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Abstract—We consider a network where users can issue certificates that identify the public keys of other users in the network. The

issued certificates in a network constitute a set of certificate chains between users. A user u can obtain the public key of another user v

from a certificate chain from u to v in the network. For the certificate chain from u to v, u is called the source of the chain and v is called

the destination of the chain. Certificates in each chain are dispersed between the source and destination of the chain such that the

following condition holds. If any user u needs to securely send messages to any other user v in the network, then u can use the

certificates stored in u and v to obtain the public key of v (then u can use the public key of v to set up a shared key with v to securely

send messages to v). The cost of dispersing certificates in a set of chains among the source and destination users in a network is

measured by the total number of certificates that need to be stored in all users. A dispersal of a set of certificate chains in a network is

optimal if no other dispersal of the same chain set has a strictly lower cost. In this paper, we show that the problem of computing

optimal dispersal of a given chain set is NP-complete. Thus, minimizing the total number of certificates stored in all users is NP-complete.

We identify three special classes of chain sets that are of practical interests and devise three polynomial-time algorithms that

compute optimal dispersals for each class. We also present two polynomial-time extensions of these algorithms for more general

classes of chain sets.

Index Terms—Security and privacy protection, authentication, security and protection, authentication, certificate graph, certificate

dispersal, public-key management.
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1 INTRODUCTION

WE consider a network where users would like to send
messages securely to other users. A user who would

like to send a secure message is called a source and a user
who is intended to receive such a message is called a
destination.

In the Internet, it is common that one source may wish to
send messages to many destinations. For example, a source
Alice may wish to send her credit card number securely to
several destination shopping sites, say, Amazon.com,
eBay.com, and priceline.com. The secure communication
between a source and a destination is protected by
encrypting each exchanged message with a shared key
known only to the source and destination.

In this network, each user u, whether source or
destination, has a private key rku and a public key bku. In
order for a source u to share a key sk with a destination v, u
encrypts key sk using the public key bkv of v and sends the
result, denoted bkvfskg, to v. Only v can decrypt this
message and obtain key sk shared with u. This scenario
necessitates that u knows the public key bkv of v. In the
above example, Alice needs to know the public keys of
Amazon, eBay, and priceline.

If a user u knows the public key bkv of another user v in
the network, then u can issue a certificate, called a certificate
from u to v, that identifies the public key bkv of v. This
certificate can be used by any user that knows the public
key of u to further acquire the public key of v.

A certificate from u to v is of the following form:

rkuhu; v; bkvi:
This certificate is signed using the private key rku of u, and
it includes three items: the identity of the certificate issuer u,
the identity of the certificate subject v, and the public key of
the certificate subject bkv. Any user that knows the public
key bku of u can use bku to obtain the public key bkv of v
from the certificate from u to v. Note that when a user
obtains the public key bkv of user v from the certificate, the
user not only finds out what bkv is, but also acquires the
proof of the association that bkv is indeed the public key of
user v.

The certificates issued by different users in a network can
be represented by a directed graph, called the certificate
graph of the network. Each node in the certificate graph
represents a user in the network. Each directed edge from
node u to node v in the certificate graph represents a
certificate from u to v in the network.

Fig. 1 shows a certificate graph for a network with two
sources, Alice and Bob, and six destinations, Amazon, eBay,
priceline, Amex, Visa, and Discover. According to this graph,

Alice issues three certificates

(Alice, Amazon), (Alice, eBay),

and (Alice, priceline), and
Bob issues three certificates

(Bob, Amex), (Bob, Visa), and (Bob, Discover).

A more efficient way to support secure communication
between the sources and the destinations is to introduce some
intermediaries between the sources and the destinations.

474 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 4, APRIL 2007

. E. Jung is with the Department of Computer Science, The University of
Iowa, 201L MacLean Hall, Iowa City, IA 52242.
E-mail: ejjung@cs.uiowa.edu.

. E.S. Elmallah is with the Department of Computing Science, University of
Alberta, Edmonton, Alberta, Canada T6G 2H1.
E-mail: ehab@cs.ualberta.ca.

. M.G. Gouda is with the Department of Computer Sciences, University of
Texas at Austin, 1 University Station (C0500), Austin, TX 78712-0233.
E-mail: gouda@cs.utexas.edu.

Manuscript received 2 May 2005; revised 23 Feb. 2006; accepted 9 June 2006;
published online 9 Jan. 2007.
Recommended for acceptance by X. Zhang.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0243-0505.
Digital Object Identifier no. 10.1109/TPDS.2007.1007.

1045-9219/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society



The number of introduced intermediaries is much smaller
than the number of sources and the number of destina-
tions. Each intermediary has its own public and private
key pair. The sources know the public keys of inter-
mediaries and the intermediaries issue certificates of the
public keys of the destinations. For example, two inter-
mediaries, namely VeriSign and CertPlus, can be intro-
duced between the two sources and the six destinations in
Fig. 1. The result is the certificate graph in Fig. 2.

According to the certificate graph in Fig. 2, Alice needs to
issue only one certificate to VeriSign and Bob needs to issue
only one certificate to CertPlus. Alice can then use the two
certificates ðAlice; V eriSignÞ and ðV eriSign;AmazonÞ to
obtain the public key bkAmazon, and so can securely send
messages to Amazon. Also, Bob can use the two certificates
ðBob;CertP lusÞ and ðCertP lus; V isaÞ to obtain the public
key bkV isa, and then can securely send messages to Visa.

Note that there is a certificate ðV eriSign;AmexÞ in the
certificate graph in Fig. 2 that is not needed to support
secure communication between any source and any
destination in Fig. 1. This redundancy is removed by
specifying which “certificate chains” are being used by the
sources and destinations. Certificate chains are defined as
follows:

A simple path from a source u to a destination v in a
certificate graph G is called a chain from u to v in G. u is the
source of the chain and v is the destination of the chain. For
users u and v in a certificate graph G, if u wishes to securely
send messages to v, then there must be a chain from u to v in
G. On the other hand, if there is a chain from u to v, then u
does not necessarily wish to securely send messages to v.
Fig. 3 shows the six chains that are needed to support the
secure communications between the two sources and the six
destinations in Fig. 1. Since Alice does not need to securely
communicate with Amex, the certificate chain (Alice, Veri-
Sign), (VeriSign, Amex) in the certificate graph in Fig. 2 is not
included in Fig. 3.

The certificates in each chain need to be dispersed
between the source and destination of the chain such that if
a source u wishes to securely send a message to a
destination v, then u can obtain the public key of v from
the set of certificates stored in u and v. (Note that to “store a
certificate in a user” does not necessarily mean that the user
has a local copy of the certificate. Rather, it means that the

user only needs to know where to find the certificate, if a
need for that certificate arises, either in its local storage or in
a remote location.)

