþN . Hence, the theorem
follows. tu

Theorem 3 (Deactivation Theorem). Consider a computation
S0; S1; � � � of the deactivation/reactivation protocol and assume
that the wakeup input of each process p½i� in the protocol is
false at every state Si in this computation. At each of the
states SYþ2Z; SYþ2Zþ1; � � � in the computation, the active
variable in every process in the protocol has the value false.

Proof. First, observe that, since the wakeup input is false for
all processes at states S0; S1; � � � , no timeout can cause a
broadcast statement to be executed (see the algorithm).
Then, at states S0; S1; � � � in the computation, each
process p½i� in the protocol broadcasts a tick message
only when process p½i� receives a tick message from its
buffer when its accept variable is true. This received
message appears in the buffer either due to arbitrary
initialization or due to the fact that p½i� has received a tick
message in the computation S0; S1; � � � . At state S0, any
tick message of some message buffer is due to arbitrary
initialization. Then, at states S1; S2; � � � , any tick message
in some message buffer is an offspring of an initialization
message. Now, by Theorem 2, we have that, at each of
the states SY ; SYþ1; � � � in the computation, all message
buffers are empty.

At state SY , the accept variable of each process is
either true or false. We now consider these two cases. In
each case, we show that the active variable of the process
becomes false.

Case 1. The accept variable for a process p½i� is true at
state SY .

We know that the timer variable of process p½i�
contains at most Z at state SY . Now, notice that, in such a
state, no guard other than the last branch of the timeout
guard can ever be enabled. Then, it is easy to see that a
timeout will be issued and the active variable of the
process becomes false at the latest at state SZþY .

Case 2. The accept variable for process p½i� is false at
state SY .

We know that the timer variable of process p½i�
contains at most Z at state SY . Then, clearly, a timeout is

KARAATA AND GOUDA: A STABILIZING DEACTIVATION/REACTIVATION PROTOCOL 885

Fig. 1. The stabilizing deactivation/reactivation protocol.

issued at the latest at state SZþY and the accept variable
of process p½i� is assigned true. In addition, the timer
variable of the process is assigned Z. Notice that, in such
a state, no guard other than the last branch of the timeout
guard can ever be enabled. Now, observe that a timeout
will be issued and the active variable of the process
becomes false at the latest at state SYþ2Z .

It is easy to see that, after the active and accept
variables of the process become false and true, respec-
tively, at the latest at state SYþ2Z , since no other action
other than the one corresponding to the last branch of the
timeout guard can ever be executed by process p½i�, the
process continues to have false and true in its active and
accept variables at states SYþ2Z; SYþ2Zþ1; � � � . Hence, the
theorem follows. tu

From Theorem 3, the deactivation period Td of our
protocol is given as follows:

Td ¼ Y þ 2Z: ð2Þ

6 ANALYSIS OF REACTIVATION

Assume that the value of Z in our protocol satisfies the
following condition:

Z ¼ DY ; ð3Þ

where D is the diameter of the protocol and Y satisfies (1).

In this section, we show that, under (3), our protocol

satisfies the stabilization and reactivation properties dis-

cussed in Section 2. In order to facilitate the presentation of

Theorems 4, 5, and 6, we need the following definition.

Let S0; S1; � � � ; be a computation of the deactivation/

reactivation protocol. State St of this computation is proper

iff every process p½i� in the protocol satisfies the following

condition at St:

if accept in p½i� is false at St
then active in p½i� is true at St,

timer of p½i� has a value � Y at St, and

p½i� has broadcasted a tick message at state St�ðY�kÞ
where k is the value of the timer at process p½i� at state St

Theorem 4 (Stabilization Property). In any computation

S0; S1; � � � ; SZ; SZþ1; � � � , each of the states SZ; SZþ1; � � � is

proper.

Proof. The initial value of the timer of any p½i� is at most Z.

