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Abstract

In this paper, we focus our attention on the problem of assigning initial secrets to users in ad-hoc network (respectively, sensors in a sensor

network) so that they can use those secrets to ensure authentication and privacy during their communication. The goal of this assignment is to

ensure that any two users can communicate securely with each other even though each user maintains only a small number of secrets. With

this motivation, we present a protocol that maintains Oð
ffiffiffi
n

p
Þ secrets per user where n is the number of users in the system. We show that our

secret distribution protocol suffices for privacy and authentication as well as secure multihop communication between two users.

Furthermore, we show that the number of secrets maintained in this protocol is within a constant factor of the optimal. For the case where user

capability prevents them from maintaining the necessary secrets, we propose two probabilistic protocols that maintain O(log n) secrets and

where the probability of security compromise between two users is inversely proportional to the number of secrets they maintain. Thus, our

protocols provide a continuum where the level of privacy and authentication depends upon user requirements and capabilities.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Security is typically an important issue in wireless ad-

hoc networks, including sensor networks, where the

communication medium is broadcast in nature and, hence,

an adversary can overhear all messages sent by any user. For

this reason, a sender must authenticate the receiver and

encrypt any messages it sends. One way to achieve this

authentication and encryption is to ensure that the sender

and the receiver share a common secret that no other user in

the network knows.

Another important issue in these networks is multihop

communication. Specifically, if two users (respectively,
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sensors) that need to communicate are not close to each

other, they may require other users (respectively, sensors) in

the network to relay their messages. During such a relay, a

user may require that the intermediate users relaying the

message cannot learn the contents of the message and that

the intermediate users cannot generate messages that

incorrectly appear to be from the sender. Hence, we focus

on the problem of distributing initial secrets to users so that

they can (even on a multihop path) authenticate each other

and communicate securely.

In systems with a trusted server, the problem of

distributing initial secrets is often handled by assigning

each user a secret (e.g. password) that is known only to the

user and the trusted server. In these systems [1–5], when two

users interact, they use this trusted server to authenticate

each other and to establish a secret that is known only to

those two users. In many systems, especially in ad-hoc

networks, however, this approach is undesirable (respect-

ively, impossible) as no trusted server is available when two

users need to communicate with each other. Also, in these

systems, using certificates signed by a trusted authority is

undesirable, as the cost of encryption/decryption using them

is often exorbitant. (As an illustration, on MICA motes

developed by UC Berkeley, encryption using public key is

100–1000 times slower than symmetric key encryption.)
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Thus, in these networks, the users must maintain sufficient

secrets so that any two users that need to communicate can

use these secrets for authentication and/or privacy.

Based on the role of intermediate users in a multihop

communication, the solutions for initial key distribution can

be classified into two categories. In the first category of

solutions [6–9], intermediate users are trusted. Hence, if two

non-neighboring users need to communicate, they route the

messages through the intermediate users that decrypt and re-

encrypt the message. Thus, it suffices that the communicat-

ing users share a path such that every user on the path shares

a secret with its predecessor and its successor. However, in

this case, compromise of a small number of users that act as

intermediate users can compromise the security completely.

Another category of solutions includes solutions where

intermediate users are not trusted. Hence, if two non-

neighboring users communicate the solution guarantees that

the intermediate users cannot violate authentication and

privacy. In other words, the intermediate users are only

responsible for routing the message. However, they should

not be able to decrypt it. Clearly, in such a solution,

compromise of intermediate users does not affect system

security as long as the communicating users share a

secret that is not known to the intermediate users. We

follow the second approach and our solutions assume that

the intermediate users are only responsible for routing the

messages, and they are not trusted for decrypting and

re-encrypting messages in transit. Thus, given any pair of

users, it should be possible to identify a secret that is known

only to those two users.

However, the users often have limited memory and

limited computing ability. Therefore, the number of

secrets they maintain and the amount of computation

they perform should be small. Moreover, these networks

need to address the problem of scale as the number of

users can be high and, hence, the number of initial

secrets that each user has should scale with the increase

in the number of users.

Based on the above discussion, it follows that one of the

important problems for security in ad-hoc networks is to

establish a scalable approach for instantiating security so

that each user maintains only a small number of secrets even

though it can securely communicate (either with certainty or

with high probability) with all users in the network.

We present three protocols for instantiating security in

wireless ad-hoc networks. In the first protocol, the grid

protocol, each user Oð
ffiffiffi
n

p
Þ secrets where n is the number

of users. This protocol ensures privacy and authentication

between any two users that need to communicate with

each other. It also ensures that in a multihop

communication, intermediate users cannot learn the

contents of the communication they are relaying and

that they cannot generate messages that appear to

originate from the sender. We also show that the number

of secrets maintained in the grid protocol is within a

constant factor of the optimal.
Since in large systems, users may not be able to maintain

even Oð
ffiffiffi
n

p
Þ secrets, privacy and authentication cannot be

guaranteed in them. For such systems, we present two

protocols that provide probabilistic security, i.e. in these

protocols, the level of security, the probability that the two

parties can communicate using secrets that the intruder does

not know, is proportional to the number of initial secrets that

each user maintains.

1.1. Contributions of the paper

The main contributions of the paper are as follows:

† We present a protocol where each user maintains Oð
ffiffiffi
n

p
Þ

secrets, where n is the number of users in the system.

This protocol guarantees privacy and authentication, i.e.

it ensures that the secrets that are used by the

communicating parties are not known to any other

users in the system. We also show that the number of

secrets maintained in our protocol are within a constant

factor of the lower bound on the minimum secrets.

† We present two protocols for the case where the level of

security is proportional to the number of initial secrets

that each user maintains. In these protocols, the

probability of a compromise is a(O(m)), where a!1 and

m is the number of secrets that each user maintains.

Thus, in our protocols, a small increase in the number of

secrets maintained by a user substantially reduces the

probability of privacy compromise. It follows that our

probabilistic protocols are especially beneficial for the

case where the users do not have the capability to

maintain sufficient secrets to ensure privacy. Finally, we

show how our probabilistic protocols can resist identity

attacks.
1.2. Organization of the paper

The rest of the paper is organized as follows. In Section 2,

we precisely state the problem of instantiating security in ad-

hoc networks. Then, in Section 3, we present our protocol

that provides privacy and authentication. In Section 4,

we show that the number of secrets maintained in the

protocol in Section 3 are within a constant factor of the

optimal. In Sections 5.1 and 5.2, we present our probabilistic

protocols. In Section 6, we compare these protocols. In

Section 7, we identify how our protocols are affected by

collusion among users. Finally, we make concluding remarks

in Section 8.
2. Model and problem statement

As mentioned in Section 1, each user in the network must

know some initial secrets (keys). These secrets will enable

the user to obtain privacy and authentication when it
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communicates with other users. In this section, we identify

the precise requirements for the initial secret distribution.

