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ABSTRACT

The problem of tracking curves in dense visual clutter is challenging. Kalman filtering is in-
adequate because it is based on Gaussian densities which, being unimodal, cannot represent
simultaneous alternative hypotheses. The CONDENSATION algorithm uses “factored sampling”,
previously applied to the interpretation of static images, in which the probability distribution
of possible interpretations is represented by a randomly generated set. CONDENSATION uses
learned dynamical models, together with visual observations, to propagate the random set over
time. The result is highly robust tracking of agile motion. Notwithstanding the use of stochastic
methods, the algorithm runs in near real-time.
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1 Tracking curves in clutter

The purpose of this paper! is to establish a stochastic framework for tracking curves in visual
clutter, using a sampling algorithm. The approach is rooted in ideas from statistics, control
theory and computer vision. The problem is to track outlines and features of foreground objects,
modelled as curves, as they move in substantial clutter, and to do it at, or close to, video
frame-rate. This is challenging because elements in the background clutter may mimic parts
of foreground features. In the most severe case of camouflage, the background may consist of
objects similar to the foreground object, for instance when a person is moving past a crowd.
Our approach aims to dissolve the resulting ambiguity by applying probabilistic models of object
shape and motion to analyse the video-stream. The degree of generality of these models is pitched
carefully: sufficiently specific for effective disambiguation but sufficiently general to be broadly
applicable over entire classes of foreground objects.

1.1 Modelling shape and motion

Effective methods have arisen in computer vision for modelling shape and motion. When suitable
geometric models of a moving object are available, they can be matched effectively to image
data, though usually at considerable computational cost (Hogg, 1983; Lowe, 1991; Sullivan,
1992; Huttenlocher et al., 1993). Once an object has been located approximately, tracking it
in subsequent images becomes more efficient computationally (Lowe, 1992), especially if motion
is modelled as well as shape (Gennery, 1992; Harris, 1992). One important facility is the
modelling of curve segments which interact with images (Fischler and Elschlager, 1973; Yuille
and Hallinan, 1992) or image sequences (Kass et al., 1987; Dickmanns and Graefe, 1988). This
is more general than modelling entire objects but more clutter-resistant than applying signal-
processing to low-level corners or edges. The methods to be discussed here have been applied at
this level, to segments of parametric B-spline curves (Bartels et al., 1987) tracking over image
sequences (Menet et al., 1990; Cipolla and Blake, 1990). The B-spline curves could, in theory,
be parameterised by their control points. In practice this allows too many degrees of freedom
for stable tracking and it is necessary to restrict the curve to a low-dimensional parameter x, for
example over an affine space (Koenderink and Van Doorn, 1991; Ullman and Basri, 1991; Blake
et al., 1993), or more generally allowing a “shape-space” of non-rigid motion (Cootes et al.,
1993).

Finally, prior probability densities can be defined over the curves (Cootes et al., 1993) rep-
resented by appropriate parameter vectors x, and also over their motions (Terzopoulos and
Metaxas, 1991; Blake et al., 1993), and this constitutes a powerful facility for tracking. Reas-
onable defaults can be chosen for those densities. However, it is obviously more satisfactory to
measure or estimate them from data-sequences (x1,X2,...). Algorithms to do this, assuming
Gaussian densities, are known in the control-theory literature (Goodwin and Sin, 1984) and have
been applied in computer vision (Blake and Isard, 1994; Baumberg and Hogg, 1995). Given the
prior, and an observation density that characterises the statistical variability of image data z
given a curve state x, a posterior distribution can, in principle, be estimated for x; given z; at
successive times .

!This paper has appeared in short form (Isard and Blake, 1996) as joint winner of the prize of the European
Conference on Computer Vision, 1996.
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1.2 Kalman filters and data-association

Spatio-temporal estimation, the tracking of shape and position over time, has been dealt with
thoroughly by Kalman filtering, in the relatively clutter-free case in which p(x;) can satisfactorily
be modelled as Gaussian (Dickmanns and Graefe, 1988; Harris, 1992; Gennery, 1992; Rehg and
Kanade, 1994; Matthies et al., 1989) and can be applied to curves (Terzopoulos and Szeliski,
1992; Blake et al., 1993). These solutions work relatively poorly in clutter which causes the
density for x; to be multi-modal and therefore non-Gaussian. With simple, discrete features
such as points or corners combinatorial data-association methods can be effective with clutter
but combinatorial methods to do not apply naturally to curves. There remains a need for an
appropriately general probabilistic mechanism to handle multi-modal density functions.

1.3 Temporal propagation of conditional densities

The Kalman filter as a recursive linear estimator is a special case, applying only to Gaussian
densities, of a more general probability density propagation process. In continuous time this can
be described in terms of diffusion, governed by a “Fokker-Planck” equation (Astrom, 1970), in
which the density for x; drifts and spreads under the action of a stochastic model of its dynamics.
In the simple Gaussian case, the diffusion is purely linear and the density function evolves as a
Gaussian pulse that translates, spreads and is reinforced, remaining Gaussian throughout, as in
figure 1, a process that is described analytically and exactly by the Kalman filter. The random
component of the dynamical model leads to spreading — increasing uncertainty — while the
deterministic component causes the density function to drift bodily. The effect of an external
observation z; is to superimpose a reactive effect on the diffusion in which the density tends to
peak in the vicinity of observations. In clutter, there are typically several competing observations
and these tend to encourage a non-Gaussian state-density (figure 2).

The CONDENSATION algorithm is designed to address this more general situation. It has
the striking property that, generality notwithstanding, it is a considerably simpler algorithm
than the Kalman filter. Moreover, despite its use of random sampling which is often thought
to be computationally inefficient, the CONDENSATION algorithm runs in near real-time. This
is because tracking over time maintains relatively tight distributions for shape at successive
time-steps, and particularly so given the availability of accurate, learned models of shape and
motion.

2 Discrete-time propagation of state density

For computational purposes, the propagation process must be set out in terms of discrete time
t. The state of the modelled object at time ¢ is denoted x; and its history is X} = {x1,...,x:}.
Similarly the set of image features at time ¢ is z; with history Z; = {z1,...,2z;}. Note that
no functional assumptions (linearity, Gaussianity, unimodality) are made about densities in the
general treatment, though particular choices will be made in due course in order to demonstrate
the approach.



Isara ana blaxe. 1JUV, 111 press, (1J4J0). kS

i

b 0%) b b0

X

Y.

stochastic diffusion

Vo

X

reactive effect of measurement

Figure 1: Kalman filter as density propagation. In the case of Gaussian prior, process and
observation densities, and assuming linear dynamics, the propagation process of figure 2 reduces
to a diffusing Gaussian state density, represented completely by its evolving (multivariate) mean
and variance — precisely what a Kalman filter computes.