Since the timer of each process p½i� is decremented by

one at each time instant, the timer of each process p½i�
becomes zero and its timeout guard becomes true no

later than state SZ . Then, when the timeout action of p½i�
is executed, one of the three branches of the if statement

in this timeout action is executed before or at time Z.

Observe that, each time one of the branches of this if

statement is executed, one of the following holds:
Case 1. wakeup is true.
In this case, the accept variable of p½i� is assigned false,

the active variable of p½i� is assigned true, the timer
variable of p½i� is assigned Y , and p½i� broadcasts a tick
message. Then, process p½i� satisfies the proper condition.

Case 2. :wakeup ^ :accept is true.
In this case, the accept variable of process p½i� is

assigned true and, obviously, the proper condition holds
for p½i�.

Case 3. :wakeup ^ accept is true.
In this case, the accept variable of process p½i� is true

initially and remains true after the execution of the
action; hence, the proper condition holds for p½i�.

We showed that, after the timeout action of any
process p½i� is executed, the proper condition holds for
each process at state SZ or earlier. Observe that,
whenever process p½i� assigns false to its accept variable,
it also assigns true to its active variable, broadcasts tick
messages, and sets its timer variable to Y (see the second
branch of the rcv guard and the first branch of the
broadcast guard of the algorithm). Therefore, by the
definition of the proper condition, we conclude that,
after the proper condition holds for p½i�, the proper
condition continues to hold for p½i�. Since the proper
condition holds for each process at state SZ or earlier and
continues to hold afterward, each of the states
SZ; SZþ1; � � � is proper. Hence, the theorem follows. tu

When a tick message is received by a process, if the
accept variable of the process is false due to arbitrary
initialization, the received tick message is discarded, but no
tick message is sent by the process prior to the receipt of
tick message M. Otherwise, that is, if the accept variable is
false when message M is received due to some action
execution of the protocol, then a tick message must have
been sent by the process prior to the receipt of M (see the
actions of the protocol that assigns false to the accept
variable). The last tick message, M 0, sent by the process
prior to the receipt of message M is referred to as a
replacement message of message M. In addition, any replace-
ment message of M 0 is also referred to as a replacement
message of message M and so on.

Theorem 5. Consider a computation S0; S1; � � � of the deactiva-
tion/reactivation protocol and assume that the wakeup input
of some process p½i� in the protocol is true at every Si in the
computation. If process p½i� sends tick message M at time t,
where t � Z þD, process p½j� other than process p½i� may
receive a replacement message of message M as early as time
ðtþDÞ � ðD� 1ÞY .

Proof. Let p½i�; p½i1�; p½i2�; p½i3�; � � � ; p½ik�; p½j� be the shortest
path of processes from process p½i� to process p½j� such
that process p½i� is a neighbor of process p½i1� that is a
neighbor of process p½i2� and so on. A replacement
message is sent along this path as follows: Message M
sent by process p½i� at time t is received by process p½i1� at
time tþ 1. If the accept variable of process p½i1� is false
when message M arrives at process p½i1�, process p½i1�
may have sent a replacement tick message M1 of M as
early as time ðtþ 1Þ � Y and assigned false to its accept
variable. Analogously, when process p½i2� receives a tick
message M1 at time ðtþ 2Þ � Y from process p½i1�, if its
accept variable is false, process p½i2� may have sent a
replacement message M2 of M1 as early as time ðtþ 2Þ �
2Y and so on. Recall that the replacement messages M1

through Mkþ1 are replacement messages of message M.

886 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 7, JULY 2007

Inductively, it can be shown that process p½j�may receive
the replacement tick message Mk as early as time ðtþ
DÞ � ðD� 1ÞY from process p½ik�. Hence, the theorem
follows. tu

Theorem 6. Consider a computation S0; S1; � � � of the deactiva-
tion/reactivation protocol and assume that the wakeup input
of some process p½i� in the protocol is true at every Si in the
computation. If process p½j� other than process p½i� receives a
tick message at state St, where t � Z þD, then p½j� receives a
tick message at state St0 , where t < t0 � tþDY .