We are interested in protocols where the secrets

maintained by a user are independent, i.e. even if an

attacker knows a subset of the secrets that a user has, it

should not be possible for the attacker to discover the other

secrets that user has. In other words, the knowledge of a

subset of secrets does not assist the attacker in identifying

the remaining secrets through cryptanalytic attacks. Thus,

even if two users use a set of secrets to ensure security and

the attacker is aware of all but one of those secrets, the

attacker cannot compromise that communication.

Furthermore, to compute the space requirement for

secrets, we count all secrets that are need to be stored by the

user. To illustrate this issue, consider the case where a small

number, say x, of secrets are used initially to generate a large

number, say y, of new secrets by some mathematical

manipulation (e.g. using those in evaluating certain

polynomials) of the original secrets. In such a case, if

these y secrets are stored by the user then the space

requirement for this case is y. However, if these secrets are

computed on-the-fly then the space requirement is x.

Now, we consider different approaches that may be

considered in static networks and argue that these solutions

are not suitable for ad-hoc networks and sensor networks.

One possible approach for obtaining privacy is to use

certificates [10–12] and initially provide each user with a

certificate signed by a trusted authority (respectively, a

group of trusted authorities). Thus, when two users,

communicate, they can use these certificates to authenticate

each other. However, as discussed in the Introduction, this

solution requires high computing power. The drawback of

this solution suggests that we should use shared secrets

instead of certificates. We consider two simple protocols

that use such shared secrets: single secret protocol and full

secret protocol.
2.1. Single secret protocol

The simplest protocol that ensures that the sender and the

receiver share at least one secret is to establish a single

shared secret that all legitimate users in the network know. It

follows that intruders outside the network cannot learn

about the communication between legitimate users. While

this approach is currently used in existing sensor networks

[13], it is clear that in this protocol, the compromise of one

user compromises the security for all. Also, the single secret

protocol does not provide any security for multi-hop

communication. Specifically, if a user j sends a message

to user k via l then j cannot prevent l from learning

the contents of that message. Moreover, this protocol cannot

be used for providing authentication; in this protocol, the

user only knows that it is communicating with some

legitimate user.
2.2. Full secret protocol

Another solution for sharing secrets between a sender

and a receiver is to establish a separate shared secret

between every pair of users. Although, in this protocol, the

compromise of one user does not affect others and

intermediate users cannot compromise privacy/authentica-

tion while relaying messages, each user needs to maintain

nK1 secrets where n is the number of users in the network.

In this protocol, if communication between two users is

overheard by a third user then the probability of privacy

compromise is 0. Thus, when j wants to send a message to k

via a user l, l cannot learn the contents of that message.

However, this solution becomes infeasible when the number

of users is large and memory associated with each user is

low.

Clearly, if we require that the secret shared between two

users, say j and k, is not known to any other user in the

network, then each user must maintain nK1 secrets where n

is the number of users. To reduce the number of secrets, we

allow j and k to share a collection of secrets, and require that

no other user in the network knows all the secrets in that

collection. Clearly, in this situation, it would be possible for

j and k to use a combination of these secrets (e.g. by xor-ing

these secrets, or by applying some one way hash function to

the collection of shared secrets) to ensure privacy and

authentication. Thus, we define the problem for guaranteed

security as follows.

2.3. Problem statement for guaranteed security

Design a secret distribution protocol such that given any

two users j and k, they share a collection of secrets such that

no other user in the network knows all the secrets in that

collection.

Notation. We use the phrase ‘A protocol solves the

problem of guaranteed security’ if it solves the above

problem.

Also, as discussed Section 1, it may be necessary to

provide only probabilistic guarantees about privacy/authen-

tication when the number of keys required to solve the

problem of guaranteed security is more than what the users

can maintain.

In the context of probabilistic communication, we

consider the case where two users, say j and k, are

communicating and one other user, say l, is trying to

compromise their communication. Hence, we define the

problem of probabilistic security as follows.

2.4. Problem statement for probabilistic security

Design a secret distribution protocol such that given

three randomly selected users, j, k and l, the probability that

there is a secret (respectively, a collection of secrets) that

both j and k know but l does not know is proportional to the

number of initial secrets that j and k have.
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Fig. 1. Single grid protocol: a node marked hj,ki is associated with user uhj,ki
and grid secret khj,ki.
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Notation. We use the phrase ‘A protocol solves the

problem of probabilistic security’ if it solves the above

problem.

Remark. The problem of probabilistic security could also

be posed in the context of two or more attackers working

independently (or, working in collusion). While the

solutions presented in this paper could be easily evaluated

to identify the probability of compromise in such a

generalized version, these extensions are outside the scope

of the paper.

2.5. Intruder/attacker model

We assume the standard node-compromise attacker

model [6,7,9,14–16]. If a user has been compromised by

an attacker then it can utilize all the secrets that the user had.

It can do so either passively, i.e. by just listening to

messages and attempting to decrypt them if possible. Or, it

can do so actively, for example, it can attempt to

impersonate another user.

We make no assumptions about mobility in the

network. Thus, the users may be mobile or static. We

only assume that an orthogonal approach is used to route

messages (even in the presence of mobility) and to deal

with denial of service attacks. In other words, we only

assume that any message sent by legitimate users is

delivered (even if users are mobile or the system is

subject to a denial of service attack). The approaches used

for routing or for dealing with denial of service attacks are

outside the scope of this paper.

Initially, we assume that the intruders do not collude.

Thus, an intruder is a single non-colluding device that does

not share its secrets with any other user. We address the

issue of collusions in Section 7. When such collusion is

permitted, the colluding users can pool together their secrets

in order to break communication security.
3. Guaranteed security protocols

In this section, we present the grid protocol that

extends the solution in [16] and solves the problem of

guaranteed security (privacy and authentication). We first

present the single grid protocol in Section 3.1. Then, we

show how to reduce the number of secrets maintained

by a user further while ensuring that the probability of

security compromise remains 0. Subsequently, in

Section 4, we show that the number of secrets

maintained in these protocols are within a constant

factor of the optimal.

3.1. Single grid protocol

3.1.1. Secret distribution protocol

In this protocol, each user has two types of secrets: direct

secrets and grid secrets. A direct secret is shared between
exactly two users and each grid secret is shared among

multiple users. As the name suggests, the grid secrets are

arranged in a 2-dimensional (2-D) grid.

For example, consider the case where we have 16 users

uhi,ji, 0!i, j!4 (cf. Fig. 1). Regarding grid secrets, we also

maintain 16 secrets khi,ji, 0!i, j!4. The users and the grid

secrets are arranged in a 4!4 grid. Thus, location hi,ji, 0!i,

j!4, is associated with user uhi,ji and grid secret khi,ji. Each

user gets the grid secrets associated with the nodes in its row

and in its column. Thus, in Fig. 1, user uh2,3i gets the secrets

kh1,3i, kh2,3i, kh3,3i, kh4,3i, kh2,1i, kh2,2i, and kh2,4i.

Each user maintains direct secrets with users in its row

and in its column. Thus, in Fig. 1, uh2,3i maintains a separate

direct secret with, uh1,3i, uh3,3i, uh4,3i, uh2,1i, uh2,2i, and uh2,4i.