2.1 Stochastic dynamics

A somewhat general assumption is made for the probabilistic framework that the object dynam-
ics form a temporal Markov chain so that

p(xe|Xi-1) = pxe[xs-1) (1)

— the new state is conditioned directly only on the immediately preceding state, independent
of the earlier history. This still allows quite general dynamics, including stochastic difference
equations of arbitrary order; we use second order models and details are given later. The
dynamics are entirely determined therefore by the form of the conditional density p(x¢|x;—1)-
For instance,

1
p(z¢|T—1) ox exp _§($t — Tp_q — 1)2

represents a one-dimensional random walk (discrete diffusion) whose step length is a standard
normal variate, superimposed on a rightward drift at unit speed. Of course, for realistic problems,
the state x is multi-dimensional and the density is more complex (and, in the applications
presented later, learned from training sequences).
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Figure 2: Probability density propagation. Propagation is depicted here as it occurs over
a discrete time-step. There are three phases: drift due to the deterministic component of object
dynamics; diffusion due to the random component; reactive reinforcement due to observations.

2.2 Measurement

Observations z; are assumed to be independent, both mutually and with respect to the dynamical
process. This is expressed probabilistically as follows:

t—1
P(Z-1,xe|Xi—1) = p(xe| Xo—1) [] p(2il%s)- (2)

=1

Note that integrating over x; implies the mutual conditional independence of observations:

t
p(Z] &) = [ p(zilxi). (3)
=1

The observation process is therefore defined by specifying the conditional density p(z:|x;) at each
time ¢, and later, in computational examples, we take this to be a time-independent function
p(z|x). Suffice it to say for now that, in clutter, the observation density is multi-modal. Details
will be given in section 6
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2.3 Propagation

Given a continuous-valued Markov chain with independent observations, the conditional state-
density p; at time ¢ is defined by

pr(xt) = p(xe| Zy).

This represents all information about the state at time ¢ that is deducible from the entire data-
stream up to that time. The rule for propagation of state density over time is:

p(xe|22) = ke p(ze]xe)p(xe| 2e-1), (4)

where

POl Zia) = [ plabri-npixi-i|Zin) )

Xt—1

and k; is a normalisation constant that does not depend on x;. The validity of the rule is proved
in the appendix.

The propagation rule (4) should be interpreted simply as the equivalent of the Bayes’ rule
(6) for inferring posterior state density from data, for the time-varying case. The effective prior
p(x¢|2¢—1) is actually a prediction taken from the posterior p(x;_1|Z;_1) from the previous
time-step, onto which is superimposed one time-step from the dynamical model (Fokker-Planck
drift plus diffusion as in figure 2), which is expressed in (5). Multiplication in (4) by the
observation density p(z:|/x;) in the Bayesian manner then applies the reactive effect expected
from observations. Because the observation density is non-Gaussian, the evolving state density
p(x¢|2;) is also generally non-Gaussian. The problem now is how to apply a nonlinear filter to
evaluate the state density over time, without incurring excessive computational load. Inevitably
this means approximating. Numerous approaches, including “multiple hypothesis tracking”,
have been proposed but prove unsuitable for use with curves as opposed to discrete features
— details are given in the appendix. In this paper we propose a sampling approach which is
described in the following two sections.

3 Factored sampling

This section describes first the factored sampling algorithm dealing with non-Gaussian observa-
tions in single images. Then factored sampling is extended in the following section to deal with
temporal image sequences.

A standard problem in statistical pattern recognition is to find an object parameterised as
x with prior p(x), using data z from a single image. The posterior density p(x|z) represents
all the knowledge about x that is deducible from the data. It can be evaluated in principle by
applying Bayes’ rule (Papoulis, 1990) to obtain

p(x|z) = kp(z[x)p(x) (6)

where k is a normalisation constant that is independent of x. In cases where p(z|x) is sufficiently
complex that p(x|z) cannot be evaluated simply in closed form, iterative sampling techniques
can be used (Geman and Geman, 1984; Ripley and Sutherland, 1990; Grenander et al., 1991;
Storvik, 1994). The factored sampling algorithm (Grenander et al., 1991) generates a random
variate x from a distribution p(x) that approximates the posterior p(x|z). First a sample-set
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{s, ..., s(M} is generated from the prior density p(x) and then an index i € {1,...,N} is
chosen with probability 7;, where .
p,(s)
M= ——

Zjvzl Pz (S(J))

and
p2(x) = p(z[x),

the conditional observation density. The value x’ = x; chosen in this fashion has a distribution
which approximates the posterior p(x|z) increasingly accurately as N increases (figure 3).

k
PrObabIhty posterior

density

@ weighted
sample

Y

@D amo ¢ Qo © State *

Figure 3: Factored sampling. A set of points s\, the centres of the blobs in the figure, is
sampled randomly from a prior density p(x). Each sample is assigned a weight m; (depicted
by blob area) in proportion to the value of the observation density p(z|x = s®). The weighted
point-set then serves as a representation of the posterior density p(x|z), suitable for sampling.
The one-dimensional case illustrated here extends naturally to the practical case that the density
1s defined over several position and shape variables.

Note that posterior mean properties £[g(x)|z] can be generated directly from the samples
{s(™} by weighting with p,(x) to give:

N (n) (n)
E[g(x)|z] ~ En:l]g(s )pZ(S )

n=1Dz (S(n)) ©

For example, the mean can be estimated using g(x) = x (illustrated in figure 4) and the
variance using g(x) = xx’. In the case that p(x) is a spatial Gauss-Markov process, Gibbs
sampling from p(x) has been used to generate the random variates {sV),...,s(™)}. Otherwise,
for low-dimensional parameterisations as in this paper, standard, direct methods can be used
for Gaussians? (Press et al., 1988). Note that, in the case that the density p(z|x) is normal, the
mean obtained by factored sampling is consistent with an estimate obtained more convention-
ally, and efficiently, from linear least squares estimation. For multi-modal distributions which

*Note: the presence of clutter causes p(z|x) to be non-Gaussian, but the prior p(x) may still happily be
Gaussian, and that is what will be assumed in our experiments.
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cannot be approximated as normal, so that linear estimators are unusable, estimates of mean x
by factored sampling continue to apply.

a) b)

Figure 4: Sample-set representation of shape distributions The sample-set representation
of probability distributions, illustrated in one dimension in figure 3, is illustrated here (a) as it
applies to the distribution of a multi-dimensional curve parameter x. Each sample s™ is shown
as a curve (of varying position and shape) with a thickness proportional to the weight m,. The
weighted mean of the sample set (b) serves as an estimator of the distribution mean.

4 The CONDENSATION algorithm

The CONDENSATION algorithm is based on factored sampling but extended to apply iteratively
to successive images in a sequence. The same sampling strategy has been developed elsewhere
(Gordon et al., 1993; Kitagawa, 1996), presented as developments of Monte-Carlo methods.
Jump-diffusion tracking (Miller et al., 1995) may also be related to the approach described here.

