
Basic Math for 16-720

August 23, 2002

1 Linear Algebra

1.1 Vectors and Matrices

First, a reminder of a few basic notations, definitions, and terminology:

• Unless indicated otherwise, vectors are always column vectors (n× 1 matrices). The identity matrix
is denoted by I.

• The dot product of two column vectors is defined as u · v = uTv

• The norm of of a vector is defined as |u|2 = uTu

• If θ is the angle between u and v, then cos θ = uTv
|u||v|

• A matrix A is symmetric if A = AT

• The null space of a matrix A is the set of vectors x such that Ax = 0

• The rank of A is the dimension of its column(row) space

• A n× n matrix A is non-singular (A−1 exists) if its rank is n, i.e., det(A) 6= 0

• A p × p minor of A is an p × p sub-matrix extracted from the rows and columns of A. If A is of
rank r < n then all of its p× p minors have zero determinant for p > r.

• The range of A is the set of vector y such that there exists a vector x with Ax = y

• As an often-used notation, we denote by [A|B] the p × (m + n) matrix obtain by concatenating
the m columns of the p×m matrix A and the n columns of the p× n matrix B (with the obvious
corresponding notation for concatenation of the rows.)

1.2 Matrix Decompositions

1.2.1 Eigenvectors and Eigenvalues

x is an eigenvector of a n× n matrix A if there exists a scalar λ such that: Ax = λx; λ is the eigenvalue
associated with the eigenvector x1.

If A is a symmetric matrix, then it has n real eigenvalues that are solution of the nth-degree polynomial
equation det(A− λI) = 0.

If A is of rank r, then n− r eigenvalues are equal to 0.

Note that, if x is an eigenvector of A, then so is αx for any scalar α. Usually, when we talk about THE
eigenvectors of the A, we refer to the vector such that ‖x‖2 = 1.

1In MATLAB: help eig

1

Eigenvalues and eigenvectors are used for reducing a general symmetric matrix A to a simpler form.
Namely, if λi are the eigenvalues and vi are the corresponding eigenvectors, then A can be decomposed
(diagonalized) in the form:

A = RDRT

where D is a diagonal matrix whose ith diagonal elements is λi and R is an orthonormal matrix (RTR =
RRT = I)whose ith column is vi.

Eigenvalues and eigenvectors have a simple (and very useful) geometric interpretation. Suppose that all
the eigenvalues of A are positive. In that case, the locus of points x such that xTAx = 1 is an ellipsoid.
The eigenvectors are the directions of the axes of the ellipsoid; the eigenvalues quantify the elongations in
the directions of the axes. Specifically, if λi is the eigenvalue corresponding to the ith axis of the ellipsoid,
the radius of the ellipsoid along this axis is 1√

λi
. Another interpretation of the decomposition is that R is

the rotation matrix that aligns the coordinate axis with the axes of the ellipsoid.

Two additional properties of the eigenvalues are often useful:

• The sum of the eigenvalues of A is equal to the trace of A, i.e., the sum of its diagonal elements

• The product of the eigenvalues is equal to the determinant of A

The concept of eigenvalue can be generalized further:

• Given two symmetric n × n matrices A and B, x is a generalized eigenvector associated with
generalized eigenvalue λ if:

Ax = λBx

The computation of the generalized eigenvalues is more difficult, of course, but is critical in some problems2.

1.2.2 Rayleigh Quotient

In turns out that many problems in computer vision can be reduced to the mathematical problem state-
ment:

• Given a symmetric matrix A, find a vector x such that

• xTAx is maximum AND

• ‖x‖2 = 1

This problem is a constrained maximization problem (constrained because of ‖x‖2 = 1). This problem is
strictly equivalent to the problem:

• Find x such that x
TAx
xTx is maximum.

(recall that ‖x‖2 = xTx.) The ratio above is sometimes called a Rayleigh Quotient.

The solution to this problem is given by the following theorem:

• xTAxxTx reaches its absolute maximum when x is an eigenvector of A corresponding to the largest
eigenvalue λmax.

2In MATLAB, the same function eig solves the generalized problem.

2

Note that the same result holds if the ratio is minimized (this time the smallest eigenvalue is used, of
course.)