(The direct secrets are not shown in the figure.)

Note that a user is aware of its own location in the grid.

However, it does not maintain the information about grid

locations of other users. Whenever, it needs to communicate

with another user, it reveals its grid location (in plain text)

and also obtains the grid location of its communicating

partner. Based on these grid locations, they determine the

secret that should be used to ensure that privacy and

authentication are maintained. While an attacker may lie

about its location in the grid, as we show in Theorem 3.1, it

cannot impersonate another user.
3.1.2. Secret selection protocol

When user A wants to communicate with user B and A

is not aware of the grid location of B, A sends a request

to B that contains its own grid location. Let this location be

hj1,k1i. Upon reception of this request message, B also

communicates its own grid location to A. Note that this

communication is done in plain text and, hence, an attacker

listening to this communication can learn its contents.

However, this is permissible because our protocol does not

assume that the grid locations are secret, i.e. it is provides

authentication and privacy even if the attacker knows the

grid location of all users.

Now, consider the case where A wants to send message m

to B after it has learnt the grid location of B. Let the

locations of A and B be hj1,k1i and hj2,k2i respectively. In this

case, A encrypts m using the following secret selection

protocol and sends it along with its own grid location
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(in plain text).

Ifðj1 sj2 ok1 sk2Þ

==Users are neither in same row nor in same column

Use the grid secrets khj1;k2i
and khj2;k1i

Else

==Users are in the same row or column

Use the direct secret between uhj1;k1i
and uhj2;k2i

As discussed in Section 2, if multiple secrets are selected

by the communicating users then a combination of those

secrets (using primitives such as xor or by applying a hash

function such as MD5). Also, note that the above protocol

only focuses on what secrets the users should use. It does not

address replay attacks. In other words, an attacker may be

able to replay messages that were sent earlier. Several

approaches, e.g. nonces and timestamps, have been

designed for dealing with replay attacks [4,17]. Any of

these approaches could be used in this context.

Theorem 3.1. The single grid protocol solves the problem of

guaranteed security.

Proof. Consider the case where two users, say uhj1;k1i
and

uhj2;k2i
.

If uhj1;k1i
and uhj2;k2i

are in the same row (respectively,

same column), they use the direct secret between them. By

definition, no other user has this secret. If uhj1;k1i
and uhj2;k2i

are not in the same row or same column, they use the grid

secrets khj1;k2i
and khj2;k1i

. No other user in the network knows

both these secrets.

Now, if the user uhj1;k1i
uses the above selected secret(s),

to communicate with uhj2;k2i
, no other user can decrypt that

communication. Thus, privacy is guaranteed. Also, when

uhj2;k2i
receives this message, it can be sure that no user other

than uhj1;k1i
generated that message. Thus, authentication is

guaranteed. Note that the properties of privacy and

authentication are satisfied even if users are communicating

on a multi-hop path. ,

Theorem 3.2. In the single grid protocol, each user

maintains 2ð
ffiffiffi
n

p
K1Þ grid secrets and 2ð

ffiffiffi
n

p
K1Þ direct

secrets.
3.2. Discussion about grid protocol

In this section, we discuss some of the questions raised

by our protocols and briefly discuss some of its extensions.

The grid protocol focuses on what secrets a user should have

instead of how it gets those secrets. The way in which a user

gets its secrets could depend upon the application at hand.

For example, in case of sensor networks, the initial secrets

could be provided during the initial programming of those

sensors, an operation that is typically done in a secure

setting. Another approach in this context is to have a trusted

authority that is aware of all the secrets. In this approach, a
joining user receives its secrets from this trusted authority

by a secure channel. One way to achieve such secure

channel is to require each user to share a secret with the

trusted authority. Alternatively, users could be provided

with a public key of the trusted authority. Note that although

the use of this public key is expensive (100–1000 times the

encryption cost compared with symmetric keys) and

undesirable, this design would be acceptable since the

public keys are (very) rarely used. In this approach, the

trusted authority plays no role when two users need to

communicate. Rather, it simply allows a user to obtain

(typically in an offline setting) the secrets that it would need

for communicating with other users.

Another question in this context is dynamic addition of

users in an ad-hoc network. We suggest that a larger grid be

used to accommodate a potential increase in the number of

users. In such a larger grid, each node would be associated

with a secret but only a subset of nodes will be associated

with a user. Thus, some users may maintain some secrets

that are not useful in communicating with existing users.

However, when new users are added to the network, those

secrets would be used. In such an approach, a new user

would be assigned an unused location in the grid, and it

would get the necessary secrets accordingly. Once again, as

discussed above, the approach in which a new user obtains

these secrets is dependent on the application at hand.

An extension of this protocol would be to allow the grid

to grow dynamically. In this case, after a grid is expanded,

say by adding a row or column, the existing users would

need additional secrets associated with new nodes in its

row/column. One approach to provide such secrets is to,

intuitively, assign the trusted authority a grid location, say

hx,yi. Thus, although the trusted authority has all secrets

used by all users, it behaves as a user located at hx,yi when

providing new secrets to existing users. Now, the trusted

authority can use the secrets as prescribed by the grid

protocol to communicate new secrets to existing users.

Hence, the trusted authority can guarantee that the new

secrets are received only by users that are authorized to have

them. Furthermore, as discussed above, application depen-

dent approaches may be used in this context.

As mentioned in Section 2, the grid protocol provides

guaranteed security in the absence of colluding users. While

we identify the collusion resistance of this protocol in

Section 7, we would also like to note that the approach in

[16] for maintaining multiple grids in such a way that no two

users are in the same row/column in more than one grid

could be used to further provide collusion resistance.

Finally, the problem considered in this paper, the problem

of instantiating secrets, is orthogonal to the problem of

maintaining secrets [18]. In the problem of maintaining

secrets, a user changes its shared secrets to thwart an

attacker that uses cryptanalytic techniques. While the

problem of secret maintenance is outside the scope of the

paper, we note that approaches discussed above for
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Fig. 2. Hierarchical grid protocol. Arrows in (a) denote the secrets used by 1 and 48, and arrows in (b) denote the secrets used by 1 and 7.
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distributing the initial secrets could also be tailored to

change the grid secrets used by different users.
3.3. Hierarchical grid protocol

Observe that in the single grid protocol, if two users are

in the same row (respectively, column), they maintain a

direct secret. This direct secret is known to exactly two

users. In other words, for each row (respectively, column),

full secret protocol is used. Thus, we can recursively apply

the single grid protocol to reduce the number of such secrets

without compromising security. Let m denote the number of

users in a row. In the full secret protocol with m users, the

number of secrets is mK1. By contrast, in the grid protocol

with m users, the number of secrets is 4
ffiffiffiffi
m

p
K3. Hence, if

mK1 is larger than 4
ffiffiffiffi
m

p
K3, it would be possible to reduce

the number of secrets further.