Given that the process at each time-step is a self-contained iteration of factored sampling, the
output of an iteration will be a weighted, time-stamped sample-set, denoted {sgn), n=1,...,N}
with weights ﬁ,gn), representing approximately the conditional state-density p(x;|Z;) at time ¢.
How is this sample-set obtained? Clearly the process must begin with a prior density and the
effective prior for time-step ¢ should be p(x;| Z;—1). This prior is of course multi-modal in general
and no functional representation of it is available. It is derived from the sample set representation
{(sg@l, wgf)l), n=1,...,N} of p(x¢_1|2;_1), the output from the previous time-step, to which
prediction (5) must then be applied.

The iterative process as applied to sample-sets, depicted in figure 5, mirrors the continuous
diffusion process in figure 2. At the top of the diagram, the output from time-step ¢ — 1 is
the weighted sample-set {(Sgﬁ)l,ﬂ'?gﬁ)l), n =1,...,N}. The aim is to maintain, at successive
time-steps, sample sets of fixed size IV, so that the algorithm can be guaranteed to run within

a given computational resource. The first operation therefore is to sample (with replacement)
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Figure 5: One time-step in the CONDENSATION algorithm. Fach of the three steps — drift-
diffuse-measure — of the probabilistic propagation process of figure 2 is represented by steps in
the CONDENSATION algorithm.
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N times from the set {S,@I}, choosing a given element with probability wt(f)l. Some elements,
especially those with high weights, may be chosen several times, leading to identical copies of
elements in the new set. Others with relatively low weights may not be chosen at all.

Each element chosen from the new set is now subjected to the predictive steps. First, an
element undergoes drift and, since this is deterministic, identical elements in the new set undergo
the same drift. This is apparent in the figure. The second predictive step, diffusion, is random
and identical elements now split because each undergoes its own independent Brownian motion
step. At this stage, the sample set {sgn)} for the new time-step has been generated but, as yet,
without its weights; it is approximately a fair random sample from the effective prior density
p(x¢|2¢—1) for time-step ¢. Finally, the observation step from factored sampling is applied,
gen(egati?g) weights from the observation density p(z:|x;) to obtain the sample-set representation
{( n n

s; ~,m; ')} of state-density for time ¢.

Figure 6 gives a synopsis of the algorithm. Note the use of cumulative weights c§9_)1 (con-
structed in step 3) to achieve efficient sampling in step 1. After any time-step, it is possible to
“report” on the current state, for example by evaluating some moment of the state density as
shown.

One of the striking properties of the CONDENSATION algorithm is its simplicity, compared
with the Kalman filter, despite its generality. Largely this is due to the absence of the Riccati
equation which appears in the Kalman filter for the propagation of covariance. The Riccati
equation is relatively complex computationally but is not required in the CONDENSATION al-
gorithm which instead deals with variability by sampling, involving the repeated computation
of a relatively simple propagation formula.

5 Stochastic dynamical models for curve motion

In order to apply the CONDENSATION algorithm, which is general, to tracking curves in image-
streams, specific probability densities must be established both for the dynamics of the object
and for the observation process. In the examples described here, z is a linear parameterisation of
the curve and allowed transformations of the curve are represented by linear transformations of
z. The CONDENSATION algorithm itself does not demand necessarily a linear parameterisation
though linearity is an attraction for another reason — the availability of algorithms to learn
object dynamics. The algorithm could also be used, in principle, with non-linear parameterised
kinematics — for instance representing an articulated hand in terms of joint angles (Rehg and
Kanade, 1994).

5.1 Linear parameterisations of splines for tracking

We represent the state of a tracked object following methods established for tracking using a
Kalman filter (Blake et al., 1995). Objects are modelled as a curve (or set of curves), typically
though not necessarily the occluding contour, and represented at time ¢ by a parameterised
image curve r(s,t). The parameterisation is in terms of B-splines, so

r(s,t) = (B(s) - Q°(¢), B(s)- QY(t)) for 0<s<L (8)

where B(s) is a vector (Bi(s),...,Bng(s))T of B-spline basis functions, Q* and QY are vectors
of B-spline control point coordinates and L is the number of spans. It usually desirable (Blake
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Iterate
From the “0ld” sample-set {s,@l, W,gﬁ)l, c,@l, n=1,...,N} at time-step ¢t—1, construct
a “new” sample-set {sgn),w§"),c§”)},n =1,..., N for time t¢.

Construct the n'* of N new samples as follows:

1. Select a sample s} as follows:

(a) generate a random number 7 € [0, 1], uniformly distributed.
(b) find, by binary subdivision, the smallest j for which cﬁi)l >r
(c) set sg(”) = S,Ej;)l

2. Predict by sampling from

("))

p(xe|xp 1 = Slt

to choose each sﬁ"). For instance, in the case that the dynamics are governed by
a linear stochastic differential equation, the new sample value may be generated
as: sgn) = As’,gn) + ngn) where wgn) is a vector of standard normal random

variates, and BBT is the process noise covariance — see section 5.

3. Measure and weight the new position in terms of the measured features z;:

Wgn) = p(z¢|x; = Sgn))

n) _

then normalise so that ), 7r§ 1 and store together with cumulative probab-

ility as (sgn),ﬂgn),cﬁn)) where
c§°) = 0,
c§”) = cgn_l) + wt(”) (n=1,...,N).

Once the N samples have been constructed: estimate, if desired, moments of the
tracked position at time-step ¢ as

1G] = 3271 (i)
n=1

obtaining, for instance, a mean position using f(x) = x.

Figure 6: The CONDENSATION algorithm.
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et al., 1993) to restrict the configuration of the spline to a shape-space of vectors X defined by

Q" Q'
=WX+ , 9
( Q Q )
where the matrix W is a matrix of rank Nx considerably lower than the 2Np degrees of freedom
of the unconstrained spline. Typically the shape-space may allow affine deformations of the

template shape Q, or more generally a space of rigid and non-rigid deformations. The space is
constructed by applying an appropriate combination of three methods to build a W-matrix:

1. determining analytically combinations of contours derived from one or more views (Ullman
and Basri, 1991; Koenderink and Van Doorn, 1991; Blake et al., 1993), a method that is
usable both for affine spaces and for certain classes of articulated object;

2. capturing sequences of key frames of the object in different poses (Blake et al., 1995);

3. performing principal components analysis on a set of outlines of the deforming object
(Cootes et al., 1993; Baumberg and Hogg, 1994) to derive a small set of representative
contours.