Proof. We first show that, if process p½j� other than
process p½i� receives a tick message at state St, where
t � Z þD, then p½j� receives a tick message at state St0 ,
where t0 > t and t0 � t � DY . Consider two tick mes-
sages, M1 and M2, broadcast by process p½i� at times t
and tþ Y , where t � Z þD, respectively. In order to
maximize the time gap between the receipts of two
messages that are offsprings of messages M1 and M2 by
an arbitrary process p½j� in the protocol, we assume that
message M1 sent by process p½i� is discarded and
replaced by the oldest possible message in the protocol.
On the other hand, message M2 is not discarded and
arrives at process p½j� at its proper time with the largest
possible delay.

By Theorem 5, we know that a message that is a
replacement message of M1 can be received as early as
time ðtþDÞ � ðD� 1ÞY . It is easy to see that if an
offspring of message M2 sent by process p½i� at time tþ Y
arrives at process p½j� at the time with the largest delay,
then this message arrives at process p½j� at time
tþ Y þD. Therefore, the largest possible gap between
the receipts of two messages is given by

tþ Y þDððtþDÞ � ðD� 1ÞY Þ;

which is equal to

DY :

Hence, the theorem follows. tu

Theorem 7 (Reactivation Theorem). Consider a computation
S0; S1; � � � ; and assume that the wakeup input of some
process p½i� in the protocol is true at every Si. At each of the
states SZþ2YþD; SZþ2YþDþ1; � � � ; the active variable in every
process in the protocol has the value true.

Proof. We first show that process p½i�whose wakeup input is
true at each state of the computation has the value true in
its active variable at states SZ; SZþ1; � � � . Since, at each
time instant, the timer in p½i� is decremented by one, in a
transition ðSk; Skþ1Þ, where k � Z � 1, either the timer of
p½i� becomes zero and the timeout action of p½i� is
executed or process p½i� receives a message, increments
its timer, and sets its active variable to true. In the latter
case, we showed that the active variable of process p½i�
becomes true. In the first case, that is, the first branch of
the timeout action is executed, the active variable of
process p½i� is assigned true at the latest at time Z � 1. It
is easy to see that, for process p½i� (and for each such
process) whose wakeup input remains true, once its
active variable becomes true, it remains true.

We now consider a process p½j� whose wakeup input
remains false or fluctuates between true and false at
states S0; S1; � � � . Since process p½i� has true in its active
variable and it broadcasts a tick message in every time
interval of size Y time units, we know that process p½i�
broadcasts a tick message in time interval ½Z;Z þ Y �. By
Theorem 5, we know that this tick message can be
replaced by a replacement tick message that arrives at
process p½j� as early as state S2DþY . Observe that, if the
message sent in this interval finds the accept variables of
the processes on all paths from process p½i� to process p½j�
to be true, then an offspring of the message can arrive at
process p½j� at the latest at state SZþYþD. Then, we can
conclude that a message arrives at process p½j� in time
interval ½0; Z þ Y þD�.

Observe that, when process p½j� receives a tickmessage
at the latest at state SZþYþD, it finds the accept variable of
process p½j� to be either true or false. If process p½j� finds its
acceptvariable to be true, it is easy to see that it sets its timer
variable to Y and issues a timeout at the latest at state
SZþ2YþD. Otherwise, that is, if it finds the accept variable of
process p½j� to be false, since state SZþYþD is proper, the
timerof process p½j� contains a value at mostY and process
p½j� issues a timeout at stateSZþ2YþD. Notice that, if process
p½j� (or any other process) receives a message followed by a
timeout action execution, it sets its active variable to true.