To illustrate this approach, consider the 16!16 grid

shown in Fig. 2(a). The users in topmost row are numbered

as 1, 2, .16, and the users in rightmost column are

numbered 16, 32,.,256. Based on the single grid protocol,

when users 1 and 48 communicate, they use grid secrets at

locations marked with an arrow in Fig. 2(a). However, when

users 1 and 7 communicate they use the direct secret

between them. Instead of maintaining these direct secrets,

we rearrange the users in each row and column into a grid.

For example, consider Fig. 2(b) and (c), where we have

arranged the topmost row and rightmost column into a grid.

Once again, we use the grid protocol for these smaller grids

and associate direct secrets and grid secrets with these

nodes. Thus, if two nodes that are in the same row in the

original grid but are on different row and different column

on the subgrid then they can use the grid secrets associated

with the subgrid. Thus, when users 1 and 7 communicate,

they use the grid secrets marked with an arrow in Fig. 2(b).
Moreover, when users 1 and 2 communicate, they use the

direct secret between them in Fig. 2(b). As we can see, when

the number of users in a row is large enough such

rearranging will reduce the number of secrets further.

Therefore, we can continue this process further until the grid

is small enough so that a row cannot be further arranged into

a grid. With the above approach, the number of secrets that

each user will maintain is approximately equal to

numsecrets (we have ignored the K1 factor in this

calculation), where:

numsecrets Z 2
ffiffiffi
n

p
C4ð

ffiffiffiffiffiffiffiffiffi
n

p
q

ÞC8ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

p
qr

ÞC.

Z ð2 C3Þ
ffiffiffi
n

p
; where 0%3%2

Theorem 3.3. The hierarchical grid protocol solves the

problem of guaranteed security.
4. Lower bound for the problem of instantiating security

In this section, we show that the number of secrets

maintained by the single grid protocol (respectively,

hierarchical grid protocol) is within a constant factor of

the optimal. To precisely define this lower bound, we

consider the following definitions.

Definition (secretsu). secretsu denotes the secrets that user u

has.

Definition (ms). msZmax(secretsu)

The goal of the lower bound result is to show that in any

protocol that solves the problem of guaranteed security, the

value of ms in that protocol is at least
ffiffiffi
n

p
. Note that the

result allows the possibility that some users maintain a small
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number of secrets that is considerably less than
ffiffiffi
n

p
.

However, some users must maintain at least
ffiffiffi
n

p
secrets.

To show this result, similar to the definitions of secretsu

and ms, we define usersk, mu for each secret as follows.

Definition (usersk). usersk denotes the number of users that

have secret k.

Definition (mu). muZmax(usersk)

Now, we show that if a protocol solves the problem of

guaranteed security then mu%ms.

Theorem 4.1. If a protocol solves the problem of

guaranteed security between n, nO2, users then mu%ms.

Proof. We consider three cases depending upon the value of

mu.

† muZ1. In this case, given any two users they have no

common secret. Hence, the problem of guaranteed

security cannot be solved.

† muZ2. In this case, given any two users they must share

a unique secret that is known to only those two users.

Hence, the only feasible protocol is the full secret

protocol. For the full secret protocol msZnK1. More-

over, since nO2, the above theorem follows.

† muO2. Now, consider a secret, say s, that is shared by

mu number of users. Let u1, u2, .umu denote the users

that share secret s. Now, we show that user u1 must

maintain at least mu secrets and, hence, msRmu.

To show this, we first observe that muR3. Hence, s

cannot be used alone when u1 and u2 communicate. In

other words, if u1 and u2 communicate then they must

use at least one additional secret (with/without combin-

ing it with s). In other words, to facilitate privacy/authen-

tication between u1 and u2, u1 must maintain at least one

extra secret.

Continuing with this scenario, consider the communi-

cation between u1 and u3. Based on the above discussion,

to facilitate privacy/authentication between u1 and u3, u1

must maintain an additional secret. Moreover, this secret

cannot be the same as that shared with u2; otherwise, u2

can decrypt communication between u1 and u3.

Based on the above discussion, it follows that for each

user u2,.umu, u1 must maintain an additional secret.

Combining it with the secret s, we observe that the

secrets maintained by u1 is at least m. Thus,

msRmu. ,

Now, we prove the lower bound on the maximum

number of secrets maintained by a user.

Theorem 4.2. If a protocol solves the problem of

guaranteed security between n, nO2; users then msR
ffiffiffi
n

p
.

Proof. Note that ms denotes the maximum number of secrets

that any user maintains. Now, let j be a user that maintains ms

(i.e. the maximum number) secrets. Based on the require-

ment of instantiating secrets, between every pair of users,
there must be at least one shared secret. Based on Theorem 4.

1, each secret is maintained by at most ms users. Thus, j can

share secret with at most ms2 users. Since ms!
ffiffiffi
n

p
, j can

share a secret with at most ð
ffiffiffi
n

p
K1Þ2 users. Since

ð
ffiffiffi
n

p
K1Þ2!n, this is a contradiction. Thus, the maximum

number of secrets maintained by a user is at least
ffiffiffi
n

p
. ,

Theorem 4.3. The number of secrets maintained in the

single grid protocol (respectively, hierarchical grid proto-

col) is within a constant factor of the optimal.

Remark. Note that as discussed in Section 2, if two users

share only a single secret then they would need nK1 secrets.

Hence, to reduce the number of secrets, most users must

share at least 2 secrets. Using this observation, it is possible

to extend the proof of Theorem 4.2 to show that some users

must maintain at least
ffiffiffiffiffi
2n

p
secrets.
5. Protocols for probabilistic security

Based on the lower bound identified in Section 4, if users

cannot maintain Oð
ffiffiffi
n

p
Þ secrets, then privacy and authentica-

tion cannot be guaranteed. To deal with this negative result,

we propose solutions for probabilistic security where the

probability of privacy compromise is inversely proportional

to the number of secrets that users maintain. Before we

discuss these protocols, we first introduce the notion of

effectiveness for a secret distribution protocol.

Definition (Effectiveness). We say that a secret distribution

protocol is hs, pi effective if the maximum number of secrets

that any user has is s and given three randomly selected users,

j, k and l, the expected probability that l knows the secret

(respectively, all the secrets) used by j and k is at most p.

Definition (Storage dominate). Given two secret distri-

bution protocols, pr1 and pr2, with effectiveness hspr1
; ppr1

i

and hspr2
; ppr2

i respectively, we say that pr1 storage

dominates pr2 if spr1
%spr2

.

Definition (Security dominate). Given two secret distri-

bution protocols, pr1 and pr2, with effectiveness hspr1
; ppr1

i

and hspr2
; ppr2

i, respectively, we say that pr1 security

dominates pr2 if ppr1
%ppr2

.

Definition (Dominate). Given two secret distribution

protocols, pr1 and pr2, with effectiveness hspr1
; ppr1

i and

hspr2
; ppr2

i respectively, we say that pr1 dominates pr2 if

spr1
%spr2

and ppr1
%ppr2

.

Observation 5.1

† The single secret protocol is h1,1i effective.

† The full secret protocol is hnK1,0i effective.

† The single secret protocol storage dominates the full

secret protocol.