5.2 Dynamical model

Exploiting earlier work on dynamical modelling (Blake et al., 1993; Blake et al., 1995), object
dynamics are modelled as a 2nd order process, conveniently represented in discrete time ¢ as a
2nd order linear difference equation:

X —X = A(Xt_l - )_() + BWt (10)

where w; are independent vectors of independent standard normal variables, the state-vector

x; = ( . ) , (11)

and where X is the mean value of the state and A, B are matrices representing the deterministic
and stochastic components of the dynamical model respectively. The system is a set of damped
oscillators, whose modes, natural frequencies and damping constants are determined by A, driven
by random accelerations coupled into the dynamics via B from the noise term Bw. While it is
possible to set sensible defaults for A, x and B, it is more satisfactory and effective to estimate
them from input data taken while the object performs typical motions. Methods for doing this
via Maximum Likelihood Estimation are essential to the work described here and are described
fully elsewhere (Blake et al., 1995; Reynard et al., 1996).

The dynamical model can be re-expressed in such a way as to make quite clear that it is a
temporal Markov chain:

p(xe[x1) o exp —%IIB_I((Xt —%) — A(xe-1 —%))|? (12)

where ||... || is the Euclidean norm. It is therefore clear that the learned dynamical models are
appropriate for use in the CONDENSATION algorithm.
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5.3 Initial conditions

Initial conditions for tracking can be determined by specifying the prior density p(xp), and
if this is Gaussian, direct sampling can be used to initialise the CONDENSATION algorithm.
Alternatively it is possible simply to allow the density p(x;) to settle to a steady state p(xso),
in the absence of object measurements. Provided the learned dynamics are stable (free of
undamped oscillations) a unique steady state exists. Furthermore, if p(x) is Gaussian, p(xs) is
Gaussian with parameters that can be computed by iterating the Riccati equation (Gelb, 1974).
At this point the density function represents an envelope of possible configurations of the object,
as learned during the training phase. (Background clutter, if present, will modify and bias this
envelope to some extent.) Then, as soon as the foreground object arrives and is measured, the
density p(x;) begins to evolve appropriately.

6 Observation model

The observation process defined by p(z;|x;) is assumed here to be stationary in time (though the
CONDENSATION algorithm does not necessarily demand this) so a static function p(z|x) needs to
be specified. As yet we have no capability to estimate it from data, though that would be ideal,
so some reasonable assumptions must be made. First a measurement model for one-dimensional
data with clutter is suggested. Then an extension is proposed for two-dimensional observations
that is also used later in computational experiments.

6.1 One-dimensional observations in clutter

In one dimension, observations reduce to a set of scalar positions {z = (21, 22, ..., 23)} and the
observation density has the form p(z|z) where z is one-dimensional position. The multiplicity
of measurements reflects the presence of clutter so either one of the events

¢m = {true measurement is z,,}, m=1,..., M

occurs, or else the target object is not visible with probability ¢ = 1—3",, P(¢m). Such reasoning
about clutter and false alarms is commonly used in target tracking (Bar-Shalom and Fortmann,
1988). Now the observation density can be expressed as

M
p(z|z) = gp(z|clutter) + > p(a|z, $m) P(¢m)-

m=1

A reasonable functional form for this can be obtained by making some specific assumptions:
that® P(¢n,) = p, V m, that the clutter is a Poisson process along the line with spatial density
A and that any true target measurement is unbiased and normally distributed with standard
deviation o. This leads to

plzlz) oc 1+ (13)

1 Z V2,
V2rnoa P 202

where o = ¢\ and v, = 2, — z, and is illustrated in figure 7. Peaks in the density function

3There could be some benefit in allowing the P(¢.,) to vary with m to reflect varying degrees of feature-affinity,
based on contrast, colour or orientation.
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Figure 7: One-dimensional observation model. A probabilistic observation model allowing
for clutter and the possibility of missing the target altogether is specified here as a conditional
density p(z|z).

correspond to measured features and the state density will tend to be reinforced in the CoON-
DENSATION algorithm at such points. The background level reflects the possibility that the
true target has not been detected at all. The effect on tracking behaviour is to provide for the
possibility of “tunneling”: a good hypothesis should survive a transitory failure of observations
due, for example, to occlusion of the tracked object. The parameters o (units of distance) and
« (units of inverse distance) must be chosen, though in principle they could be estimated from
data by observing measurement error ¢ and both the density of clutter A and probability of
non-detection gq.

Counsiderable economy can be applied, in practice, in the evaluation of the observation dens-
ity. Given a hypothesised position z in the “observation” step (figure 6) it is not necessary to
attend to all features z1,..., 2. Any v, for which

2
exp —# <1

1
V2o
can be neglected and this sets a search window around the position z outside which measurements
can be ignored. For practical values of the constants the search window will have a width of
a few o. In practice the clutter is sufficiently sparse and o is sufficiently small that the search
window rarely contains more than one feature.

Note that the density p(z|z) represents the information about z given a fixed number M
of measurements. Potentially, the event 1ps that there are M measurements, regardless of the
actual values of those measurements, also constitutes information about z. However, we can
reasonably assume here that

P(Yul|z) = P(¥m),
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for instance because z is assumed to lie always within the image window. In that case, by Bayes’
theorem,

p(z|m) = p()

— the event 1y provides no additional information about the position z. (If z is allowed also
to fall outside the image window then the event s is informative: a value of M well above the
mean value for the background clutter enhances the probability that z lies within the window.)

6.2 Two-dimensional observations

In a two-dimensional image, the set of observations z is, in principle, the entire set of features
visible in the image. However, an important aspect of earlier systems in achieving real-time per-
formance (Lowe, 1992; Harris, 1992; Blake et al., 1993) has been the restriction of measurement
to a sparse set of lines normal to the tracked curve. These two apparently conflicting ideas can
be resolved as follows.

The observation density p(z|x) in two dimensions describes the distribution of a (linearly)
parameterised image curve z(s), given a hypothetical shape in the form of a curve r(s), 0 < s < 1,
represented by a shape parameter x. The two-dimensional density be derived as an extension
of the one-dimensional case. It is assumed that a mapping g(s) is known that associates each
point z(s) on the image curve with a point r(g(s)) on the shape. In practice this mapping is
set up by tracing normals from the curve r. Note that g(s) is not necessarily injective because
z(s) includes clutter as well as foreground features. Next the one-dimensional density (13) is
approximated in a more amenable form that neglects the possibility of more than one feature
lying inside the search interval:

Plal) o exp 55 flis ) where f(v;0) = min(s?, 47), (14)

p = V20 log(1/y/2mao) is a spatial scale constant, and v, is the v, with smallest magnitude,
representing the feature lying closest to the hypothesised position . A natural extension to two
dimensions is then

1 L
plafx) = Zexp—- [ f(mr(s) —r(e)in) ds (15)
in which r is a variance constant and z;(s) is the closest associated feature to r(s):

z1(s) = z(s') where s’ =arg min |r(s) —z(s)|.
s'eg1(s)
Note that the constant of proportionality (“partition function”) Z(x) is an unknown function.
We make the assumption that the variation of Z with x is slow compared with the other term
in (15) so that Z can be treated as constant. It remains to establish whether this assumption is
justified.
The observation density (15) can be computed via a discrete approximation, the simplest

being;:
M

plaf) ox exp {— 3 5 a(om) - r(sm>;u>}, (16)

m=1

where s, = m/M. This is simply the product of one-dimensional densities (14) with o = vrM,
evaluated independently along M curve normals as in figure 8.
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Figure 8: Observation process. The thick line is a hypothesised shape, represented as a
parametric spline curve. The spines are curve normals along which high-contrast features (white
crosses) are sought.
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7 Applying the CONDENSATION algorithm to video-streams

Four examples are shown here of the practical efficacy of the CONDENSATION algorithm. Movie
(MPEG) versions of some results are available on the web at http://www.robots.ox.ac.uk/"ab/.