Now, we will show that, after the active variable of

process p½j� is set to true, it remains true. Notice that,
after process p½j� executes a timeout action, either the

accept and the timer variables of the process are set to

false and Y , respectively, or the accept and the timer

variables of the process are set to true and Z,

respectively. Consider the first case, where the accept

and the timer variables of the process are set to false and

Y , respectively. Observe that the only way to set the

active variable of process p½j� to false is to execute the
third branch of the timeout guard. We know that, in

order for the third branch of the timeout guard to be

executed by process p½j�, its accept variable should be

equal to true. Then, process p½j� has to execute the second

branch of the timeout guard to set the accept variable of

process p½j� to true prior to the execution of its third

branch of the timeout guard. We know that, when the

second branch of the timeout guard is executed, the
implicit timer variable of process p½i� is set to Z. Then,

observe that, in both of the aforementioned cases, prior

to executing the third branch of the timeout guard, the

accept variable of process p½j� is set to true and the timer

of the process is set to Z. If the third branch of the

timeout guard is executed by process p½j� after the

process has Z in its timer variable, then we know that

process p½j� does not receive a tick message between the
executions of these two branches for a period of Z time

units. This is because, if a tick message has been received

between the executions of these two branches, the accept

variable of process p½j� would have been set to false and

the third branch would not have been executed. This

contradicts Theorem 6. Hence, the theorem follows. tu

KARAATA AND GOUDA: A STABILIZING DEACTIVATION/REACTIVATION PROTOCOL 887

From Theorem 6, it follows that the reactivation period Tr
of our protocol is as follows:

Tr ¼ 2Y þ Z þD: ð4Þ

7 CONCLUDING REMARKS

We presented a novel self-stabilizing algorithm for the
deactivation of distributed protocol services in the absence
of demand and the reactivation of the services upon
demand. In addition to being simple, self-stabilizing, and
uniform, the following features of the algorithm make it
desirable: First, single-size buffer per process, which can be
implemented by a single bit, is used. Second, the messages
of the algorithm contain no information. Third, no messages
are sent when no process needs the service. Fourth, a
limited number of messages are sent when some processes
need the service.

The deactivation/reactivation protocol has two para-
meters: Y and Z. We showed Y to be at least N , where N is
the number of processes in the deactivation/reactivation
protocol. We also showed that Z needs to be greater than or
equal to DY , where D is the network diameter in the
deactivation/reactivation protocol. Consider a protocol
where N is equal to 100 and D is about logN , which is
about 7. For this network, Y needs to be at least 100 time
units and Z needs to be at least 700 time units, where a time
unit is about 100 milliseconds. This means that the process
that needs the service needs to send a tick message every
10 seconds. This also means that, when a process does not
receive a tick message for 2.5 minutes, it concludes that no
process in the deactivation/reactivation protocol needs the
service and deactivates itself.

One of the provisions of the proposed algorithm is the
reduction in the number of messages exchanged in the
presence of some active processes in the protocol to keep the
protocol processes active. We now show an upper bound on
the number of messages exchanged in the presence of some
active processes. Consider a protocol state where k protocol
processes are active and assume that all protocol processes
remain active for T time units. First, observe that no protocol
process broadcasts tick messages more than once during any
time interval of size Y . Then, in the worst case, each channel
can carry at most one message in each direction in every
Y time units. Then, the number of messages sent in the
protocol inT time units is dT=Y e2jEj, where jEj is the number
of edges in the communication network.

We assumed that the propagation delay of messages is
nonzero and at most one unit of time. It is straightforward
to relax this assumption and assume an arbitrary but
bounded message propagation delay. In addition, we
assumed that processes execute their actions at each time
instance in lock-step synchrony. It is an open problem to
devise an asynchronous version of the proposed deactiva-
tion/reactivation protocol.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for
their suggestions and constructive comments on an earlier
version of the paper. Their suggestions have greatly
enhanced the readability of the paper.

REFERENCES

[1] C.E. Perkins and E.M. Royer, “Ad-Hoc On-Demand Distance
Vector Routing Protocol,” Proc. Second IEEE Workshop Mobile
Computing Systems and Applications, pp. 90-100, Feb. 1999.