This result can be generalized in a straightforward manner:

• Given two matrices A and B, x
TAx
xTBx reaches its absolute maximum when x is a generalized eigen-

vector of A corresponding to the largest generalized eigenvalue λmax, that is: Ax = λmaxBx

Note that this generalized problem is equivalent to maximizing xTAx under the constraint xTBx = 1.

As a simple example of application of the Rayleigh Quotient theorem, consider the following (contrived)
problem: Suppose that we have a set of vectors in two dimensions, uj with j = 1 . . .m. We wish to find
the vector x of magnitude 1 such that x is as close as possible to the uj ’s. The distance between x and
uj could be measured by the dot product xTuj . This dot product measures the angle between x and uj
and is maximum (equal to the magnitude of uj) if x =

uj
|uj | . Therefore, we want to find a unit vector x

that maximizes:

∑
j(x

Tuj)
2 =

∑
j x

Tuju
T
j x = xT

∑
j uju

T
j x

This is exactly the Rayleigh Quotient problem, so the solution is the eigenvector xmax corresponding to
the largest eigenvalue λmax of the matrix:

A =
∑

j

uju
T
j

Incidentally A is the scatter matrix of the cloud of points formed by the vectors uj and it defines the best
fit ellipsoid to that cloud of points. In particular, xmax corresponds to the direction of largest variation
of the cloud of points.

1.2.3 Singular Value Decomposition

The decomposition in eigenvalues (diagonalization) applies only to square matrices. A more general
decomposition is the Singular Value Decomposition (SVD)3. A m × n matrix A with m ≥ n can always
be decomposed in the form:

A = UΣV T

where:

• Σ is an n×n diagonal matrix. The elements σ1, . . . , σn of the diagonal are called the singular values
of A and σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0

• U is a m × n matrix. The columns of U are of unit norm and orthogonal to each other, that is:
UTU = I (sometimes called column-orthonormal)

• V is a n× n orthonormal matrix, that is: V TV = V V T = I

The SVD is a powerful tool for analyzing matrices. The key properties of the SVD are:

• SVD and eigenvalues: If A happens to be a square matrix m = n, then there is a simple relation
between the eigenvalues αi of ATA and the singular values σi: αi = σ2

i . In particular, if A is
symmetric, then: λ2

i = σ2
i where λi is the eigenvalue of A.

• Rank: Suppose that p singular values are non-0, i.e., σ1 ≥ . . . ≥ σp ≥ 0 and σp+1 = . . . = σn−p = 0,
then the rank of A is p.

3In MATLAB: help svd

3

• Null Space: If A is of rank p, then the n− p lowest singular values are equal to 0 and the last n− p
columns of V form an orthonormal basis of the null space of A. This is extremely important in
practice because it allows us to represent explicitly the set of vectors for which Ax = 0, the null
space.

• Range: This is the dual property to the null space property: the first p columns of U form an
orthonormal basis for the range of A, that is, the set of vectors y such that there exists a vector x
with y = Ax.

A key application of SVD is to solve the following problem:

• Given a m× n matrix A with m ≥ n.

• Given a number p ≤ n

• Find the matrix Ap of rank p that is closest to A.

To solve this problem, we need to define what we mean by “closest”. We can define the distance between
any two matrices M and N by:

∑
i,j(mij − nij)2, that is the sum of squared differences between the

components of M and N . This defines a norm on the space of matrices, which is usually called the
Frobenius norm. The Frobenius norm simply captures the intuitive notion that matrices are “close to each
other” if they all their elements are close to each other.

Having defined the Frobenius norm, we can now state the key result (a result that we will use repeatedly
in vision applications, by the way):

• The matrix Ap of rank p that is the closest (in the Frobenius sense) to a given matrix A with SVD

decompostion A = UΣV T is given by:

Ap = UpΣpV
T
p , where

– Σp is a p× p diagonal matrix whose elements are the first p singular values of A.

– Up is a m× p matrix formed by taking the first p columns of U .

– V p is a n× p matrix formed by taking the first p columns of V .

This looks complicated, but all it really says is that if you want to approximate a matrix by a matrix of
rank p, all you need to do is to ignore the n− p least important components of the matrix (corresponding
to the n− p smallest singular values), and that it is mathematically the optimal thing to do! See Figure
2 for a graphical illustration.