† The full secret protocol security dominates the single

secret protocol.
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† The single grid protocol is h4
ffiffiffi
n

p
K3; 0i effective.

† The single grid protocol (respectively, hierarchical grid

protocol) dominates the full secret protocol.

Thus, the single secret protocol and the full secret protocol

(respectively, single/hierarchical grid protocol) are two

extremes for security distribution protocols. In this section,

we focus on identifying protocols that are hx,yi effective

where 1!x!Oð
ffiffiffi
n

p
Þ and 0%y!1. Moreover, we focus on

security protocols where the level of security is adaptive, i.e.

if the number of secrets that each user gets is increased then

the probability of a compromise is reduced. We present two

such protocols in Sections 5.1 and 5.2. In both these

protocols, we focus on the issue of privacy. We show how

these protocols can resist identify attacks in Section 5.4.
5.1. Tree protocol

In this section, we present the first probabilistic protocol,

the tree protocol, for instantiating security. First, in Section

5.1.1, we present the version of the tree protocol where only

one tree is used. Then, in Section 5.1.2, we present the

version where multiple trees are used.

For each of these versions, we first identify the secret

distribution protocol that determines the secrets that each

user should get. Then, we present the secret selection

protocol; when two users need to communicate, they use this

protocol to determine a shared secret that they should use.

Subsequently, we compute the probability of compromise.
5.1.1. Single tree protocol

5.1.1.1. Secret distribution protocol. We organize the

secrets in a tree (cf. Fig. 3). Each non-leaf node is associated

with a secret and each leaf is associated with a user. Each

user is assigned an ID that identifies its location in the tree.

Each user is provided the secrets along the path towards the

root. Thus, user u1 has the secrets, k1, k2 and k4.

5.1.1.2. Secret selection protocol. When two users, say, j

and k, want to communicate, similar to the grid protocol,

they first exchange their identities. Subsequently, they

identify their least common ancestor. Based on the secret

distribution protocol, the shared secret associated with this

ancestor will be available to both j and k. Hence, the secret

associated with the ancestor will be used for communication

between j and k.
u5 u7

Level 1

Level 2

Level 3

k1

k5 k6

k2 k3

k4 k7

u8u6u1 u2 u3 u4

Fig. 3. Tree protocol.
For example, if users u1 and u2 want to communicate

then they will use k4 whereas if users u1 and u5 want to

communicate then they will use k1.

5.1.1.3. Computing the probability of security compromise.

Let l be an intruder that can observe the communication

between j and k. We identify the probability that l is aware

of the secret that j and k use. During this analysis, let the

degree of the secret-tree be d.

Now, we consider different cases based on the shared

secret that j and k use during communication. First, we

consider the probability that j and k use the secret at the root

(level 1). Such a situation arises if k is not a descendant of

the level-2-ancestor of j. Thus, the probability of this case is

(dK1)/d. And, in this case, the probability that l is aware of

the secret that j and k use is 1; all users in the secret-tree

have the secret associated with the root.

Next, we consider the probability that j and k use the

secret at level 2 in the tree. Such a situation arises if k is a

descendant of the level-2-ancestor of j and k is not a

descendant of the level-3-ancestor of j. Thus, the probability

of this case is 1/d!(dK1)/d. Moreover, l is aware of the

shared secret between j and k iff l is a descendant of the

level-2-ancestor of j. Thus, the probability of this case is 1/d.

Continuing thus, the probability, pcompromise, that l is

aware of the shared secret used by j and k is:

pcompromise Z
d K1

d
1
Xh

jZ0

1

d

� �2j
 !

!
d K1

d
1
XN
jZ0

1

d

� �2j
 !

Z
d K1

d

1

1 K 1
d2

Z
d

d C1

Theorem 5.2. The single tree protocol is hlogd(n), d/(dC1)i

effective.

From Theorem 5.2, it follows that as the degree, d,

increases, the level of security decreases. Moreover, as d

increases, the number of secrets maintained by a user

decreases. Thus, the tree protocol provides the tradeoff

between number of secrets maintained by users and the level

of security provided to them.
5.1.2. Multiple tree protocol

In the single tree protocol, the probability of security

compromise is minimized when dZ2. With dZ2, when j

and k want to communicate with each other, there is a 2/3

probability that a third user, l, knows the secret used by j and

k. We can reduce this probability further by using multiple
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secret-trees. We discuss the secret distribution and secret

selection protocol with such multiple trees, next.

5.1.2.1. Secret distribution protocol. In this protocol, the

secrets are arranged in multiple trees. Similar to the single

tree protocol, in this protocol, each internal node in each tree

is associated with a secret and each leaf is associated with a

user. Each tree includes all users. For each tree, the user gets

the secrets associated with its ancestors in that tree.

5.1.2.2. Secret selection protocol. For each secret-tree, j and

k identify the secret associated with their least common

ancestors. Then, they use the combination of all these

secrets (e.g. by xor-ing these secrets or by passing those

secrets through a one way hash function [19]) during

communication. It follows that l can learn the communi-

cation between j and k iff l knows all these secrets.

Clearly, if we use two trees where the position of all users

is identical and if l knows the secret (used by j and k) in the

first tree then, by definition, l will know the secret in the

second tree. Hence, when we use multiple trees to reduce

the probability of compromise the probability that l knows

the secret in one secret-tree should be independent of the

probability that l knows the secret in another tree. This can

be achieved if there is no correlation between the location of

a user across two trees.

Given K secret-trees, each with degree d, the probability

that l knows secrets from all the trees is (d/(dC1))K.

Thus, we have

Theorem 5.3. The multiple tree protocol with K trees is

hK log d (n), (d/(dC1))Ki effective.

From Theorem 5.3, it follows that the number of secrets

maintained by the tree protocol is O(log n). Moreover, as the

number of secrets maintained increases, so does the level of

security. Thus, the tree protocol provides the tradeoff

between number of secrets maintained by users and the level

of security provided to them. In Section 6, we compare this

protocol to the grid protocol.

Remark. Note that the above result is applicable for the

case where K/n. If the number of trees is close to n then

the lack of correlation is not possible. Moreover, if the

number of trees is close to the number of users then the users

would need to maintain a large number of secrets.
u13

k21
u9

k20
u8

k19
u7

k15
u3

k14
u2

k13 k26
u14

k25
u1

k7k6k5
k4

k2k1

k8

Fig. 4. Complementar
As an example, consider the case where we have 210

users and 10 secret-trees of degree 2 are maintained. In each

tree, a user maintains 10 secrets and the total number of

secrets that a user maintains is 100. In this case, the

probability of a compromise is (2/3)10Z1.73%. By contrast,

if we maintain a separate secret between every pair users then

each user will need to maintain 210K1 secrets. Multiple tree

protocol is even more effective when the number of users is

high. For example, if there are 220 users and we maintain 50

secret-trees then the probability of a compromise is 1.56!
10K9 when users maintain only 1000 secrets. By contrast, a

user would need over a million secrets if we were to maintain

a separate secret between every pair of users.