For example, assume that each source in Fig. 3 stores its
certificate to the corresponding intermediary, and that each
destination in Fig. 3 stores the certificate from its corre-
sponding intermediary to itself. Thus,

Alice stores the certificate (Alice, VeriSign),

Bob stores the certificate (Bob, CertPlus),
Amazon stores the certificate (VeriSign, Amazon),

eBay stores the certificate (VeriSign, eBay),

priceline stores the certificate (VeriSign, priceline),

Amex stores the certificate (CertPlus, Amex),

Visa stores the certificate (CertPlus, Visa), and

Discover stores the certificate (CertPlus, Discover).

In this case, if Alice wishes to securely send messages to
priceline, then Alice can use the two certificates stored in
Alice’s computer and the priceline Web site to obtain the
public key of priceline and securely send the messages to
priceline. Certificates that are not part of any chain are not
stored because they are not needed. This is illustrated by the
certificate (VeriSign, Amex), which appears in Fig. 2 but is
not stored in Amex.

Dispersal of certificate chains and its cost are defined in
Section 2. In Section 3, we show that finding an optimal
dispersal of any set of chains is NP-complete. Thus, it
becomes of interest to characterize the special cases of
practical interest where the problem can be solved
efficiently, as well as effective heuristic algorithms to solve
general instances of problems. Subsequently, we identify
three special classes of chain sets that are of practical
interests and devise three polynomial-time algorithms that
compute optimal dispersals for each class. For instance, the
example dispersal above reflects the certificate dispersal in
Secure Socket Layer (SSL). Such chain sets are defined as
“short” chain sets in Section 4, and we present an algorithm
that computes an optimal dispersal of any given short chain
set. We also present two extensions of these algorithms for
more general classes of chain sets.

2 CERTIFICATE DISPERSAL

In this section, we introduce definitions and notations to
describe the optimal dispersal and prove two theorems of
the properties of an optimal dispersal.

A certificate graph G is a directed graph in which each
directed edge, called a certificate, is a pair ðu; vÞ, where u and
v are distinct nodes in G. For each certificate ðu; vÞ in G, u is
called the issuer of the certificate and v is called the subject of
the certificate. Note that, according to this definition, no
certificate has the same node as both its issuer and subject.
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Fig. 1. A certificate graph of Alice and Bob.

Fig. 2. A certificate graph with intermediaries.

Fig. 3. Certificate chains from Fig. 2.



A sequence of certificates ðv0; v1Þðv1; v2Þ � � � ðvk�1; vkÞ in a
certificate graph G, where the nodes v0; v1; � � � ; vk are all
distinct, is called a chain from v0 to vk in G. Node v0 is called
the source of the chain and node vk is called the destination of
the chain. A set of chains in a certificate graph G is called a
chain set of G.

A dispersal D of a chain set CS assigns a set of certificates
in CS to each source node and each destination node in CS
such that the following condition holds. The certificates in
each chain from a source node u to a destination node v in
CS are in the set D:u [D:v, where D:u and D:v are the two
sets of certificates assigned by dispersal D to nodes u and v,
respectively. Thus, given a chain in CS, the source node u
and the destination node v of the chain can find all the
certificates in the chain in the set D:u [D:v. When the
source node u and the destination node v need to search for
a chain from u to v, then they can simply merge D:u and D:v
to construct a certificate graph Gu;v, and search for a simple
path from u to v in Gu;v. If there is a simple path from u to v
in Gu;v, then this path is a certificate chain from u to v. On
the other hand, if there is no path from u to v in Gu;v, then
nodes u and v recognize that there was no certificate chain
in the given CS.

Let D be a dispersal of a chain set CS. The cost of
dispersal D, denoted cost:D, is the sum of the number of
certificates in the sets assigned by dispersal D to every
source or destination node in CS:

cost:D ¼
X

v is a source or destination node in CS

jD:vj:

A dispersal D of a chain set CS is optimal if and only if,
for any other dispersal D0 of the same chain set CS,

cost:D � cost:D0:

In other words, an optimal dispersal D of a chain set CS
minimizes the average number of certificates stored in each
node.

Dispersal of a chain set is useful for many types of
systems. We discuss three example types of systems here:

1. Deployed systems. In a deployed system, all the
certificates are dispersed among the nodes in the
system before the nodes start on a particular
mission. For example, consider mobile units partici-
pating in a military operation. Chains that can be
used for authentication are carefully chosen and
dispersed. Each unit stores the assigned set of
certificates by a dispersal of chosen chains. The
units are deployed in mission, and when a unit
needs to authenticate another unit, they do not have
guarantee that any other unit will be available.
Thanks to dispersal, these two nodes can use the
certificates stored in each unit to find a certificate
chain from one to the other. Many military applica-
tions fit in this type of systems.

2. Client-Server systems. In a client-server system, there
are only a limited number of certificate authorities that
issue certificates. In such systems, it is not necessary to
collect all the certificates to optimally disperse them.
For example, in Secure Socket Layer (SSL) systems,
VeriSign is one of the few certificate authorities. A
server, for example Amazon.com, does not need to
know all the certificates in the system but only stores

the certificate (Amazon.com, VeriSign). This is an
optimal dispersal (more details are in Section 4) of
this SSL system.

3. Evolving systems. In an evolving system, where
certificates may be issued and revoked during the
execution of the system, the system can start with an
optimal dispersal of such system and gradually
diverge from the dispersal. Even when the system
diverges from its dispersal, it is still beneficial to
start with an optimal dispersal as long as the
changes in certificates are not a major portion of
certificates in the system. Moreover, the dynamic
dispersal protocol in [1] disperses newly issued
certificates and revocation certificates so that the
system stabilizes back to dispersal.

Let ðu; vÞ be a certificate that appears in one or more

chains in a chain set CS, and let D be a dispersal of CS. The

location set of certificate ðu; vÞ assigned by D, denoted

Dðu; vÞ, is defined as a set of all nodes x such that ðu; vÞ is in

the set of certificates D:x. It is straightforward to show that

the cost of dispersal D equals
P
ðu;vÞ2CS jDðu; vÞj.

The location set Dðu; vÞ of a certificate ðu; vÞ assigned by a

dispersal D of a chain set CS is optimal if and only if, for any

other dispersal D0 of CS, jDðu; vÞj � jD0ðu; vÞj.
Theorem 1. Let D be a dispersal of a chain set CS. If D is

optimal, then, for every certificate ðu; vÞ in CS, the location set

Dðu; vÞ is optimal.