The reason why this is important is that, in many problems, we know the rank p that some matrix A
should have because of prior knowledge about the structure of the underlying problem. However, because
of noise in the data, the real matrix that we observe A′ may have a higher rank. Using the theorem above,
we can recover the “ideal” matrix of rank p that approximates the matrix observed from the actual data,
A′, in a simple way.

Let us take a look at a simple toy example. Suppose that we are working on a problem in which we want
to exploit the fact that a matrix computed from the data is known to be of rank 2. For example, suppose
that the ideal (unknown) value of the matrix is:

A =




1 2 3
2 1 3
4 2 6




Because of noise in the data, e.g., the matrix may have been derived from pixel values in an image, the
actual matrix that we observe from the data is perturbed and is instead:

4

A′ =




1 2 3
2 1 3
4 2 6 + 10−4




A′ is now of full rank because of the noise perturbation, and therefore any algorithm that depends on the
rank-2 assumption will fail. The SVD decomposition of A′ is:

A′ =



−0.497 −0.648 −0.577
−0.313 0.754 −0.577
−0.810 0.106 0.577






9.075 0 0
0 1.280 0
0 0 2.5× 10−5





−0.497 −0.648 −0.577
−0.313 0.754 −0.577
−0.810 0.106 0.577



T

The projection theorem above tells us that the closest rank-2 matrix to the actual data matrix A′ is:

A′′ =



−0.497 −0.648
−0.313 0.754
−0.810 0.106



[

9.075 0
0 1.280

]

−0.497 −0.648
−0.313 0.754
−0.810 0.106



T

What the theorem gives us is an easy way to find the matrix A′′ that best fits our model (rank 2) given
the data, A′.

1.3 2-D and 3-D Geometry

1.3.1 Rigid and Affine Transformations

Let’s consider for a moment the cases of 2 and 3-dimensional spaces. The simplest geometric transfor-
mation in such spaces is a translation y = x+ t. The next type of transformation is a rotation y = Rx
where R is an orthonormal matrix, RTR = RRT = I.

In 3-D, R is fully defined by three parameters, either three rotation angles about the three coordinate
axes, or the direction of the rotation axis and the angle of rotation.

In 2-D, R is fully parameterized by one rotation angle θ and has the general form:

R =

[
cos θ − sin θ
sin θ cos θ

]

Rigid transformations are combinations of rotations of translations: y = Rx + t. Rigid transformations
preserve lengths and angles.

If we replace the rotation matrix R by a general 2× 2 (or 3× 3) matrix A, the resulting transformation
y = Ax + t is called an affine transformation. Affine transformations do not preserve lengths or angles
but they do preserve ratios of lengths and parallelism (parallel lines remain parallel after transformation.)

1.3.2 Homogeneous Coordinates

If u = [x y]T is a 2-D vector, we could write the transformation v = Au+ t as:

v = M



x
y
1


, where M = [A|t] is the 2× 3 matrix obtained by concatenating the columns of A and t.

The interesting thing is that the transformation between v and [x y 1]T is expressed by a single 2×3 matrix
M . In general, the vector [x y]T is said to be expressed in homogeneous coordinates as [x y 1]T . More
generally, any set of homogeneous coordinates [a b c]T such that a/c = x and b/c = y represent the same
2-D vector [x y]T . Two vectors expressed in homogeneous coordinates, ũ = [a b c]T and ũ′ = [a′ b′ c′]T ,
represent the same vector if a/c = a′/c′ and b/c = b′/c′. In that case we write ũ ≡ ũ′ (or ũ ∝ ũ′,
depending on the text!) to indicate that ũ and ũ′ are equivalent sets of homogeneous coordinates.

Be careful: ũ ≡ ũ′ does not mean that the components of ũ and ũ′ are equal, only that they are
proportional.