5.1.2.3. Users with different capabilities. If the users in the

network have different capabilities then for that case we can

extend the multiple tree protocol. Towards this end, we

proceed as follows: Based on the maximum capability of

any user, we identify the number of trees used. A user with

lower capability will only maintain keys from the first few

trees. Now, if j and k communicate and j has lower

capabilities than k then they will use only secrets from those

trees for which j has maintained the secrets. Thus, when two

users with different capabilities communicate, they can

obtain a level of security that is proportional to the

minimum of their capabilities.
5.2. Complementary tree protocol

In this section, we present the second probabilistic

protocol, the complementary tree protocol. Similar to the

tree protocol in Section 5.1, this protocol arranges secrets in

a tree (respectively, multiple trees). However, the secret

distribution protocol and secret selection protocol are

different. Once again, as in Section 5.1, we first present

the single complementary tree protocol and multiple

complementary tree protocol.
5.2.1. Single complementary tree protocol

5.2.1.1. Secret distribution protocol. Similar to the tree

protocol, we organize the secrets in the tree of degree d.

In this protocol, we require that dR3 (cf. Fig. 4). All nodes

in the tree except the root are associated with a secret.
k27
u15

k3

k12k11
k10k9

y tree protocol.
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Each leaf of the tree is associated with a user. (Note that a

leaf is associated with a user as well as a secret.)

The secret distribution is as follows. For each level

(except level 1), the user gets secrets associated with the

siblings of its ancestors (including itself). Thus, user u1 gets

secrets k2, k3 (level 2), k5, k6 (level 3), k14 and k15 (level 4).

A user does not get the secrets associated with its ancestors.

5.2.1.2. Secret selection protocol. When two users, say j and

k, want to communicate, they first identify their least

common ancestor. Let z be the least common ancestor of j

and k. Let x denote the child of z that is an ancestor of j.

Likewise, let y denote the child of z that is an ancestor of k.

Now, to communicate, j and k use the secrets associated

with all children of z except x and y.

For example, if u1 and u2 want to communicate, they use

the secret k15. If users u1 and u9 want to communicate then

they will use the secret k5. And, if u1 and u15 want to

communicate then they will use the secret k3.

5.2.1.3. Computing the probability of security compromise.

Let l be the intruder that can observe the communication

between j and k. We, now, identify the probability that l is

aware of the secret(s) used by j and k. Now, consider

different cases based on the shared secrets that j and k use

during communication. Since no secrets are associated with

the root, first consider the case where j and k use the

secret(s) at level 2. Such a situation occurs if k is not a

descendant of the level-2-ancestor of j. Thus, the probability

of this case is (dK1)/d. And, in this case, the probability that

l is aware of all the secrets is 2/d; l knows all the secrets used

by j and k iff l is a descendant of the level-2-ancestor of j or l

is a descendant of the level-2-ancestor of k.

Next, we consider the probability that j and k use the

secret at level 3 in the tree. Such a situation arises if k is a

descendent of the level-2-ancestor of j and k is not a

descendent of the level-3-ancestor of j. Thus, the probability

of this case is 1/d!(dK1)/d. Moreover, l is aware of the

shared secret(s) between j and k iff l is a descendant of the

level-3-ancestor of j or l is a descendant of the level-3-

ancestor of k. Thus, the probability of this case is 2/d!1/d.

Continuing thus, the probability, pcompromise, that l is

aware of the secret(s) used by j and k is

pcompromise Z
d K1

d

2

d
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Theorem 5.4. The single complementary tree protocol is

h(dK1)logd(n), 2/(dC1)i effective.
5.2.2. Multiple complementary tree protocol

It is possible to reduce the probability of compromise in

the complementary tree protocol even further if we maintain

multiple trees. More specifically, as in Section 5.1.2, if we

maintain K trees where there is no correlation between user

locations in different trees, the probability of security

compromise will be ((2/(dC1))K). Thus, we have:

Theorem 5.5. The multiple complementary tree protocol

with K trees is hK(dK1)logd(n), (2/(dC1))Ki effective.

Similar to the tree protocol, from Theorem 5.5, it follows

that the number of secrets maintained by the complementary

tree protocol is O(log n). Moreover, as the number of secrets

maintained increases, so does the level of security. Thus, the

complementary tree protocol also provides the tradeoff

between number of secrets maintained by users and the level

of security provided to them.

From the above discussion, it follows that the higher the

value of d, the lower the probability of compromise.

However, when two nodes need to communicate, they need

to use a combination of dK2 secrets per tree. This suggests

that the value of d should be small. In fact, it is desirable to

let d be 3 and use multiple trees. To see this, observe that if

we maintain one tree with dZ4, then the probability of

security compromise is 2/5. By contrast, using two trees

of degree 3, the probability of security compromise is

(2/4)2(Z1/4). In both cases, the users need to use two

secrets during communication. Thus, for the multiple

complementary tree protocol, the optimal value of d is 3.

(We would like to note that we will reach the same

conclusion even if we consider the number of secrets that

a user maintains instead of the number of secrets it uses

during communication.)
5.3. Discussion about probabilistic protocols

In this section, we discuss some of the questions raised

by our probabilistic protocols and briefly discuss some of

their extensions. Once again, similar to grid protocol in

Section 3, the tree protocol also focuses on what secrets

need to be distributed rather than how those secrets are

distributed. Approaches discussed in Section 3, providing

the initial secrets during initial programming of sensor

networks or providing the initial secrets through the trusted

authority, can be used to achieve the secret distribution.

We note that the distribution of keys in the above

probabilistic protocols is based on the logical key hierarchy

[20] and complementary key hierarchy [21]. The protocols

in [20,21] focus on the problem of maintaining security in a

group communication. Hence, in these protocols, the group

controller (trusted authority) changes the secrets when

the group membership changes so that a leaving
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(respectively, joining) user cannot access the future

(respectively, past) communication.

While the problem considered in this paper is different

than the problem considered in [20,21], the results from [20,

21] can be used in solve the problem of secret maintenance

or secret revocation [22–24]. For example, if some user is

compromised and, hence, needs to be removed so that it

cannot communicate with other users. In such a case, the

trusted authority could use the protocol from [20,21] to

change the secrets that the compromised user shared with

others. Moreover, in this case, based on the results in [20,

21], the number of encryptions/messages for performing

such secret maintenance for a tree is O(log n).

5.4. Resisting identity attacks

So far, in the probabilistic protocols, we have focused on

the issue of privacy during communication. Privacy deals

with the case where two users need to communicate in such a

way that no other user can decrypt the communication

between them. For this reason, while designing a solution for

privacy, one need not worry about the case where a user lies

about its identity. In this section, we focus on authentication

which needs to deal with the case where a user lies about its

identity. As discussed in Section 3, the grid protocol already

enables authentication. Hence, we focus on the probabilistic

protocols discussed above and the two protocols (single

secret protocol and full secret protocol) discussed in Section

2. For each of these protocols, we focus on the issue of

authentication, where one user can determine if its

communication partner is truly the one it claims to be. For

this section, consider the case where user j wants to validate

the identity of the user who claims to be k.