Proof. The proof is by contradiction. Assume that D is

optimal, and there exists another dispersalD0 ofCSwhere

for some certificate ðu; vÞ in CS, jDðu; vÞj > jD0ðu; vÞj.
Now, consider the following assignment of certificates

to each node in CS:

D00ðx; yÞ :¼ D0ðx; yÞ if ðx; yÞ ¼ ðu; vÞ;
Dðx; yÞ if ðx; yÞ 6¼ ðu; vÞ:

�

Note that D00 is a dispersal of CS. This is true because,
for any chain from a node i to another node j in CS, all
the certificates in the chain are in D00:i [D00:j. Consider a
certificate ðx; yÞ in the chain from i to j in CS, where
ðx; yÞ 6¼ ðu; vÞ. Dðx; yÞ contains node i or node j by the
definition of dispersal, so D00ðx; yÞ contains node i or
node j. In other words, any certificate ðx; yÞ in a chain
from node i to node j in CS, where ðx; yÞ 6¼ ðu; vÞ, is in
D00:i [D00:j. Similarly, for certificate ðu; vÞ, if ðu; vÞ is in a
chain from i to j in CS, D0ðu; vÞ contains node i or node j
by the definition of dispersal, so D00ðu; vÞ contains node i
or node j. In other words, if certificate ðu; vÞ is in a chain
from node i to j in CS, then ðu; vÞ is in D00:i [D00:j.
Therefore, for any given chain from a node i to another
node j in CS, all the certificates in the chain are in
D00:i [D00:j. Thus, D00 is a dispersal of CS.

The cost of dispersal D00 is computed as follows:

cost:D00 ¼
X
v2CS
jD00:vj

¼
X
ðx;yÞ2CS;
ðx;yÞ6¼ðu;vÞ

jDðx; yÞj

0
B@

1
CAþ jD0ðu; vÞj:
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By the assumption jD0ðu; vÞj < jDðu; vÞj,

cost:D00 ¼
X
ðx;yÞ2CS;
ðx;yÞ6¼ðu;vÞ

jDðx; yÞj

0
B@

1
CAþ jD0ðu; vÞj

<
X
ðx;yÞ2CS;
ðx;yÞ6¼ðu;vÞ

jDðx; yÞj

0
B@

1
CAþ jDðu; vÞj

¼ cost:D:

Thus, the cost of dispersal D00 is less than the cost of
dispersal D contradicting the assumption that D is an
optimal dispersal. tu

Therefore, the location set Dðu; vÞ assigned by an optimal
dispersal D is optimal for every certificate ðu; vÞ in CS.

Theorem 2. Let D be a dispersal of a chain set CS. If, for every
certificate ðu; vÞ in CS, the location set Dðu; vÞ is optimal,
then D is an optimal dispersal of CS.

Proof. The proof is by contradiction. Let D be a dispersal for
a chain set CS and, for every certificate ðu; vÞ in CS, let
the location set Dðu; vÞ be optimal. Also, let D0 be another
dispersal of CS, where cost:D0 < cost:D. By the defini-
tion of the cost of dispersal,

X
ðu;vÞ2CS

jD0ðu; vÞj ¼ cost:D0 < cost:D

¼
X

ðu;vÞ2CS
jDðu; vÞj:

Thus, there must be at least one certificate ðu; vÞ in CS
such that jD0ðu; vÞj < jDðu; vÞj. This contradicts the defini-
tion of an optimal location set of ðu; vÞ. tu

Therefore, if Dðu; vÞ is optimal for every certificate ðu; vÞ in a
chain set CS, then D is an optimal dispersal of CS.

3 NP-COMPLETENESS OF OPTIMAL DISPERSAL OF

CHAIN SETS

In this section, we show that the chain dispersal problem is
NP-complete by a reduction from the vertex cover problem.
For convenience, these two problems are described below:

. The Vertex Cover (VC) Problem. Given a connected
graph G and a positive integer k, we ask if there
exists a vertex cover of size � k. Any instance of this
problem can be represented by the pair ðG; kÞ. For
directed graphs, the VC problem can be defined
similarly by ignoring the directions associated with
the arcs; the resulting problem on directed graphs
remains NP-complete.

. The Certificate Dispersal (CD) Problem. Given a
chain set CS and a positive integer m, we ask if there
exists a dispersal D of CS such that cost:D � m. Any
instance of this problem can be represented by the
pair ðCS;mÞ.

Theorem 3. CD is NP-complete.

Proof. First, we show that CD is in NP. Given an instance
ðCS;mÞ of CD, and a dispersal D of CS with cost:D � m,
one can verify in polynomial-time that D is indeed a

dispersal of CS and cost:D � m. To verify that D is a
dispersal of CS, one checks that all the certificates in each
chain from a node u to another node v in CS are in
D:u [D:v. Once D is verified as a dispersal, cost:D is
computed as the sum of jD:uj for each node u in CS and
can be compared to m. The time complexity of this
verification step is Oðp� nÞ, where p is the number of
chains in the chain set and n is the length of the longest
chain in CS.

Second, we show that VC reduces to CD in polynomial-
time. Given an instance ðG; kÞ of VC, we construct an
instance ðCS;mÞ of CD such that the CD instance has a yes
answer if and only if the given VC has a yes answer. The
construction is as follows:

1. For each edge ðu; vÞ in G, CS has a chain

ðu; xÞðx; yÞðy; vÞ

of length 3.
2. Let nþ be the number of nodes that have outgoing

edges in G, and let n� be the number of nodes that
have incoming edges in G. Set m ¼ nþ þ n� þ k.

(CD( VC). We now show that if the instance ðG; kÞ
of VC has a yes answer, then the corresponding instance
ðCS;mÞ of CD has a yes answer. Let X be a vertex cover
of G, where jXj � k. For each node u in the cover X,
assign certificate ðx; yÞ in CS to D:u. For each node u in
G, if there exists ðu; xÞ in CS, then assign certificate ðu; xÞ
to D:u. For each node v in G, if there exists ðy; vÞ in CS,
then assign certificate ðy; vÞ to D:v. In the following two
steps, we prove that D is a dispersal of CS whose cost is
at most m:

1. D is a dispersal of CS. For any chain in CS from a
node u to a node v, the chain consists of three
certificates ðu; xÞ, ðx; yÞ, and ðy; vÞ. Certificate
ðu; xÞ is stored in D:u and certificate ðy; vÞ is
stored in D:v. For certificate ðx; yÞ, ðx; yÞ is stored
in every node in the vertex cover of G. By the
definition of the vertex cover, for each edge ðu; vÞ
in G, the vertex cover contains node u or node v.
Certificate ðx; yÞ is assigned to every node in the
vertex cover of G, so ðx; yÞ is stored in D:u or D:v.
Thus, every certificate in the chain from u to v is
stored in D:u [D:v, as required by the definition
of dispersal.