[2] Y.-C. Hu, A. Perrig, and D.B. Johnson, “Ariadne: A Secure On-
Demand Routing Protocol for Ad Hoc Networks,” Proc. MobiCom
’02, pp. 12-23, Sept. 2002.

[3] R. Kravets and R. Zheng, “On-Demand Power Management for
Ad Hoc Networks,” Proc. INFOCOM ’03, Apr. 2003.

[4] S. Dolev, M.G. Gouda, and M. Schneider, “Memory Requirements
for Silent Stabilization,” Acta Informatica, vol. 36, no. 6, pp. 447-462,
1999.

[5] R. Zheng, J.C. Hou, and L. Sha, “Asynchronous Wakeup for
Ad Hoc Networks,” Proc. MobiHoc ’03, pp. 35-45, 2003.

[6] L. Gasieniec, A. Pelc, and D. Peleg, “The Wakeup Problem in
Synchronous Broadcast Systems (Extended Abstract),” Proc. Symp.
Principles of Distributed Computing, pp. 113-121, 2000.

[7] M.J. Fischer, S. Moran, S. Rudich, and G. Taubenfeld, “The
Wakeup Problem,” SIAM J. Computing, vol. 25, no. 6, pp. 1332-
1357, Dec. 1996.

[8] L.M. Feeney and M. Nilsson, “Investigating the Energy Con-
sumption of a Wireless Network Interface in an Ad Hoc
Networking Environment,” Proc. INFOCOM ’01, Apr. 2001.

[9] Y. Xu, J.S. Heidemann, and D. Estrin, “Geography-Informed
Energy Conservation for Ad Hoc Routing,” Proc. MobiCom ’01,
pp. 70-84, 2001.

Mehmet Hakan Karaata received the PhD
degree in computer science in 1995 from the
University of Iowa. He joined Bilkent University,
Ankara, Turkey, as an assistant professor in
1995. He is currently working as an associate
professor in the Department of Computer En-
gineering at Kuwait University. His research
interests include mobile computing, distributed
systems, fault-tolerant computing, and self-
stabilization.

Mohamed G. Gouda received the BS degrees
in engineering and mathematics from Cairo
University in 1968 and 1971, respectively, the
MA degree in mathematics from York University,
Ontario, Canada, in 1972, and the MMath and
PhD degrees in computer science from the
University of Waterloo, Ontario, Canada, in
1973 and 1977, respectively. He currently holds
the Mike A. Myers Centennial Professorship in
Computer Sciences at the University of Texas at

Austin. His research areas are distributed and concurrent computing
and network protocols. In these areas, he has been working on
abstraction, formality, correctness, nondeterminism, atomicity, reliability,
security, convergence, and stabilization. He has published more than
15 book chapters, more than 60 journal papers, and more than
90 conference and workshop papers. He is the author of the textbook
Elements of Network Protocol Design (John Wiley & Sons, 1998). This is
the first ever textbook where network protocols are presented in an
abstract and formal setting. He coauthored, with Tommy M. McGuire,
the monograph The Austin Protocol Compiler (Springer, 2005). He also
coauthored, with Chin-Tser Huang, the monograph Hop Integrity in the
Internet (Springer, 2006). He is the 1993 winner of the Kuwait Award in
Basic Sciences. He is also the recipient of an IBM Faculty Partnership
Award for the academic year 2000-2001 and again for the academic
year 2001-2002 and he became a fellow of the IBM Center for Advanced
Studies in Austin in 2002. He won the 2001 IEEE Communication
Society William R. Bennet Best Paper Award. In 2004, his paper
“Diverse Firewall Design,” coauthored with Alex X. Liu, won the William
C. Carter Award. For more information, consult the Web site http://
www.cs.utexas.edu/users/gouda.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

888 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 7, JULY 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