5

With these definitions, a generic affine transformation y = Ax+t is expressed in homogeneous coordinates
as a transformation of the form ũ′ = Mũ, where M is the 3× 3 matrix defined as:

M =

[
A t
0 0 1

]

For example, the rigid transformation of rotation angle θ and translation [2 3]T is represented in homoge-
neous coordinates by:

M =




cos θ − sin θ 2
sin θ cos θ 3

0 0 1




Homogeneous coordinates are defined in the same way in 3-D by adding one coordinate to the three-
dimensional vectors. That is, two homogeneous vectors ũ = [a b c d]T and ũ′ = [a′ b′ c′ d′]T represent the
same 3-D vector if: a/c = a′/d′ = x, b/d = b′/d′ = y, and c/d = c′/d′ = z. A generic affine transformation
y = Ax + t is expressed in homogeneous coordinates as a transformation of the form ũ′ = Mũ, where
M is the 4× 4 matrix defined as:

M =

[
A t

0 0 0 1

]

1.3.3 Projective Transformations

Consider first the 2-D case. The last row of the transformation matrices defined above in homogeneous
coordinates is [0 0 1]T . We could replace those fixed values by arbitrary values to define a general
transformation in homogeneous coordinates: ũ′ = Mũ, where M is a general 3 × 3 matrix. Consider a
vector x = [x y]T , a representation in homogeneous coordinates is, for example, u = [x y 1]T and

ũ′ = Mũ =



mT

1 ũ
mT

2 ũ
mT

3 ũ


, where mT

i is the ith row of M .

The vector represented by the transformed set of homogeneous coordinates ũ′ is obtained by dividing the
first coordinates by the third one, yielding:

x′ = mT
1 ũ

mT
3 ũ

and y′ = mT
2 ũ

mT
3 ũ

Note that, if we use arbitray numbers instead of [0 0 1]T in the last row of the matrix, the transformation
becomes a non-linear transformation of the original coordinates, even though it is a linear transformation
in homogeneous coordinates. Such a transformation, represented by a 3 × 3 matrix in homogeneous
coordinates is called a projective transformation4. Projective transformations do not preserve lengths,
angles, ratios, or parallelism. They do preserve colinearity (things that are on the same line remain on
the same line after transformation) and incidence (curves that are tangent to each other remain tangent
to each other.)

Projective transformations are defined in three dimensions in the same manner: A 4× 4 matrix is applied
in homogeneous coordinates. The vector coordinates corresponding to the homogeneous coordinates are
recovered by dividing the first three coordinates by the fourth one. The special case in which the last row
of the matrix is [0 0 0 1]T corresponds to affine transformations just like in 2-D. It is important to note
that a transformation expressed in homogeneous coordinates is defined only up to a scale factor because
two homogeneous vectors are equivalent if they are equal up to a scale factor (u ≡ ũ′ means that ũ = αũ′

for some scalar α.) In other words, if M is the matrix of a transformation in homogeneous coordinates,
then αM represents the same transformation for any α 6= 0.

4If you want to sound sophisticated, the correct technical name is “collineation”, but projective transformation is good
enough for now.....

6

1.3.4 3-D to 2-D Transformations

Transformations that map a point in 3-D to a point in the 2-D plane are expressed in homogeneous
coordinates by 3× 4 matrices. A 3-D to 2-D transformation maps a 3-D point of coordinates [x y z]T to a
point in the plane of coordinates [x′ y′]T by applying a 3× 4 matrix M to the homogeneous coordiantes
of the 3-D point, [x y z 1]T , i.e., the coordinates x′ and y′ are computed by:



u
v
w


 = M




x
y
z
1


 x′ =

u
w y′ = v

w

3-D to 2-D transformations come in three varieties. If the last row of M is [0 0 0 1]T and the first two
rows are the first two rows of a 3-D rigid transformation matrix, the transformation is an orthographic
projection. This type of transformation amounts to applying a rigid transformation in 3-D and keeping
the first two coordinates of the transformed 3-D point as the result of the projection.

If the last row of M is [0 0 0 1]T and the first two rows are arbitrary, i.e., not necessarily from a rigid
transformation, thenM is an affine projection. This type of transformation amounts to applying an affine
transformation in 3-D and keeping the first two coordinates of the transformed 3-D point as the result of
the projection.