2. cost:D � m. For each node u in G that has any
outgoing edges, there is certificate ðu; xÞ in CS
that is assigned only to node u by D. Similarly, for
each node v in G that has any incoming edges,
there is certificate ðy; vÞ in CS that is assigned
only to node v by D. For certificate ðx; yÞ, ðx; yÞ is
assigned to all the nodes in the vertex cover, so
ðx; yÞ is assigned to at most k nodes. In total,
cost:D is at most m ¼ ðkþ nþ þ n�Þ.

The above argument shows that D is a dispersal of
constructed CS and cost:D � m. This proves that if an
instance of VC ðG; kÞ has a yes answer, then the
corresponding instance of CD ðCS;mÞ has a yes answer.

(CD) VC). We now show that if the constructed
instance ðCS;mÞ of CD has a yes answer, then the given
instance ðG; kÞ of VC has a yes answer. Let D be a
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dispersal of CS, where cost:D � m. For every edge ðu; vÞ
in G, there is chain ðu; xÞðx; yÞðy; vÞ in CS. For certificates
ðu; xÞ and ðy; vÞ, they will be assigned to at least one
node, so jDðu; xÞj � 1 and jDðy; vÞj � 1. The number of
such ðu; xÞ certificates is nþ and the number of such ðy; vÞ
certificates is n�. So, certificate ðx; yÞ is assigned to at
most k nodes, where k is m� nþ � n�. In other words,
jDðx; yÞj � k.

Now, for each edge ðu; vÞ in G, there is chain ðu; xÞ
ðx; yÞðy; vÞ in CS, and ðx; yÞ is stored in D:u [D:v. In
other words, for each edge ðu; vÞ in G, the location set
of Dðx; yÞ contains node u or node v. Therefore, the
location set of Dðx; yÞ is a vertex cover of G. The size
of the location set Dðx; yÞ is at most k, so the size of
the vertex cover is at most k, and the instance ðG; kÞ of
VC has a yes answer.

In conclusion, the above proof shows that CD is in NP
and VC reduces to CD in polynomial-time. Therefore,
CD is NP-complete. tu
In light of the above complexity result, it becomes of

importance to identify special classes of chain sets of
practical interest for which the problem can be solved
efficiently. This direction is pursued in the following cases:

1. Short chain sets. In Section 4, we start by investigating
the class of chain sets, where each chain is of length
at most 2. This class of chain sets is the one currently
being used in the Secure Socket Layer (SSL) protocol.
Recall that the chain set in the example in Fig. 3 in
Section 1 falls into this class.

2. Disconnected chain sets. In Section 5, we investigate
the class of chain sets where, for a given certificate,
no node can be both the source and the destination
of any chain that contains this certificate. This
reflects a system where the authentication is needed
in an asymmetric manner. For example, when there
are clients and servers in the system, one can
imagine that clients would use certificates to
authenticate servers, while servers would use pass-
words to authenticate clients. Such asymmetric
systems can be represented as this class of chain sets.

3. Concise graphs. In Section 6, we investigate the class
of chain sets where the chains are derived from
acyclic certificate graphs. This class reflects systems
where the need for authentication is unidirectional.
For example, any hierarchical system where a lower
level user is authenticated by a higher level user, but
not the other way around, would be represented by
an acyclic certificate graph.

For all these three classes of chain sets, we present
polynomial-time algorithms that compute optimal disper-
sals of chain sets in each class and prove their optimality.

Also below, we identify two classes of parameterized
chain sets that are defined using an integer parameter k. In
the first class, each chain set has at most k chains with three
or more certificates. In the second class, each chain set has at
most k nodes that may act both as sources and destinations.
For both classes, we obtain polynomial-time algorithms that
compute optimal dispersals when k is fixed.

4 OPTIMAL DISPERSAL OF SHORT CHAIN SETS

In the previous section, we proved that computing an
optimal dispersal of any chain set, which includes chains
whose length is 3 or more, is NP-complete. In this section,

we show that there is a polynomial-time algorithm that
computes an optimal dispersal of any chain set whose
chains are all of length at most 2. This class of chain sets is
currently in use in the Internet in Secure Socket Layer (SSL).

A chain set CS is short if and only if the length of the
longest chain in CS is at most 2. For example, consider the
star certificate graph in Fig. 4a. In this certificate graph,
assume that each satellite node, b, c, or d, wishes to securely
communicate with every other satellite node. Fig. 4b shows
the resulting short chain set.

Algorithm 1 computes an optimal dispersal of a short
chain set. Consider the certificate ðb; aÞ in the example short
chain set in Fig. 4. Chains that have ðb; aÞ are ðb; aÞða; cÞ and
ðb; aÞða; dÞ. So, b is the source of every chain that has ðb; aÞ.
Therefore, Algorithm 1 assigns ðb; aÞ to D:b. After consider-
ing all the certificates in the short chain set, the optimal
dispersal is computed by Algorithm 1 as follows:

fD:a ¼fg; D:b ¼ fða; bÞ; ðb; aÞg;
D:c ¼fða; cÞ; ðc; aÞg; D:d ¼ fða; dÞ; ðd; aÞgg:

ALGORITHM 1: optimal dispersal of short chain sets

INPUT: a short chain set CS

OUTPUT: a dispersal D of CS

STEPS:

1: for each node u in CS, D:u :¼ fg
2: for each certificate ðu; vÞ in CS do

3: if there is a node x such that

the source or destination
of every chain that has ðu; vÞ is x

4: then add ðu; vÞ to D:x

5: else add ðu; vÞ to both D:u and D:v

Theorem 4. Given a short chain set CS, the dispersal D of CS

computed by Algorithm 1 is optimal.

Proof. The proof consists of two parts. First, we show that

Algorithm 1 computes a dispersal D. Second, we show

that D is optimal.
Proof of the First Part. By the definition of dispersal in

Section 2, if all the certificates in each chain from a source
node u to a destination node v in CS are in set D:u [D:v,
then D is a dispersal of CS. In other words, if a certificate
ðu; vÞ is stored in the source or destination nodes of every
chain that contains ðu; vÞ, then D is a dispersal.

By Algorithm 1, every certificate ðu; vÞ is stored either
in D:x of some node x, or both D:u and D:v. Since the
maximum length of a chain in CS is 2, every chain that
contains ðu; vÞ starts at u or ends at v. Hence, if ðu; vÞ is
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stored in both D:u and D:v, then certificate ðu; vÞ is stored
in the source or destination node of every chain that
contains ðu; vÞ. If ðu; vÞ is stored in node x, then, by
Algorithm 1, x is either the source node or the destination
node of every chain that contains ðu; vÞ. Therefore, ðu; vÞ is
stored in the source or the destination node of every chain
that contains ðu; vÞ.