7.1 Tracking a multi-modal distribution

The ability of the CONDENSATION algorithm to represent multi-modal distributions was tested
using a 70 frame (2.8 second) sequence of a cluttered room containing three people each facing
the camera (figure 9). One of the people moves from right to left, in front of the other two. The

Figure 9: Tracking three people in a cluttered room. The first frame of a sequence in
which one figure moves from right to left in front of two stationary figures.

shape-space for tracking is built from a hand-drawn template of head and shoulders (figure 8)
which is then allowed to deform via planar affine transformations . A Kalman filter contour-
tracker (Blake et al., 1993) with default motion parameters is able to track a single moving person
just well enough to obtain a sequence of outline curves that is usable as training data. Given
the high level of clutter, adequate performance with the Kalman filter is obtained here by means
of background modelling (Rowe and Blake, 1996), a statistical form of background subtraction,
which effectively removes clutter from the image data before it is tracked. It transpires, for this
particular training set, that the learned motions comprise primarily horizontal translation, with
vertical translation and horizontal and vertical shear present to a lesser degree.

The learned shape and motion model can now be installed as p(x¢|x;—1) in the CONDENS-
ATION algorithm which is now run on a test sequence but without the benefit of background
modelling, so that the background clutter is now visible to the tracker. Figure 10 shows how the
state-density evolves as tracking progresses. Initialisation is performed simply by iterating the
stochastic model, in the absence of measurements, to its steady state and it can be seen that this
corresponds, at time 0, to a roughly Gaussian distribution, as expected. The distribution rapidly
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Figure 10: Tracking with multi-modal state-density. An approximate depiction of the
state-density is shown, computed by smoothing the distribution of point masses sgl),s§2), e in
the CONDENSATION algorithm. The density is, of course, multi-dimensional; its projection onto
the horizontal translation axis is shown here. The initial distribution is roughly Gaussian but
this rapidly evolves to acquire peaks corresponding to each of the three people in the scene. The
right-most peak drifts leftwards, following the moving person, coalescing with and separating from
the other two peaks as it moves. Having specified a tracker for one person we effectively have,
for free, a multi-person tracker, owing to the innate ability of the CONDENSATION algorithm to
maintain multiple hypotheses.



Isara ana blaxe. 1JUV, 111 press, (1J4J0).

collapses down to three peaks which are then maintained appropriately even during temporary
occlusion. Although the tracker was designed to track just one person, the CONDENSATION
algorithm allows the tracking of all three, for free; the ability to represent multi-modal distri-
butions effectively provides multiple hypothesis capability. Tracking is based on frame rate (40
ms) sampling in this experiment and distributions are plotted in the figure for alternate frames.
The experiment was run using a distribution of N = 1000 samples per time-step.

7.2 Tracking rapid motions through clutter

The ability to track more agile motion, still against clutter, was tested using a 500 field (10
second) sequence of a girl dancing vigorously to a Scottish reel. The shape-space for tracking
was planar affine, based on a hand-drawn template curve for the head outline. The training
sequence consisted of dancing against a largely uncluttered background, tracked by a Kalman
filter contour-tracker with default dynamics to record 140 fields (2.8 seconds) of tracked head
positions, the most that could be tracked before losing lock. Those 140 fields were sufficient
to learn a bootstrap motion model which then allowed the Kalman filter to track the training
data for 800 fields (16 seconds) before loss of lock. The motion model obtained from these 800
fields was used in experiments with the CONDENSATION tracker and applied to the test data,
now including clutter.

Figure 11 shows some stills from the test sequence, with a trail of preceding head positions
to indicate motion. The motion is primarily translation, with some horizontal shear apparent
as the dancer turns her head. Representing the state density with N = 100 samples at each
time-step proves just sufficient for successful tracking. As in the previous example, a prior
density can be computed as the steady state of the motion model and, in this case, that yields
a prior for position that spreads across most of the image area, as might be expected given the
range of the dance. Such a broad distribution cannot effectively be represented by just N = 100
samples. One alternative is to increase N in the early stages of tracking, and this is done in a
later experiment. Alternatively, the prior can be based on a narrower distribution whose centre
is positioned by hand over the object at time 0, and that is what was done here. Observation
parameters were y = 24, ¢ = 7 with M = 18 normals.

Figure 12 shows the motion of the centroid of the estimated head position as tracked both
by the CONDENSATION algorithm and by a Kalman filter using the same motion model. The
CONDENSATION tracker correctly estimated head position throughout the sequence, but after
about 40 fields (0.80s), the Kalman filter was distracted by clutter, never to recover.

Given that there is only one moving person in this experiment, unlike the previous one in
which there were three, it might seem that a unimodal representation of the state density should
suffice. This is emphatically not the case. The facility to represent multiple modes is crucial to
robustness as figure 13 illustrates. The figure shows how the distribution becomes misaligned
(at 900ms), reacting to the distracting form of the computer screen. After a further 20ms the
distribution splits into two distinct peaks, one corresponding to clutter (the screen), one to
the dancer’s head. At this point the clutter peak actually has the higher posterior probability
— a unimodal tracker, for instance a Kalman filter, would almost certainly discard the lower
peak, rendering it unable to recover. The CONDENSATION algorithm however, capable as it is of
carrying several hypotheses simultaneously, does recover rapidly as the clutter peak decays for
lack of confirmatory observation, leaving just one peak corresponding to the dancer at 960 ms.
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field 221 (4420 ms) field 265 (5300 ms)

Figure 11: Tracking agile motion in clutter. The test sequence consists of 500 fields (10
seconds) of agile dance against a cluttered background. The dancer’s head is tracked through
the sequence. Several representative fields are shown here, each with a trail of successive mean
tracked head positions at intervals of 40 ms. The CONDENSATION algorithm used N = 100
samples per time-step to obtain these results.
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Condensation tracker Kalman filter tracker

Figure 12: The Condensation tracker succeeds where a Kalman filter fails. The es-
timated centroid for the sequence shown in figure 11 is plotted against time for the entire 500
field sequence, as tracked first by the CONDENSATION tracker, then by a comparable Kalman fil-
ter tracker. The CONDENSATION algorithm correctly estimates the head position throughout the
sequence. The Kalman filter tracks briefly, but is soon distracted by clutter and never recovers.