We begin with the single secret protocol considered in

Section 2. Since this protocol uses only one secret that is

shared between all legitimate users, j has no way to

authenticate k. The single secret protocol only allows j to

conclude that the user it is communicating with is a legitimate

user; j cannot verify whether it is k or some other user.

The full secret protocol in Section 2 solves the problem

of authentication. If some user l pretends to be k then it will

not be able to produce the secret shared between j and k.

Hence, when j verifies that its communication partner

knows the secret shared between j and k, it can conclude that

its communication partner is k.

In the context of the tree protocol (respectively,

complementary tree protocol), the user identity is deter-

mined by its location in the tree (respectively, all trees).

Hence, solving the problem of authentication in the tree

protocol is more complex. Specifically, an attacker, say l,

can pretend that it is at such a location that it must use the

secret associated with the root while communicating with j.

Hence, to apply the tree protocol for authentication, we need

to ensure that the location of l in one tree is related to its

location in another tree. Specifically, if there exists

a function f such that given a location xk of k in one tree,
the location of xk in the next tree is f(xk) then even if l lies

about its location in one tree, it is constrained on the

locations that it can use in the next tree. By choosing any

function f that permutes the given set of numbers in such a

way that correlation between the level of the common

ancestor between xj and xk and the level of the common

ancestor between f(xj) and f(xk) is small, we can use the tree

protocol for (probabilistic) authentication. Likewise, the

complementary tree protocol can be used to provide

probabilistic authentication. While identifying such a

function f for arbitrary networks remains an open problem,

we have found some simple functions that achieve the above

property for a small set of users. The problem of identifying

such functions is outside the scope of this paper.
6. Comparison of proposed protocols

In this section, we compare the protocols presented in

Sections 3 and 5. We first analytically compare the tree

protocol and the complementary tree protocol. Then, we

compute the probability of security compromise in these

protocols for different values of n, the number of users in the

network. Subsequently, we compare these two protocols with

the grid protocol. These results show that a reasonable level

of security can be obtained by maintaining a small percentage

of secrets maintained by the (single) grid protocol.

Since the number of secrets in the grid protocol are within

a constant factor of the minimum number of secrets that users

need to maintain, it follows that the tree protocol and the

complementary tree protocol are especially useful to provide

a reasonable level of security by maintaining a small number

of secrets. Finally, we compare the tree protocol and

complementary tree protocol with the full secret protocol.
6.1. Analytical modeling of probabilistic protocols

Suppose that a user maintains m secrets in the tree

protocol. Thus, m/log2n trees are maintained (for simplicity,

we ignore the issue of partial trees). The level of security

with m secrets is 2
3

	 
ð m
log2n

Þ
.

Recalling that the degree of the tree in the complemen-

tary tree protocol is 3, each user maintains 2 keys per tree

per level, and that the probability of compromise by using

one tree is 1/2, if each user maintains m secrets then the

probability of compromise is 1
2

	 
ð m
2log3n

Þ
.

From the above analysis, in the tree protocol and the

complementary tree protocol, the probability of compro-

mise is of the form aO(m), a!1, where m is the number

of secrets that a user maintains. In terms of the

probability of compromise, the complementary tree

protocol is slightly better. In terms of simplicity,

however, the tree protocol is better than the complemen-

tary tree protocol.
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Fig. 5. (a) Probability of security compromise vs. number of secrets maintained by a user. (Each plot corresponds to the total users in the system, e.g. ‘256’

corresponds to a system where there are a total of 256 users.). (b) shows the effect of the number of secrets on the probability of security compromise in the

complementary tree protocol. As we can see, even in this protocol, the probability of security compromise decreases quickly with a small increase in the

number of secrets that users maintains.
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Fig. 6. Comparison of tree protocol and complementary tree protocol (each

plot corresponds to the total users in the system, e.g. ‘tree-100’

(respectively, ‘compl tree-100’) corresponds to a system where tree

protocol (respectively, complementary tree protocol) is used for a system of

100 users.)
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6.2. Comparing the probability of compromise

in the probabilistic protocols

Now, we compare the probability of compromise for the

tree protocol and the complementary tree protocol as we

vary the number of users and the number secrets that they

maintain. During this comparison, we use the optimal

version of these protocols, i.e. we let the degree of the tree to

be 2 in the tree protocol and let the degree of the tree to be 3

in the complementary tree protocol.

Fig. 5(a) shows the effect of the number of secrets on the

probability of security compromise in the tree protocol. As

we can see, even if the number of users in the network is

large, small number of secrets suffice to ensure that the

probability of compromise is small. For example, if we

maintain 100 secrets with each user in a network consisting

of 64k users, the probability of compromise is less than

10%. Moreover, maintaining additional 20 secrets reduces

the probability to approximately 5%.

Fig. 5(b) shows the effect of the number of secrets on the

probability of security compromise in the complementary

tree protocol. As we can see, even in this protocol, the

probability of security compromise decreases quickly with a

small increase in the number of secrets that users maintains.

Fig. 6 compares the tree protocol with the complemen-

tary tree protocol. As shown in this figure, for the same

number of secrets that a user maintains, the probability of

compromise in the complementary tree protocol is less than

that in the tree protocol.

6.3. Tradeoff between guaranteed security and probabilistic

security

6.3.1. Comparing the tree protocol and the complementary

tree protocol with the grid protocol

Fig. 7 compares the cost of deterministic security versus

probabilistic security. More specifically, we ask the
question: How much security could be obtained by using

the tree protocol (respectively, complementary tree protocol)

if we maintain only a certain percentage of secrets

maintained by the grid protocol? Fig. 7(a) compares the

tree protocol and the grid protocol. Based on this graph, we

observe that for a group of 10,000 users, maintaining only

20% of the secrets is sufficient to ensure that the probability

of security compromise is approximately 6%. Fig. 7(b)

compares the complementary tree protocol and the grid

protocol. From this graph, we observe that for a group of

10000 users, maintaining only 20% of the secrets is

sufficient to ensure that the probability of security

compromise is approximately 3%. When the number of

users is large, the percentage of secrets required for the same

level of security is further reduced. For example, in the

complementary tree protocol, for 100,000 users, maintaining
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only 10% of secrets is sufficient to ensure that the

probability of compromise is less than 2.5%.

6.3.2. Comparing the tree protocol and the complementary

tree protocol with the full secret protocol

The ability of the tree protocol and the complementary

tree protocol to reduce the probability of compromise

becomes even more clear if we compare them to the full

secret protocol. Fig. 8 compares these probabilistic

protocols with the full secret protocol. As these graphs

show, maintaining only a small percent of secrets is

sufficient to keep the level of security compromise low.

(Note that in these graphs, we began with 10% of the secrets

maintained by the full secret protocol. Then, we reduced this

percentage to 0.1%.)
7. Effect of collusion

In our protocols for instantiating security, so far, we

assumed that collusion does not occur, i.e. two or more users
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do not collaborate (by sharing keys). We compute the effect

of the collusion on our grid protocol. Similar analysis can

also be used to compute probability of security compromise

in the probabilistic protocols in the presence of collusion. We

first consider the case where two users collude and then

consider a more general case where a collection of w users

collude where u%
ffiffiffi
n

p
.