Proof of the Second Part. The proof is by contradiction.
Let D be the dispersal of a short chain set CS computed
by Algorithm 1 and let D0 be another dispersal of CS.
Assume that cost:D0 < cost:D. There must be at least one
certificate ðu; vÞ such that jD0ðu; vÞj < jDðu; vÞj.

Let ðu; vÞ be such a certificate, jD0ðu; vÞj < jDðu; vÞj. By
Algorithm 1, jDðu; vÞj is either 1 (if there exists some nodex
that is the source or destination node of every chain that
has ðu; vÞ) or 2 (otherwise). Therefore, jD0ðu; vÞj ¼ 1 and
jDðu; vÞj ¼ 2, and there exists no node x in CS that is the
source or destination node of every chain that has ðu; vÞ. By
the definition of dispersal, the nodew inD0ðu; vÞ should be
the source or a destination of every chain that contains
ðu; vÞ in CS. This contradicts that there exists no node x in
CS such that x is the source or destination node of every
chain that has ðu; vÞ.

Therefore, cost:D � cost:D0 for any dispersal D0 of CS.
Algorithm 1 computes an optimal dispersal of a short
chain set CS. tu

The time complexity of Algorithm 1 is OðepÞ, where e is
the number of certificates in the input short chain set and p
is the number of chains in the chain set.

5 OPTIMAL DISPERSAL OF DISCONNECTED

CHAIN SETS

In this section, we identify a special class of chain sets and
present an algorithm that computes an optimal dispersal for
this class of chain sets in polynomial-time. A chain set CS is
disconnected if and only if for every certificate ðu; vÞ in CS,
the set of source nodes of the chains that contain ðu; vÞ and
the set of destination nodes of the chains that contain ðu; vÞ
are disjoint. This reflects a system where the authentication
is performed in an asymmetric manner. For example, when
there are clients and servers in the system, one can imagine
that clients would use certificates to authenticate servers,
while servers would use passwords to authenticate clients.
Such asymmetric systems can be represented as discon-
nected chain sets. Fig. 5 shows an example of a discon-
nected chain set.
ðd; aÞ has the set of source nodes fdg and the set of

destination nodes fag, which are disjoint. ða; bÞ has the set of
source nodes fag and the set of destination nodes fc; eg,
which are disjoint. Every certificate in this chain set has
disjoint sets of source and destination nodes.

Algorithm 2 computes an optimal dispersal of a
disconnected chain set. Consider certificate ða; bÞ in the
example disconnected chain set in Fig. 5. Algorithm 2
constructs a bipartite graph G0 for certificate ða; bÞ, where
G0 ¼ ðV 0; E0Þ, V 0 ¼ fa; c; eg, and E0 ¼ fða; cÞ; ða; eÞg. The
vertex cover of minimum size of G0 is fag. Thus, ða; bÞ is
stored in D:a. After considering all certificates in the chain
set, the example disconnected chain set is optimally
dispersed by Algorithm 2 as follows:

fD:a ¼ fða; bÞ; ðb; cÞ; ðc; dÞg; D:b ¼ fg; D:c ¼ fg;
D:d ¼ fða; cÞ; ðd; aÞg; D:e ¼ fðd; eÞgg:

ALGORITHM 2: optimal dispersal of disconnected

chain sets

INPUT: a disconnected chain set CS

OUTPUT: a dispersal D of CS

STEPS:

1: for each node u in G, D:u :¼ fg
2: for each certificate ðu; vÞ in G do

3: G0 ¼ ðV 0; E0Þ where V 0 ¼ fg and E0 ¼ fg
4: for each chain from node x to node y that contains

ðu; vÞ do

5: add nodes x and y to V 0

6: add ðx; yÞ to E0

7: compute a minimal vertex cover of the bipartite

graph G0

8: add ðu; vÞ to each node in the vertex cover

Theorem 5. Given a disconnected chain set CS, the dispersal D
of CS computed by Algorithm 2 is optimal.

Proof. The proof consists of two parts. First, we show that
Algorithm 2 produces a dispersal. Second, we show that
the resulting dispersal is optimal.

Proof of the First Part. Let D:u be the set of certificates
assigned to a node u in CS by Algorithm 2. Consider any
certificate ðu; vÞ in a chain from a source node x to a
destination node y in CS. By Algorithm 2, since there is a
chain from x to y that goes through ðu; vÞ, there is an
edge ðx; yÞ in G0 for ðu; vÞ. By the definition of vertex
cover, for edge ðx; yÞ in G0, node x or node y is in the
vertex cover. Therefore, for the chain from x to y, ðu; vÞ is
stored in D:x or D:y. This is true for all the certificates in
the chain from x to y, for any chain in CS. Hence, D
satisfies the dispersal condition in Section 2, so D is a
dispersal of CS.

Proof of the Second Part. By Theorem 2, if we can find a
dispersalDwhereDðu; vÞ of every certificate ðu; vÞ inCS is
optimal, thenD is an optimal dispersal of CS. So, we only
need to prove that a dispersal computed by Algorithm 2
produces an optimal location set of each certificate in CS.
The proof is by contradiction. Assume there is another
dispersalD0 ofCS, where cost:D0 < cost:D. There must be
at least one certificate ðu; vÞ where jD0ðu; vÞj < jDðu; vÞj.
For every chain from a node x to a node y that contains
ðu; vÞ,D0ðu; vÞ should contain x or y. Therefore,D0ðu; vÞ is a
vertex cover of the bipartite graphG0 constructed for ðu; vÞ,
where

jD0ðu; vÞj < jDðu; vÞj:
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This contradicts that Dðu; vÞ is the vertex cover of
minimum size of G0 by line 7 in Algorithm 2. Therefore,
Dðu; vÞ is an optimal location set of ðu; vÞ for every
certificate ðu; vÞ in CS. By Theorem 2, D is optimal. tu
For each certificate ðu; vÞ, the graph G0 constructed for

ðu; vÞ is a bipartite graph. It is because the set of source nodes
of the chains that contain ðu; vÞ and the set of the destination
nodes of the chains that contain ðu; vÞ are disjoint by the
definition of disconnected chain set. Finding a vertex cover
in a bipartite graph is a well-known problem in graph
theory, which takes Oðn0e0Þ steps, where n0 is the number on
nodes in G0 and e0 is the number of edges in G0. In the worst
case, n0 ¼ n and e0 ¼ p, where n is the number of nodes in
CS, and p is the number of chains in CS. Therefore, the time
complexity of Algorithm 2 is Oðe� npÞ ¼ OðenpÞ, where e is
the number of certificates in CS.