If the last row of M is not [0 0 0 1]T , M is a projective projection. Projective transformations from 3-D
to 2-D are simply arbitrary 3× 4 matrices applied to homogeneous coordinates. One important example
that illustrates the use of projective projection is the representation of the perspective projection used in
the pinhole camera model. Recall that, if [x y z]T is a point in space, the coordinates of the corresponding
point [x′ y′]T after projection through a pinhole are given by:

x′ = f xz and y′ = f yz

In homogeneous coordinates, this becomes a linear transformation:



a
b
c


 =



f 0 0 0
0 f 0 0
0 0 1 0







x
y
z
1


, with x′ = a

c and y′ = b
c

This is the reason why the projective (homogeneous representation) is so important to us: It enables us
to convert the non-linear, perspective projection problems to linear problems5

1.3.5 Cross-Product and Skew-Symmetric Matrices

In three dimensions, the cross product of two vectors u = [ux uy uz]
T and v = [vx vy vz]

T is defined by:

u× v =



uyvz − uzvy
uzvx − uxvz
uxvy − uyvx




A few basic properties of the cross product are useful and worth remembering:

• u× v = −v × u (antisymmetry)

• w · (u× v) is the determinant of the matrix formed by the three vectors u v w

5Of course, there is a much broader theory of projective representation behind this, which we will need later, but this is
sufficient for now.

7

Transformation Vector Homogeneous Degrees Invariants
Coordinates Coordinates of Freedom

Translation y = x+ t

[
I t

0 0 1

]
2 lengths, angles

Rotation y = Rx 1 lengths, angles

RTR = RRT = I

[
R 0
0 0 1

]

Rigid y = Rx+ t

[
R t
0 0 1

]
3 lengths, angles

Affine y = Ax+ t

[
A t
0 0 1

]
6 ratios of lengths, parallelism

Projective 3× 3 matrix M 8 colinearity, incidence

Table 1: Classification of 2-D transformations

Transformation Vector Homogeneous Degrees Invariants
Coordinates Coordinates of Freedom

Translation y = x+ t

[
I t

0 0 0 1

]
3 lengths, angles

Rotation y = Rx 3 lengths, angles

RTR = RRT = I

[
R 0

0 0 0 1

]

Rigid y = Rx+ t

[
R t

0 0 0 1

]
6 lengths, angles

Affine y = Ax+ t

[
A t

0 0 0 1

]
12 ratios of lengths, parallelism

Projective 4× 4 matrix M 15 colinearity, incidence

Table 2: Classification of 3-D transformations

8

Transformation Homogeneous Degrees
Coordinates of Freedom

Orthographic

[
R t

0 0 0 1

]
5

RRT = I (row-orthonormal)

Affine

[
A t

0 0 0 1

]
8

Projective 3× 4 matrix M 11

Table 3: Classification of 3-D to 2-D transformations

• a× (b× c) = (a · b)c− (a · c)b

• |u× v| = sin θ|u||v|

Given a vector u, The mapping that associates u×x to x is obviously a linear mapping. Therefore, there
must exist a matrix M such that: u× x = Mx for any x. Such a matrix M is called a skew-symmetric
matrix. The skew-symmetric matrix associated with a vector u is denoted typically by u×or [u]× (sorry,
no standardized notations!) The expression for the skew-symmetric matrix is:

u× =




0 −uz uy
uz 0 −ux
−uy ux 0




So, for any x, u × x = u×x. The matrix is called skew-symmetric because uT× = −u× owing to the
antisymmetry of the cross product.

Warning: If you have never seen this skew-symmetric construct before, you should make sure you under-
stand it. Most of the derivations in multi-camera geometry will rely on this notation.

A final note in this discussion of the cross product has to do with its use in expressing parallelism between
vectors. Specifically, let a and b be two parallel vectors. The fact that they are parallel can be expressed
by saying that they are colinear, i.e., there exists a scalar λ such that: a = λb. This is fine, except
that we have introduced an extra variable λ which really is a dummy variable which adds absolutely
no information if all that we are interested in is the parallelism of the vectors. This seemingly trivial
observation will become critical in some of the problems we’ll have to solve. Specifically, in solving any
problem that involves parallelism, we would be forced to introduce spurious extra degrees of freedom, the
λ’s, which would greatly complicate the algorithms.

A better way to describe parallelism is to observe that a and b are parallel iff a× b = 0, or even better:
a×b = 0, that way we have converted the parallelism condition to a simple set of linear equations without
any extra parameters. In the future, we will automatically convert problems like “those rays are parallel
to this direction” to a set of linear equations using this trick. In particular, given two homogeneous vectors
in the plane ũ = [a b c]T and ũ′ = [a′ b′ c′]T , we have seen that ũ ≡ ũ′ means that the two vectors are
proportional to each other, in other words: ũ× ũ′ = 0. A little trick that will help a lot.