7.1. Effect of collusion between two users

Consider an example where two users collude in the

single grid protocol. Note that a direct secret is shared

between exactly two users. Hence, if a user leaks that

secret to a third user, only the users that shared that direct

secret are affected. Hence, we only focus on the issue

where colluding users share the grid secrets. Without loss

of generality, we can assume that these users are located

in grid locations h1,1i and h2,2i (cf. Fig. 1).

For each user j, there are ð
ffiffiffi
n

p
K1Þ2 users with whom j

shares a grid secret. Thus, the number of pairs hj,ki that use a
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grid secret is nð
ffiffiffi
n

p
K1Þ2. Now, we identify the number of

these pairs that colluding users can affect.

Clearly, users locations h1,1i, h1,2i, h2,1i, and h2,2i cannot

communicate with any user securely; the secrets they use

are known to the colluding users. Thus, the number of

affected pairs in this case is:4ð
ffiffiffi
n

p
K1Þ2.

For the remaining users in the first row, their

communication is compromised when they communicate
w2ð
ffiffiffi
n

p
K1Þ2 C2wðw K1Þð

ffiffiffi
n

p
ÞK1ð

ffiffiffi
n

p
KwÞCw2ð

ffiffiffi
n

p
ÞKw2

nð
ffiffiffi
n

p
K1Þ2

:

with any user in the second row (except where direct secret

is used). (For example, when user h1,3i communicates with

user h2,4i communicate, the secrets they use are known to

the colluding users.) Since the same scenario applies to the

users in the second row (respectively, first and second

column), the number of affected pairs in this case is:

4ð
ffiffiffi
n

p
K1Þð

ffiffiffiffiffiffiffiffiffiffiffi
nK2

p
Þ.

Finally, for all other users (i.e. except those in the

first/second row/column), their communication is affected

only when they talk with users at locations h1,1i, h1,2i, h2,1i,

and h2,2i. Hence, the number of affected pairs in this case is

4
ffiffiffi
n

p
K2

	 
2
. Thus, the total affected pairs are

4ð
ffiffiffi
n

p
K1Þ2C4ð

ffiffiffi
n

p
K1Þð

ffiffiffi
n

p
K2ÞC4ð

ffiffiffi
n

p
K2Þ2. Thus, prob-

ability that pair is affected is

4ðð
ffiffiffi
n

p
K1Þ2 C ð

ffiffiffi
n

p
K1Þð

ffiffiffi
n

p
K2ÞC ð

ffiffiffi
n

p
K2Þ2Þ

nð
ffiffiffi
n

p
K1Þ2

:

Effect of collusion among w users. We can also extend

this result for the case where w users collude, where w%
ffiffiffi
n

p
.

Without loss of generality, let these users be h1,1i,.hw, wi.

In this case, the users hj, ki where j, k%w cannot

communicate securely with any user. Hence, the number of

affected pairs is: w2ð
ffiffiffi
n

p
K1Þ2. Likewise, the remaining
users in the first k rows will be affected if they communicate

with other users in the first k rows (except where direct

secret is used). Hence, the affected pairs are

2wðwK1Þð
ffiffiffi
n

p
K1Þð

ffiffiffi
n

p
KwÞ. Finally, for the remaining

users, their communication is affected only when they

communicate with users hj, ki, where j, k%num. Hence, the

number of pairs affected is: w2ð
ffiffiffi
n

p
KwÞ2. Combining these

numbers, the total number of affected pairs is: w2ð
ffiffiffi
n

p
K

1Þ2C2wðwK1Þð
ffiffiffi
n

p
K1Þð

ffiffiffi
n

p
KwÞ Cw2ð

ffiffiffi
n

p
KwÞ2. In other

words, the probability that a pair is affected is

Fig. 9 shows the effect of the number of colluding users.

As we can see, when the number of colluding users is small,

the probability of compromise is low.
8. Conclusion

In this paper, we presented three protocols for instantiating

security in ad-hoc networks where each user begins with a set

of initial secrets. These protocols allow users to obtain privacy

and authentication while communicating with each other.

Moreover, when two users communicate over a multi-hop

path, they can ensure that intermediate users can neither learn

the contents of the transmitted messages nor generate

messages that incorrectly appear to originate from the sender.

First, we presented the grid protocol that ensured that

solved the problem of guaranteed security, i.e. it ensured

that when two users, say j and k communicate, the set of

secrets they use is not known to any other user. This

protocol maintained Oð
ffiffiffi
n

p
Þ secrets where n is the number of

users in the network. We also showed that the number of

secrets maintained by the grid protocol is within a constant

factor of optimal (cf. Section 4).

Based on the optimality of the number of secrets

maintained by the grid protocol, when the number of users
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is large and users cannot maintain all these secrets, their

only choice is to use to provide probabilistic authentication

and privacy. For these cases we presented two probabilistic

protocols where the probability of a security compromise is

proportional to the secrets they can maintain. In these two

probabilistic protocols, the number of secrets maintained by

a user is O(log n), where n is the number of users. Moreover,

as shown in Section 6, in these probabilistic protocols,

maintaining a small number of secrets ensured that the

probability of security compromise is low.

Our probabilistic protocols can also be tailored to deal

with the case where the users have different capabilities.

Thus, it is possible that each user maintains secrets that

depend on its capability. When two users communicate,

their level of security will be decided by the user with lower

capabilities.

The results in this paper also provide a tradeoffs

encountered in ad hoc networks. Specifically, for the case

where the network requires guaranteed security, the grid

protocol may be used. For the case where processing power

or memory may prevent users from maintaining the secrets

required by the grid protocol, they can use the tree protocol

(respectively, complementary tree protocol). Moreover, if a

subset of users requires a higher level of security than others,

they can choose to maintain secrets associated with a larger

number of trees. Thus, when these users communicate among

themselves, the probability of security compromise will be

low. Finally, the tree protocol (respectively, complementary

tree protocol) can be combined with the grid protocol. In such

a combination, we can partition the users in subgroups. Each

subgroup can implement the grid protocol. And, these grids

would be used as leaves in the tree protocol. With such an

approach, it would be possible to ensure that communication

within a subgroup is always secure where the communication

across subgroups is secure with some probability.

To improve the security further and to reduce the window

of vulnerability, users should use their initial secrets to

establish a new disposable secret and use that new secret

during further communication. With such a change, security

can be compromised only if the adversary can eavesdrop

during the establishment of the new secret. Thus, if an

adversary moves into the talking range of two users that have

established their disposable secret then it would not be able to

learn about the communication between them.

There is a small gap between the lower bound on the

number of secrets ð
ffiffiffiffiffi
2n

p
Þ and the number of secrets

maintained ð2
ffiffiffi
n

p
Coð

ffiffiffi
n

p
ÞÞ in the hierarchical tree protocol.

The question of whether this gap can be closed remains open.
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