6 OPTIMAL DISPERSAL OF CONCISE GRAPHS

In this section, we present an algorithm that computes
optimal dispersal for chain sets “derivable” from a class of
certificate graphs called concise certificate graphs. A
certificate graph G is called concise if and only if it satisfies
the following two conditions:

1. Short Cycles. Every simple directed cycle in G is of
length 2.

2. Nonredundancy. G has at most one chain from any
node to any other node.

Concise certificate graphs represent many useful certifi-
cate systems. For example, a hierarchical certificate
system would typically generate a tree-shaped certificate
graph. Any tree-shaped certificate graph is a concise
certificate graph.

Fig. 6a shows an example of a concise certificate graph.
Note that, in a concise graph, there can be two opposite
direction certificates between two adjacent nodes. We refer
to any such pair of certificates as twins, and we refer to each
one of those certificates as the twin certificate of the other. In
the concise graph in Fig. 6a, the two certificates ðb; cÞ and
ðc; bÞ are twins.

A chain set is derivable from some certificate graph G if
and only if the chain set consists of all the certificate chains
in G. For example, the chain set in Fig. 6b is derivable from
the certificate graph in Fig. 6a.

Algorithm 3 computes an optimal dispersal of a concise
certificate graph. Consider certificate ðb; cÞ in the example
concise certificate graph in Fig. 6a. Algorithm 3 computes

the set of nodes from which there is a chain to b, denoted
R:b, as fa; bg. Also, Algorithm 3 computes the set of nodes
to which there is a chain from c, denoted R:c as fcg.
jR:bj > jR:cj, so ðb; cÞ is stored in c. After considering all the
certificates in the graph, the example concise certificate
graph is optimally dispersed by Algorithm 3 as follows:

f D:a ¼fða; bÞg; D:b ¼ fðc; bÞg;
D:c ¼fðb; cÞg; D:d ¼ fðb; dÞg g:

ALGORITHM 3: optimal dispersal of concise certificate

graphs

INPUT: a concise certificate graph G

OUTPUT: a dispersal D of the chain set CS

derivable from G

STEPS:

1: for each node u in G, D:u :¼ fg
2: for each certificate ðu; vÞ in G do

3: compute the set R:u that contains u and every node x

from which there is a chain to u in G and this chain

does not contain the twin certificate ðv; uÞ
4: compute the set R:v that contains v and every node x

to which there is a chain from v in G and this chain
does not contain the twin certificate ðv; uÞ

5: if jR:uj � jR:vj
6: then for every node x in R:u, add ðu; vÞ to D:x

7: else for every node y in R:v, add ðu; vÞ to D:y

Theorem 6. Given a concise certificate graph G, the dispersal D
of the chain set CS derivable from G computed by Algorithm 3
is optimal.

The proof is in [2]. The complexity of Algorithm 3 is
OðenÞ, where e is the number of certificates in the input
concise certificate graph and n is the number of nodes in the
concise certificate graph.

7 OPTIMAL DISPERSAL OF k-LONG CHAIN SETS

In Section 3, we showed that computing an optimal dispersal
of any chain set, which includes chains of length 3 or more, is
NP-complete. If all the chains in a chain set are of length at
most 2, i.e., if the chain set is short, then we can use
Algorithm 1 in Section 4 to compute an optimal dispersal of
the short chain set. In this section, we consider a more general
class of chain sets where, there are a fixed number k, k � 1, of
chains of length greater than 2. Consideration of such chain
sets is motivated, for instance, by the following example:
Consider a hierarchical network made of a number of
autonomous systems. Certificate chains within any single
autonomous system are expected to be short, whereas
certificate chains that span multiple autonomous systems
are expected to be long. The chain set of these autonomous
systems contain mostly short intra-chains, but may contain a
fixed number of long inter-chains. Our main result here is a
polynomial-time algorithm that computes an optimal dis-
persal for such chain set for fixed k.

In this section, we present Algorithm 4, which computes
an optimal dispersal of a chain set where there are k chains
of length greater than 2 for some constant k. We call such
sets k-long chain sets. Roughly speaking, our general
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strategy is to consider all possible ways of assigning
certificates that appear in long chains to the relevant source
and destination nodes, and then handling the remaining
short chains with the aid of Algorithm 1. To develop some
initial intuition, first we show how to compute an optimal
dispersal of an example 1-long chain set in Fig. 7b, and then
we show how to generalize for k-long chain sets.

Let CS be the 1-long chain set in Fig. 7b, which is a chain
set of the certificate graph in Fig. 7a. There is one long chain
ðc; aÞða; bÞðb; dÞ and three other short chains. There are three
types of certificates in this chain set:

1. Certificates used only in long chains: for example,
ðb; dÞ.

A certificate of this type can be dispersed either to
the source or to the destination of each long chain
that contains this certificate. For example, certificate
ðb; dÞ in CS is used only in the long chain and needs
to be dispersed either to c or to d. This certificate is
not used in any other chains, so it does not change
the cost of dispersal whether it is dispersed to c or d.

2. Certificates used only in short chains: for example,
ðb; cÞ.

For certificates of the second type, we can use
Algorithm 1 in Section 4 to disperse such certificates.
For example, certificate ðb; cÞ is dispersed to node a
by Algorithm 1.

3. Certificates used in both long and short chains: for
example, ða; bÞ, ðc; aÞ.

Dispersing a certificate of the third type needs to
consider every possible assignment of this certificate
among sources and destinations of long chains. For
example, certificate ða; bÞ is used in three chains,
ða; bÞðb; cÞ, ðc; aÞða; bÞ, and ðc; aÞða; bÞðb; dÞ. If we
choose to disperse ða; bÞ to the source c of long chain,
then we do not need to disperse ða; bÞ to any other
node in CS, since c happens to be source or
destination of all the short chains that contain ða; bÞ.
By contrast, if we choose to disperse ða; bÞ to the
destination d of long chain, then we need to disperse
ða; bÞ to other nodes than d since d is neither source nor
destination of two short chains ða; bÞðb; cÞ and
ðc; aÞða; bÞ. In other words, Dða; bÞ could be either
fcg or fa; b; dg, depending on whether ða; bÞ is
assigned to the source or the destination of the long
chain. This shows that for each certificate of the third
type that is used in both long and short chains, in each
assignment of this certificate in sources and destina-
tions of long chains, we need to check which short
chains still needs dispersal of this certificate.