1.3.6 Lines and Planes

Here are some very simple (but sometimes forgotten) facts about lines and planes:

• A line in the plane (resp. plane in space) has equation ax+ by + c = 0 (resp. ax+ by + cz + d = 0

9

• In homogeneous coordinates, the equation becomes lTv (resp. pTv) with v = [x y 1]T and l = [a b c]T

(resp. v = [x y z 1]T and p = [a b c d]T .)

• The normal direction to the line (resp. plane) is the vector 1√
a2+b2

[a b]T (resp. 1√
a2+b2+c2

[a b c]T)

• The distance of a generic point v to the line l (resp. plane p) is 1√
a2+b2

lTv (resp. 1√
a2+b2+c2

pTv.)

• The intersection of two lines l1 and l2 is the point of homogeneous coordinates l1 × l2 6

2 Optimization

2.1 Linear Least-Squares

Given a m-dimensional vector b and a m × n matrix A, the problem is to find the n-dimensional vector
x such that the residual r = |Ax − b|2 is minimum7. This is the standard least-squares problem which
we need to solve whenever we have m n-dimensional input data vectors ai, output values bi and we want
to fit a linear model of the form aTi x = bi by minimizing

∑m
1 |aTi x− bi|2. The matrix A is obtained by

stacking the m row vectors aTi and b is obtained by concatenating the bi’s into a column vector.

The solution to the least-squares problem is given by:

x = (ATA)−1AT b

The matrix A+ = (ATA)−1AT is the pseudo-inverse of A. This solution assumes that the problem is
over-constrained, i.e., there are more independent equations than unknowns (rank(A) = n and m > n).
If the problem is underconstrained, the pseudo-inverse cannot be computed.

A solution that works with both over- and under-constrained problems can be derived using the SVD.
This solution can also be more efficient and is more robust numerically.

Let A = UΣV T be the SVD of A. Define the matrix A+ = V Σ+UT , where Σ+ is the matrix formed
by taking the inverse of the non-zero elements of Σ (and leaving the 0 elements unchanged.) With this
definition of A+, the solution to the least-squares problem is:

xo = A+b.

If the system is overconstrained, this is the same solution as with the previous definition of the pseudo-
inverse.

If the system is under-constrained, and therefore has multiple solutions, this gives the solution xo of
minimum norm. Note that, any other solution will be of the form xo + V ′y, where V ′ is the matrix
formed from the columns corresponding to the null singular values of A (i.e., the columns of V ′ span the
null space of A) and y is an arbitrary vector.

2.2 Unconstrained Non-Linear Problems

The problem now is to find the n-vector x that is an extremum (minimum or maximum) of an objec-
tive function z = F (x). We will encounter many such problems and we can generally use a standard
minimization 8 as a black box. However, it is still interesting to understand the general characteristics
of minimization approaches in order to assess the feasibility of a particular solution. For example, the
dimensionality of some problems is such that, without some manipulation of the data or some approxi-
mation to the problem, optimization of the objective function will not be feasible. To help understand

6A similar relation exists for the intersection of planes but not with the cross product, which works only for 3-D vectors.
One needs to use a different representation of lines in 3D, the Plucker coordinates, see Forsyth and Ponce, p. 165.

7MATLAB: help regress
8help optim in MATLAB will list pretty much all the non-linear optimization techniques known to mankind.

10

key issues and limitations, this section, along with the next two sections, provides a very quick overview
of the basic approaches commonly used to solve non-linear optimization problems.

An optimization algorithm starts from an initial choice of the argument, xo and iteratively generates
successive values x1, . . . ,xn corresponding to values of the objective function F (x1), . . . , F (xn) that con-
verge to an extremum. It should be clear from the outset that the best we can hope for is to find a local
extremum of the objective function. It is not possible in general to guarantee that the algorithm converges
to a globally optimal value. It is also generally not possible to guarantee that the local extremum is a
“deep” minimum or maximum. Moreover, many techniques may fail to converge if the starting point xo
is too far from a local extremum. It is therefore critical to understand how good (or poor) the choice of
xo is.