7.3 Tracking an articulated object

The preceding sequences show motion taking place in affine shape-spaces of just 6 dimensions.
High dimensionality is one of the factors, in addition to agility and clutter, that makes tracking
hard (Blake et al., 1993). In order to investigate tracking performance in higher dimensions, we
used a 500 field (10 second) test sequence of a hand translating, rotating, and flexing its fingers
independently, over a highly cluttered desk scene (figure 14). Figure 15 shows just how severe
the clutter problem is — the hand is immersed in a dense field of edges.

A model of shape and motion model was learned from training sequences of hand motion
against a plain background, tracked by Kalman filter (using signed edges to help to disambiguate
finger boundaries). The procedure comprised several stages, creative assembly of methods from
the available “toolkit” for learning (Blake et al., 1995).

1. Shape-space was constructed from 6 templates drawn around the hand with the palm
in a fixed orientation and with the fingers and thumb in various configurations. The 6
templates combined linearly to form a 5-dimensional space of deformations which were
then added to the space of translations to form a 7 dimensional shape-space.

2. Default dynamics in the shape-space above were adequate to track a clutter-free training
sequence of 600 frames in which the palm of the hand maintained an approximately fixed
attitude.

3. Principal components analysis: the sequence of 600 hand outlines was replicated with
each hand contour rotated through 90 degrees and the sequences concatenated to give a
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field 45 (900 ms) field 46 (920 ms)

field 47 (940 ms) field 48 (960 ms)

Figure 13: Recovering from tracking failure. Detail from 4 consecutive fields of the se-
quence illustrated in figure 11. Each sample from the distribution is plotted on the image, with
intensity scaled to indicate its posterior probability. (Most of the N = 100 samples have too low
a probability to be visible in this display.) In field 45, the distribution is misaligned, and has
begun to diverge. In fields 46 and 47 it has split into two distinct peaks, the larger attracted to
background clutter, but converges back onto the dancer in field 48.
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Figure 14: A hand moving over a cluttered desk. Field 0 of a 500 field (10 second) sequence
in which the hand translates, rotates, and the fingers and thumb flex independently.

Edge detector Condensation

Figure 15: Severe clutter. Detail of one field (figure 14) from the test-sequence shows the high
level of potential ambiguity. Output from a directional Gaussian edge detector shows that there
are many clutter edges present as potential distractors.
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sequence of 1200 deformations. Projecting out the translational component of motion,
the application of Principal Component Analysis (PCA) to the sequence of residual de-
formations of the 1200 contours established a 10-dimensional space that accounted almost
entirely for deformation. This was then combined with the translational space to form a
12-dimensional shape-space that accounted both for the flexing of fingers and thumb and
also for rotations of the palm.

4. Bootstrapping: a Kalman filter with default dynamics in the 12-dimensional shape-space
was sufficient to track a training sequence of 800 fields of the hand translating, rotating,
and flexing fingers and thumb slowly. This was used to learn a model of motion.

5. Re-learning: that motion model was installed in a Kalman filter used to track another,
faster training-sequence of 800 fields. This allowed a model for more agile motion to be
learned, which was then used in experiments with the CONDENSATION tracker.

Figure 16: Tracking a flexing hand across a cluttered desk. Representative stills from a
500 field (10 second) sequence show a hand moving over a highly cluttered desk scene. The fingers
and thumb flex independently, and the hand translates and rotates. Here the CONDENSATION
algorithm uses N = 1500 samples per time-step initially, dropping gradually over 4 fields to
N = 500 for the tracking of the remainder of the sequence. The mean configuration of the
contour is displayed.

Figure 16 shows detail of a series of images from a tracked, 500 field test-sequence. The initial
state density was simply the steady state of the motion model, obtained by allowing the filter
to iterate in the absence of observations. Tracker initialisation was facilitated by using more
samples per time-step (N = 1500) at time ¢ = 0, falling gradually to 500 over the first 4 fields.
The rest of the sequence was tracked using N = 500. As with the previous example of the
dancer, clutter can distract the tracker but the ability to represent multi-modal state density
means that tracking can recover.

7.4 Tracking a camouflaged object

Finally, we tested the ability of the algorithm to track rapid motion against background dis-
traction in the extreme case that background objects actually mimiced the tracked object. A
12 second (600 field) sequence showed a bush blowing in the wind, the task being to track one
particular leaf. A template was drawn by hand around a still of one chosen leaf and allowed to
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undergo affine deformations during tracking. Given that a clutter-free training sequence was not
available, the motion model was again learned by means of a bootstrap procedure. A tracker
with default dynamics proved capable of tracking the first 150 fields of a training sequence be-
fore losing the leaf, and those tracked positions allowed a first approximation to the model to
be learned. Installing that in a CONDENSATION tracker, the entire sequence could be tracked,
though with occasional misalignments. Finally a third learned model was sufficient to track
accurately the entire 12-second training sequence. Despite occasional violent gusts of wind and
temporary obscuration by another leaf, the CONDENSATION algorithm successfully followed the
object, as figure 17 shows. In fact, tracking is accurate enough using N = 1200 samples to

Figure 17: Tracking with camouflage. The aim is to track a single camouflaged moving leaf
in this 12-second sequence of a bush blowing in the wind. Despite the heavy clutter of distractors
which actually mimic the foreground object, and occasional violent gusts of wind, the chosen
foreground leaf is successfully tracked throughout the sequence. Representative stills depict mean
contour configurations, with preceding tracked leaf positions plotted at 40 ms intervals to indicate
motion.

separate the foreground leaf from the background reliably, an effect which can otherwise only be
achieved using “blue-screening”. Having obtained the model iteratively as above, independent
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test sequences could be tracked without further training. With N = 1200 samples per time-step
the tracker runs at 6.5 Hz on a SGI Indy SC4400 200MHz workstation. Reducing this to N = 200
increases processing speed to video frame-rate (25 Hz), at the cost of occasional misalignments
in the mean configuration of the contour. Observation parameters were y = 8, o = 3 with
M = 21 normals.

8 Conclusions

Tracking in clutter is hard because of the essential multi-modality of the conditional observation
density p(z|x). In the case of curves multiple-hypothesis tracking is inapplicable and a new
approach is needed. The CONDENSATION algorithm is a fusion of the statistical factored sampling
algorithm for static, non-Gaussian problems with a stochastic model for object motion. The
result is an algorithm for tracking rigid and non-rigid motion which has been demonstrated to be
far more effective in clutter than comparable Kalman filters. Performance of the CONDENSATION
algorithm improves as the sample size parameter N increases; formally computational complexity
is O(Nlog N), although this can be made O(N) with a minor modification to the sampling
procedure. Impressive results have been demonstrated for models with between 6 and 12 degrees
of freedom, even when N is as low as 100-200. Performance in several cases was improved still
further with an increased value NV = 1000. In a 6-dimensional shape-space, the system currently
runs with N = 100 in real-time (50Hz) on a desk-top graphics workstation (SGI Indy R4400SC,
200 MHz).