After considering all three types of certificates in CS, the

resulting optimal dispersal of CS in Fig. 7b becomes as

follows:

f D:a ¼fðb; cÞg; D:b ¼ fðc; aÞg;
D:c ¼fðc; aÞ; ða; bÞg; D:d ¼ fðb; dÞg g:

To extend this solution for 1-long chain set to k-long

chain sets, we need to define a terminal set of a chain set. A

terminal set of a chain set CS is a subset of nodes in CS that

consists of the source or destination of each chain in CS. For

example, the four nodes a, b, c, and c are the sources of all

four chains in the chain set in Fig. 7b, so fa; b; cg is a

terminal set of this chain set. Algorithm 4 computes an

optimal dispersal of k-long chain sets using this terminal set.

ALGORITHM 4: optimal dispersal of k-long chain sets

INPUT: a k-long chain set CS

OUTPUT: a dispersal D of CS

STEPS:
1: for each node u in CS, D:u :¼ fg
2: for each certificate ðu; vÞ in CS do

3: compute the chain set LS of all long chains that

contain ðu; vÞ in CS

4: for each possible terminal set X of LS

5: for each node w in CS, if w 2 X then

DX:w :¼ fðu; vÞg else DX:w :¼ fg
6: compute the chain set S of all the chains that

contain ðu; vÞ and their sources and destinations

are not in X

7: run Algorithm 1 on S and add the resulting

location set of ðu; vÞ to DX

8: find DX with the minimal cost

9: for each node u in CS, add DX:u to D:u

Consider ðc; aÞ in the example chain set in Fig. 7b. The set

of all long chains that contain ðc; aÞ, denoted LS in

Algorithm 4, is fðc; aÞða; bÞðb; dÞg. For a terminal set fcg,
ðc; aÞ is dispersed to node c and the set of remaining short

chains, denoted S in Algorithm 4, becomes fðb; cÞðc; aÞg.
There is node b that is the source of every chain in S, so

ðc; aÞ is dispersed to node b. The resulting dispersal of ðc; aÞ,
fb; cg, is an optimal location set of ðc; aÞ. After considering

every certificate, the dispersal of the example chain set in

Fig. 7b computed by Algorithm 4 becomes the same with

the dispersal above, and this dispersal is optimal. Theorem 7

shows that Algorithm 4 computes an optimal dispersal of a

given k-long chain sets.

Theorem 7. Given a k-long chain set CS, the dispersal D of the

chain set CS computed by Algorithm 4 is optimal.

The proof is in [2]. The time complexity of this algorithm is
Oð2k � epÞ, where k is the number of long chains in CS, e is
the number of certificates in CS, and p is the number of
chains in CS. This complexity is computed as follows: The
number of terminal sets for k long chains is Oð2kÞ, and, for
each terminal set, the number of short chains to consider is
OðpÞ. We repeat this procedure for e certificates. Since k is a
constant, the time complexity becomes OðepÞ.
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8 OPTIMAL DISPERSAL OF k-CONNECTED

CHAIN SETS

In Section 5, we presented Algorithm 2, which computes an
optimal dispersal of a disconnected chain set. In this
section, we investigate a more general class of chain sets,
where there are at most k nodes in the intersection of the
source set and the destination set of each certificate in a
chain set. We call such chain sets k-connected chain sets.
This class of chain sets models a client-server system that
uses two different authentication methods. As discussed in
Section 5, in some client-server systems, clients authenticate
servers via certificates, whereas servers authenticate clients
via other means, e.g., passwords. However, there may be a
few mutual authentications via certificates between servers.
These certificates used by servers may have nonempty
intersections of the source and destination sets. Such client-
server systems can be represented as k-connected chain sets.

Fig. 8b shows an example of a 1-connected chain set,
which is a chain set of the certificate graph in Fig. 8a. For
certificate ða; bÞ, the sources of the chains that contain ða; bÞ
are fa; cg and the destinations of such chains are fb; c; dg.
The intersection of two sets is fcg. Similarly, the cardinality
of the intersection set is at most 1 for every certificate in this
chain set, so the chain set in Fig. 8b is 1-connected.

Assume that ða; bÞ is stored in D:c in some dispersal D of
this chain set. The remaining chain to be dispersed is
ða; bÞðb; cÞðc; dÞ. Certificate ða; bÞ can be stored either in D:a
or in D:d, either of which makes no difference in the
dispersal cost. Or assume that ða; bÞ is not stored in D0:c in
some dispersal D0 of this chain set. Certificate ða; bÞ needs to
be stored in D0:a and D0:b. We can repeat this process for
each certificate to find the dispersal as follows:

fD:a ¼fða; bÞ; ðb; cÞg; D:b ¼ fðc; dÞ; ðd; aÞg;
D:c ¼fða; bÞg; D:d ¼ fðc; dÞg g:

This is also an optimal dispersal of this 1-connected
chain set.

To extend this solution for 1-connected chain sets to
k-connected chain sets, we need to define an intersection set
of a certificate. An intersection set of a certificate ðu; vÞ in a
chain set CS is a set of nodes that appear both in the set of
sources and the set of destinations of the chains that contain
ðu; vÞ. For certificate ða; bÞ in Fig. 8b, the sources of the
chains that contain ða; bÞ are fa; cg and the destinations of
such chains are fb; c; dg. The intersection of two sets is fcg,
so fcg is the intersection set of ða; bÞ. Algorithm 5 computes
an optimal dispersal of k-connected chain sets using this
intersection set.

ALGORITHM 5: optimal dispersal of k-connected

chain sets

INPUT: a k-connected chain set CS

OUTPUT: a dispersal D of CS

STEPS:

1: for each node u in CS, D:u :¼ fg
2: for each certificate ðu; vÞ in CS do

3: compute the intersection set IS of ðu; vÞ
4: for each subset X of IS

5: for each node w in CS,

if w 2 X then DX:w :¼ fðu; vÞg else DX:w :¼ fg
6: compute the chain set S of all the chains

that contain ðu; vÞ and their sources and

destinations are not in X

7: for each chain from y to z in S

8: if y 2 IS nX then add ðu; vÞ to DX:z

and remove the chain from S

9: if z 2 IS nX then add ðu; vÞ to DX:y and

remove the chain from S

10: run Algorithm 2 on S and add the resulting

location set of ðu; vÞ to DX

11: find DX with the minimal cost

12: for each node u in CS, add DX:u to D:u

The proof of the optimality of this algorithm is
straightforward. Since this algorithm considers every
possible subset of the intersection set, it is guaranteed to
find the optimal location set of each certificate. By
Theorem 2, the dispersal computed by this algorithm is
optimal.