Different algorithms may have dramatically different convergence rates, as measured by the rate of change
of the objective function as a function of the number of iterations. Typically, the fastest algorithms have
quadratic convergence rate. Unfortunately, it is often the case that the computations involved at each
step are prohibitively expensive. Therefore, assessing the feasibility of solving a problem through non-
linear optimization involves understanding how good is the choice of the starting point, the convergence
properties of the optimization algorithms, and the amount of computation to be performed at each iteration
- and whether the computation can be carried out at all in practice.

To compute xk+1 from xk, we need to first consider the Taylor expansion of F around xk:

F (xk+1) = F (xk) +∇FT (xk+1 − xk) + 1
2 (xk+1 − xk)TH(xk+1 − xk)

∇F is the gradient of F at xk, and H is the Hessian, i.e., matrix of second derivatives, of F at xk:
H = ∇2F (xk). Optimization algorithms attempt to find the update vector (xk+1 −xk) that would yield
the largest change in F based on this Taylor expansion.

We assume from now on that we want to find a minimum of F (a few sign reversals are needed if we want
a maximum of F .) The first approach is based on the observation that the fastest variation of F is in the
direction opposite to that of the gradient (steepest descent), i.e., −∇F . In other words, the iteration is
defined by: xk+1 = xk − α∇F , where α is chosen to maximize the change in F . Substituting α∇F for
(xk+1 − xk) in the Taylor expansion yields:

F (xk+1) = F (xk)− α|∇F |2 + 1
2α

2∇FTH∇F

From this expression it is easy to see that the α that minimizes the right-hand side is α = |∇F |2
∇FTH∇F , and

the update rule at each iteration is:

xk+1 = xk − |∇F |2
∇FTH∇F∇F

This approach is the gradient descent algorithm. Gradient descent has the advantage that it does not re-
quire any expensive matrix inversion. As shown here, it requires the computation of the second derivatives
of F . However, it should be noted that other techniques can be used to choose α that do not require the
second derivatives (with potentially slower convergence.) Gradient descent has two drawbacks: It has slow
(linear) convergence and it is not guaranteed to converge if the starting point is far from the minimum.

An alternative to gradient descent is to not try to force the iterations to follow the gradient and to, instead,
find the difference (xk+1 − xk) that minimizes the right-hand side of the Taylor expansion. Setting the
derivative of the right-hand side with respect to (xk+1 − xk) to zero yields directly:

xk+1 = xk −H−1∇F

This approach is the Newton method. The advantage of the Newton method is that it has fast (quadratic)
convergence. It still requires the computation of the second derivatives. More importantly, a major
drawback is that it requires the inversion of the Hessian matrix which may cause serious computational
and numerical problems. From a computational standpoint, if d is the dimension of x, then H is a

11

d × d matrix and its inversion is O(d3). In real problems (in vision), d could be on the order of several
hundreds or thousands, thus requiring a large amount of computation at each iteration, irrespective of the
convergence rate.

Another problem is that H may be close to singular, in which case the inversion is numerically unstable
especially if d is large. To see why this is a problem in practice, it is useful to understand the geometric
interpretation of the Newton method. The right-hand side of the Taylor expansion of F is an approximation
of the surface z = F (x) by a quadric surface. The Newton method simply finds the lowest on that
approximating surface. Assuming that we have translated the axes so that the minimum is at x = 0, the
Taylor expansion around 0 becomes F (x) = 1

2x
THx, which is a quadratic approximation of the objective

function.

The eigenvalues of H give us an indication of the local shape of z = F (x) (Figure 3) Specifically, large
eigenvalues indicate directions along which the function varies quickly. Along these directions, the min-
imum is sharp and can be localized easily. Furthermore, the inversion of H is numerically stable. On
the other hand, small eigenvalues correspond to directions along which the function varies slowly, i.e., the
minimum of the surface is very shallow. Along these directions, it is more difficult to accurately localize
the minimum and the inversion of H becomes numerically unstable.

In the extreme, an eigenvalue of 0 corresponds to a direction in which the function does not vary at all,
i.e., the surface is flat in that direction. In that case, of course, H becomes singular and the iteration
rule above can no longer be used9. This dicussion illustrates why the performance of the Newton method
may vary widely depending on the shape of the objective function. Since the computation of the Hessian
and its inversion may be problematic, other approaches (quasi-Newton) use various approximations of the
Hessian. We review one class of techniques that is particularly important for our applications in the next
section.