The new approach raises a number of questions. First, alternative observation models could
be explored in order to make greater use of image intensity variations, though without sacrificing
too much in the way of photometric invariance. It is to be hoped in the interests of efficiency
that, as happens with the search window in the edge-based case, computational attention could
be concentrated in a band around the hypothesised curve without significant loss of accuracy in
the model. Such a model would have echoes of correlation matching but of course without the
exhaustive search characteristic of correlation matchers which is quite infeasible in more than
two or three dimensions.

Secondly, the availability of general state densities suggests the need for more general rep-
resentations of those densities. When the density is approximately unimodal, first and second
moments may be adequate to convey the likely states, but in the multi-modal case, as for
example when several people are tracked simultaneously, the mean configuration is not a par-
ticularly useful statistic — it meaninglessly combines the configurations of the three people. An
alternative is to attempt to develop a mode finder capable of pin-pointing several modes when
present. More generally there is a need for “operators” to interrogate densities: for instance,
an operator to find a person moving to the right, or to find the tallest person. Perhaps such
operators could be formulated as hypothesis tests applied to sample sets.

A third question concerns the random sampling scheme and its efficiency. Factored sampling
can be inefficient as the modes of p(z|x) become narrow. One approach is “importance sampling”
(Ripley, 1987) in which a heuristically chosen distribution, approximating p(z|x), is used to
concentrate random sampling around modes. However, this has the drawback that the prior
p(x) must be repeatedly evaluated whereas, in temporal propagation, the prior (prediction)
p(x¢|z¢—1) cannot be evaluated pointwise, only sampled.

Fourthly and finally, it is striking that the density propagation equation (4) in the CON-
DENSATION algorithm is a continuous form of the propagation rule of the “forward algorithm”
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for Hidden Markov Models (HMMs) (Rabiner and Bing-Hwang, 1993). The integral over con-
tinuous states in (5) becomes a summation over discrete states in the HMM, with p(x|x¢—1)
represented by a transition matrix. This suggests a natural opportunity to combine the two so
that mixed discrete/continuous states could be propagated over time. This would allow switch-
ing between multiple models, for instance walk-trot-canter-gallop, each model represented by a
stochastic differential equation, with transitions governed by a discrete conditional probability
matrix. It seems likely that such a system could be executed as a CONDENSATION tracker. A
further challenge is to develop a learning algorithm for mixed dynamical models.
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A Non-linear filtering

There are four distinct probability distributions represented in a non-linear Bayesian filter.
Three of them form part of the problem specification and the fourth constitutes the solution.
The three specified distributions are:

1. the prior density p(x) for the state x
2. the process density p(x¢|x;—1) that describes the stochastic dynamics
3. the observation density p(z|x)

and the filter evolves over time to generate, as the solution at each time-step, the state-density
pt(x) where py(x;) = p(x¢|2¢). Only when all of the three specified distributions are Gaussian
is the state-density p; also Gaussian. Otherwise, for non-Gaussian p;, it is possible to use one
of a number of approximate filters, depending on which of the specified densities it is that is
non-Gaussian.

A.1 Non-Gaussian prior density

The case that the prior density is non-Gaussian is the simplest to deal with provided only that
it can adequately be represented (or approximated) as an additive Gaussian mixture:

M
po(x) = Z w(m)G(x;,u(m),Pém)).

m=1

In that case, provided that other specified densities are Gaussian, the state density can also be
represented as a corresponding mixture

M
pu(x) = - w™ a0 ™, P
m=1
in which the means ,ugm) and variances Pt(m) vary over time but the weights w(™ are fixed. Each
of the M mixture components evolves as an independent Gaussian so that, in fact, the state
density is just a sum of densities from M independent linear Kalman filters.

A.2 Non-Gaussian process density

Non-Gaussian state densities can arise from the nature of the process either because the dy-
namics are driven by non-Gaussian process noise, or, more generally, because the deterministic
dynamics are non-linear. One approach to filtering is then to approximate the dynamics by
Taylor expansion as a linear process with time-varying coefficients and proceed as for linear
Kalman filters. This generates a Gaussian representation of the evolving state-density which
may be a good approximation depending on the nature of the non-linearity. This is the basis
of the “Extended Kalman Filter” (EKF) (Gelb, 1974; Bar-Shalom and Fortmann, 1988). Al-
ternatively, one can attempt a mixture representation, as earlier, but now allowing the weights
w(™) also to vary over time. Unfortunately, even allowing dynamic re-weighting (Sorenson and
Alspach, 1971) does not produce exact solutions for p;(x), because the individual Gaussian com-
ponents do not remain Gaussian over time. For example, consider the case in which the process
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density p(x¢|x;_1) is itself an additive mixture of k¥ > 1 Gaussian components. According to the
Bayesian propagation equation (5) each component of p; splits into k separate components in the
transition from time n to time n + 1; the total number of components in p; grows exponentially
as k*. Clearly p; must be approximated at each time-step to prune back the number of com-
ponents (Anderson and Moore, 1979) within some resource-limited bound M. Effectively there
are Mk full Kalman filters running at each time-step, each bringing the computational expense
of its own Riccati equation step. Clearly the success of this approach depends on how well the
densities p; and p(x¢|x;—1) can be approximated with a modest number Mk of components.

A.3 Non-Gaussian observation density

In the case of visual tracking in clutter, non-linearity of the tracking filter arises, as we have
seen, because the observation density p(z|x) is non-Gaussian and, furthermore, is multi-modal so
that it cannot be well approximated by a single Gaussian. Each of the methods just mentioned
for handling non-Gaussian process density, the EKF and Gaussian mixtures, are relevant also
to non-Gaussian observation density but continue to have the same drawbacks. Note that, in
the case of Gaussian mixtures, the number of mixture components again proliferates at each
time-step of (4), albeit via a different mechanism involving products of Gaussians rather than
convolutions. Even this assumes that the observation density can be approximated as a mixture
but in clutter this becomes rather inefficient, requiring at least one component per visible feature.

There is an additional class of techniques which applies to this case when the non-Gaussian
state density arises from clutter of a particular sort. In the simplest case, one of a finite set
of measurements z; = {z;1,...,2 4} at time n is to be associated with the state x; at time ¢.
Heuristic mechanisms such as the validation gate and the probabilistic data-association filter
(PDAF) (Bar-Shalom and Fortmann, 1988) attempt to deal with the ambiguity of association.
Alternatively it can, in principle, be dealt with exactly by “multiple hypothesis filtering” but
with computational cost that grows exponentially over time and which is therefore ruled out
in practice. The “RANSAC” algorithm (Fischler and Bolles, 1981) deals probabilistically with
multiple observations but the observations have to be discrete, and there is no mechanism for
temporal propagation. More complex methods including the Joint PDAF (JPDAF) (Bar-Shalom
and Fortmann, 1988; Rao, 1992) address the more difficult problem of associating not simply
single features but subsequences of Z; with the state. However, these methods rely on the
existence of discrete features. In contour tracking the features are continuous curves and so are
not naturally amenable to discrete association.