The time complexity of this algorithm is Oð2k � enpÞ,
where k is the tight upper bound of the number of nodes in
intersection sets of all the certificates in CS, n is the number
of nodes in CS, e is the number of certificates in CS, and p is
the number of chains in CS. Since there are at most k nodes
in the intersection set of each certificate, there are at most
2k subsets of the intersection set. For each subset, we run
Algorithm 2, whose complexity is OðenpÞ. Therefore, the
total time complexity becomes Oð2kenpÞ. Since k is a
constant, the time complexity becomes OðenpÞ.

9 RELATED WORK

Several papers have investigated the use of certificates for
confidentiality, authentication, and authorization. We sum-
marize the results of these papers in the following
paragraphs:

Architectures for issuing, storing, discovery, and validat-
ing certificates in networks are presented in [3], [4], [5], [6],
[7], [8], [9], [10], [11]. In a large scale network such as
today’s Internet, one cannot expect to have a central
authority to issue, store, and validate all the certificates. A
distributed system, where each user participates in issuing,
storing, and validating certificates is desirable in such a
network.

In [12] and [13], distributed architectures for issuing
certificates, particularly in mobile networks, are presented.

In [12], Zhou and Haas present an architecture for
issuing certificates in an ad-hoc network. According to this
architecture, the network has k servers. Each server has a
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different share of some private key rk. To generate a
certificate, each server uses its own share of rk to sign the
certificate. If no more than t servers have suffered from
Byzantine failures, where k � 3tþ 1, then the resulting
certificate is correctly signed using the private key rk,
thanks to threshold cryptography. The resulting certificate
can be verified using the corresponding public key, which is
known to every node in the ad hoc network.

In [13], Kong et al. presented another distributed
architecture for issuing certificates. Instead of employing
k servers in the ad hoc network, no special nodes such as
servers are in the network and every node in the network is
provided with a different share of the private key rk. For a
node u to issue a certificate, the node u forwards the
certificate to its neighbors and each of them sign the
certificate using its share of rk. If node u has at least
tþ 1 correct neighbors (i.e., they have not suffered from any
failures), then the resulting certificate is correctly signed
using the private key rk.

Both works assume that a certificate is signed by a
special private key of an authority, and distribute the
private key among many servers or nodes. By contrast, in
[14] and this paper, we propose a distributed architecture
where every node has both a public key and a private key
so it can issue certificates for any other node in the network.
This architecture is very efficient in issuing and validating
certificates but cannot tolerate Byzantine failures. In
particular, if one node suffers from Byzantine failure, then
this node can successfully impersonate any other node that
is reachable from this node in the certificate graph of the
network. This vulnerability to Byzantine failures is not
unique to our certificate work. In fact, many proposed
certificate architectures, e.g., [3], [4], while [13], [5], [11], [10]
yield similar vulnerabilities. Recently, we have identified a
metric to evaluate the damage from this type of attacks. We
call it “vulnerability” of the certificate system and discuss it
in more details in [15].

In [11], Li et al. presented a role-based trust management
language RT0 and suggested the use of strongly typed
distributed certificate storage to solve the problem of
certificate chain discovery in distributed storage. However,
they do not discuss how to efficiently assign certificates
among the distributed storages. By contrast, our work
focuses on minimizing storage overhead in certificate
dispersal among the users while they have enough
certificates so that there is no need for certificate chain
discovery.

In [16], Ajmani et al. presented a distributed certificate
storage using a peer-to-peer distributed hash table. This
work assumes dedicated servers host an SDSI certificate
directory and focuses on fast lookup service and load
balancing among the servers. By contrast, our work assigns
certificates to users such that there is no need for lookup
and there are no dedicated certificate storage servers. Our
work also focuses on efficient use of storages in all users in
network.

In [17], Reiter and Stubblebine investigated how to
increase assurance on authentication with multiple inde-
pendent certificate chains. They introduce two types of
independent chains, disjoint paths (no edge is shared by
any two chains) and k-connective paths (k certificates need

to be compromised to disconnect all these paths). This
paper shows that there are no polynomial-time algorithms
for locating maximum sets of paths with these properties
and presents approximation algorithms.

Perhaps the closest work to ours is [18], in which Hubaux
et al. investigated how to disperse certificates in a certificate
graph among the network nodes under two conditions.
First, each node stores the same number of certificates.
Second, with high probability, if two nodes meet, then they
have enough certificates for each of them to obtain the
public key of the other. By contrast, our work in [14] and
here are based on two different conditions. First, different
nodes may store different number of certificates, but the
average number of certificates stored in nodes is mini-
mized. Second, it is guaranteed (i.e., with probability 1) that,
if two nodes meet, then they have enough certificates for
each of them to obtain the public key of the other (if there
exists a chain between them in the chain set).

Later, the same authors showed in [19] that a lower
bound on the number of certificates to be stored in a node isffiffiffi
n
p
� 1, where n is the number of nodes in the system. By

contrast, we showed in [14] that the tight lower bound on
the average number of certificates to be stored in a node is
e=n, where e is the number of certificates in the system. Our
work here shows that finding an optimal dispersal of a
given chain set is NP-complete and presents three poly-
nomial-time algorithms which compute optimal dispersal
of chain sets in three classes of practical interests and two
extensions of these algorithms for more general classes of
chain sets.

Zheng et al. presented algorithms that compute optimal
dispersals for strongly connected graphs and directed
graphs in [20]. The same authors also showed the tight
upper bounds in these two classes of certificate graphs.

10 CONCLUSION

We have shown that, in general, finding an optimal
dispersal of a given chain set is NP-complete. We have
also discussed three polynomial-time algorithms, each of
which computes an optimal dispersal for a rich class of
chain sets and two extensions of these algorithms for two
more general classes of chain sets. In [21], we have
presented more polynomial-time algorithms, which com-
pute an optimal dispersal for more classes of chain sets.
This result can be used in any network setting. However,
these algorithms are particularly useful when the network
is large. In a large scale network such as today’s Internet,
one cannot expect to have a central authority for storing and
distributing certificates among all users in the network.
Instead, users can store a subset of certificates in the
network so that any user can obtain the public key of the
other whom the user wants to securely communicate with
(if there was a chain in the chain set of the network).
Moreover, in a large scale network, not all certificate chains
in a certificate graph are in use. Computing an optimal
dispersal of a chain set instead of the chain set derivable
from the certificate graph of the network reduces the cost of
dispersal.

This result can be also used as a metric to evaluate
certificate graphs. The optimal dispersal cost is an im-
portant property of a certificate graph, since it affects the
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storage requirement of each node in the network. This is
especially important in ad-hoc networks, where mobile
nodes may be more restricted in terms of storage than stable
nodes can be.
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