2.3 Non-Linear Least Squares

A particularly important case is the case in which F has the special form:

F (x) =
∑m
j=1 r

2
j (x)

The functions rj are usually termed residuals. This special form of the objective function is very common.
For example, suppose that we observe the projections pj = [x′j y

′
j]
T in m images of an unknown point

P = [x y z]T . To recover the P from its image projections, we need to find P that minimizes the distance
between pj and gj(P), where gj is the function that maps a point in the scene to its projection in image

j (a non-linear function that is a general form of the perspective projection: pj = fj [
x
z

y
z]
T .) In other

words, we need to minimize the objective function:

F (P) =
∑m
j=1 |pj − gj(P)|2

This formulation will be central to solving several problems in structure recovery from multiple images.
In these problems, there may be hundreds of variables, i.e., hundreds of points P , and direct computation
of the Hessian may become problematic. Instead, we can use an approximation of the Hessian as shown
below.

Let J denote the matrix whose rows are the gradients of the residuals, i.e., J is obtained by stacking
the row vectors ∇rj(x)T , and let r(x) denote the column vector [r1(x), . . . , rm(x)]T . We can write the
gradient of the objective function as:

∇F (x) =
∑m
j=1∇rj(x)rj(x) =

∑m
j=1 J

T rj(x) = JTr(x)

Differentiating this expression one more time, we get the Hessian of F :

9A third case occurs when the eigenvalues are negative, in which case the point is a saddle point at which the gradient
vanishes but is not an extremum of the function.

12

H = ∇2F (x) = JTJ +
∑m
j=1∇2rj(x)rj(x)

The key observation is that only the second term in this expression of ∇2F (x) requires the knowledge of
the second derivatives. Therefore, a natural approach is to drop this hard to compute second term and
to approximate the Hessian by the first term only:

H ≈ JTJ

In particular, replacing this approximation of the Hessian in the update rule used in the Newton method,
xk+1 = xk −H−1∇F , we obtain:

xk+1 = xk − (JTJ)−1JTr

This approach is the Gauss-Newton method, which has many advantages. Gauss-Newton does not require
the computation of any second derivatives and, in many problems the first term used in the approximation
of H is indeed much larger than the second term. It appears that we still need a matrix inversion (and
a matrix multiplication to evaluate JTJ .) In fact, (JTJ)−1JT is the pseudo-inverse of J , as defined in
Section 2.1, and can be computed directly from J using more efficient SVD techniques as described in 2.1
or other linear least squares techniques not listed here. The bottom line is that one can avoid completely
any explicit computation of JTJ or of its inverse!

Gauss-Newton provides a computationally efficient approach in the case where the objective function is
a sum of squared residuals. The fact still remains that Gauss-Newton is based on an approximation
of the Hessian. Presumably, if this approximation could be refined, we ought to be able to achieve
faster convergence. A general approach to refining the Hessian approximation is the Levenberg-Marquart
algorithm in which the approximation H ≈ JTJ is replaced by:

H ≈ JTJ + λI

In this approximation, λ is a scalar that is adjusted at each iteration based on the rate of decrease of F
at prior iterations. The heuristics used for controlling λ are rather involved, but the general idea of the
algorithm is that the order of magnitude of the discrepancy between the true Hessian and its approximation
is evaluated at each iteration and the Hessian approximation is corrected by adding a diagonal matrix of
that magnitude. Levenberg-Marquart combines the good convergence properties of the original Newton
method and it avoids completely the computation of the Hessian while maintaining a better estimate than
Gauss-Newton.

2.4 Constrained Problems

In their simplest forms, constrained problems involve finding an extremum of an objective function z =
F (x) under a constraint G(x) = 0. The problem is solved by optimizing a combined function, the
Lagrangian:

L(x) = F (x)− λG(x)

λ is an additional variable, the Lagrange multiplier. The gradient of L vanishes at the solution, yielding
the general relation’ between the gradients of the objective function and of the constraint:

∇F (x)− λ∇G(x) = 0

For example, if the objective function is F (x) = xTAx, where A is a n × n matrix, and the constraint
is xTx = 1, the relation above between the gradients becomes: Ax− λx = 0. Therefore, the solution to
this constrained problem is an eigenvector of A since Ax = λx. This is basically the Rayleigh Quotient
theorem from 1.2.2.

13