A.4 Direct integration

Finally, one very general approach to nonlinear filtering must be mentioned. This is simply
to integrate (5) directly, using a suitable numerical representation of the state density such as
finite elements. This in essence is what (Bucy, 1969) proposed and more recently (Hager, 1990)
investigated with respect to robotics applications. It is usable in one or two dimensions but,
complexity being exponential in the dimension, is altogether infeasible for problems of dimension
around 620, typical of the tracking problems dealt with here. The CONDENSATION algorithm
is designed to offer a viable alternative.
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B Derivation of the sampling rule

The correctness of the sampling rule (4) on page 6 is proved by first deriving two lemmas from
the independence assumption (2). (This is similar to the derivation found in (Bar-Shalom and
Fortmann, 1988), except that our independence assumptions are explicitly specified.)

Lemma 1

p(ze| X, Z1-1) = p(2e|xy)-
Proof:

p(2e| %) = plze, Z2i-1|X)
= p(zt| 211, X)p(Z-1|A%)
t—1
= plze| Zi-1, %) [ p(zalxs)-
i=1
(Taking (3) at time ¢ and integrating w.r.t. z; yields the reduction of the second term in line
2.) Now, using (3) again gives the result.

Lemma 2
p(xe| Xi—1, Z1—1) = p(xe|x4—1).
Proof:
p(xt, Zi-1|X—1) = p(x¢|Xi—1)p(Zi-1|Xi-1)
from (2) so

P(Xe| 211, Xp—1) = (x| Xp—1) = p(x4]x4-1),

using the Markov assumption (1).
Derivation of the propagation formula: consider

p(z¢| X, Zi—1)p(X4| Zi-1)
p(2ze|21-1)
ki p(z¢| Xy, Z1-1)p( X3 Z4-1)
= k¢ p(z¢|x¢)p(X¢| Z¢-1) wusing lemma 1.

p(X|2) =

Now integrating w.r.t. X1 gives
p(xt|Zs) = ki p(ze|xt)p (x| Z4-1).

The last term can be expanded:

p(xt|Zi-1) = p(xe| Xi—1, Z1-1)p(Xi—1]24-1)

S

Xi—1

/X p(x¢|x¢—1)p(X4—1|2¢—1) using lemma 2

which is the required result.
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C Asymptotic correctness of the CONDENSATION Algorithm

The CONDENSATION algorithm is validated here by a probabilistic argument showing that the
sample-set representation of conditional density is correct, asymptotically, as the size N of the
sample set at each time-step gets large. The argument is based on the one by Grenander et
al. to justify their factored sampling algorithm for interpretation of static images. They use
the standard probabilistic tool of “weak convergence” (Rao, 1973) and the “weak law of large
numbers” to show that a posterior distribution inferred by factored sampling can be made
arbitrarily accurate by choosing N sufficiently large. No formal indication is given as to how
large N should be for a given level of accuracy, something which is determined in practice by
experimentation.

In the proof that follows, the correctness proof for factored sampling of a static image is made
inductive so that it can be applied to successive images in a sequence. This would be sufficient
to apply several independent images to the estimation of a static underlying object. A further
generalisation takes account of the predictive step (step 2 of the CONDENSATION algorithm) that
deals with the dynamics of an object in motion.

C.1 Factored sampling

The asymptotic correctness of the factored sampling algorithm (section 3) is expressed in a
theorem of Grenander et al (1991):

Theorem 3 (Factored sampling) If apop, is an (absolutely continuous) density function
(with o a suitable normalisation constant) then for any given value x

P(x) = apo(x)p,(x), weakly, as N — oo

— pointwise, weak convergence of the density function to the required posterior.

(Recall p is the density function of the random variate x generated by factored sampling, as
defined in section 3.) The proof of the theorem was given by Grenander et al..

C.2 Dynamic extension of factored sampling

The first step in the extension for dynamic problems is to state a corollary of the theorem above
that generalises it slightly to the case where the prior is not known exactly but has itself been
simulated approximately.

Cor. 4 (Weak factored sampling) The sequence si,...,Sy is now generated by sampling
from a density ps chosen such that

ps(x) = po(x), weakly, as N — oo,

where convergence is uniform with respect to x. Provided p, is bounded, the random variate x'
generated from the s, as before has a density function p for which

p(x) = apo(x)p,(x) weakly, as N — oo

and convergence is uniform with respect to x.

The proof of this corollary is straightforward.
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C.3 Propagation of approximated state density
(n)

First note that the samples s; ’ generated by the algorithm can themselves be regarded as ran-
dom variables. Using the corollary it is possible to establish that asymptotically the probability
density of any given sﬁ”) converges to the desired probability density p(x¢|Z;—1) . From now on
the limit symbol — is used to denote weak, uniform convergence of density functions as N — oo.
The correctness result is expressed in the theorem below. We first require a normalisation as-

sumption for the process density, that
/p(xt|xt_1)dxt_1 is bounded*. (17)

Theorem 5 (Weak propagation) FEach sample sgn), n=1,...,N at time t is drawn from a

distribution with density py such that
Pr(xe) = p(xe| Z4-1).

Proof

The proof is inductive. Suppose the result holds for p;_1; then after step 1 of the algorithm in
figure 6, by the corollary, and observing that the sampling probabilities are

(n) (n))

n
w1 o pzg1]x 1 =8;_ 1

each s’ ,@1 has a density p}_; such that

Pi—1 = a1p(xi—1|Z1—2)p(Ze—1|x1-1)

where a;_1 is a normalisation constant so that

Pi1 = p(x¢-1|Z1-1).
In step 2 of the algorithm the random dynamical step is applied to s’§”) to give s,E") with
density p” such that

Pi) = [plaxies =s(7) p(s) ds'f”
= /p(xt|xt—1)pl(xt—1)dxt—1

— /p(xt|xt,1)p(xt,1|Zt,1)dxt,l (making use of (17))
= p(xt|Z1-1)
(n)

and this is the required density function for s; ’, establishing the inductive step as required.

(n)

Finally the ground instance is straightforward. Initial samples s’}
the prior pg so that, after step 2 of the algorithm, the sgn) are sampled predictions for time £ = 1

from a density p; such that

are drawn in step 1 from

P1(x1) = p(x1) = p(x1]2o)-

4This assumption is not restrictive in practice but is a little inelegant and perhaps there is a way to do without
it.
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(Z) is an empty set) so certainly
P1(x1) = p(x1|20)

as required.

Note that convergence has not been proved to be uniform in ¢. For a given fixed ¢, there is
convergence as N — oo but nothing is said about the limit £ — oo. In practice this could mean
that at later times ¢ larger values of N may be required, though that could depend also on other
factors such as the nature of the dynamical model.



