
��� Physics�based Vision� Active Contours �Snakes�

Physics�based Vision is a branch of Computer Vision that became very fashionable around
����� The basic idea of Physics�based Vision is to pose a vision problem as a physics
problem� The resulting algorithms are very intuitive in contrast to the �magic	
 non�intuitive
selection of parameters for many other algorithms in Computer Vision� The best example
of Physics�based algorithms are Active Contours
 usually called �Snakes	� Snakes are very
popular because they are easy to use and reasonably fast�

����� Snakes � Examples and Physical Model

Snake behavior � a �rst intuition

Before we start to explain the physical intuition behind Snakes and the algorithms that
allow to compute them e�ciently
 we should �rst look at two examples of Snakes� Figure

Figure � Initial and �nal position of a contour �nding snake�

� shows a snake that �nds object contours� To initialize the snake
 the user draws an
approximate boundary of the object� This initial con�guration is shown in the left image
of Figure ��The snake then behaves roughly like a rubber band that snaps onto the object
boundaries if released �only much slower�� This behavior of the snake is caused by an
�external energy	 term that in this case determines that the snake feels attracted to object
boundaries� The rubber�band metaphor is somewhat misleading because the snake would
snap to the boundaries even when started from �within	 the object�

However
 if you look carefully at the image on the right
 you will see that it is not entirely
true that the snake aligns itself with the object boundary at the top of the can
 the snake
does not delineate the can contours but bulges a little bit� This behavior of the snake is
caused by the second energy term
 the so�called internal energy� The internal energy gives
the snake the physical properties of a willow rod�� If you try to wrap a willow branch around
a coke can
 it will refuse to bend into sharp corners but will instead bulge like the snake in
the image on the right�hand side�

The second example ��gure �� shows a snake that is able to track moving objects� The
input was a random dot �movie	 of a sliding square� The images in the top row are samples

�Physicists prefer to think of thin plates instead�

�

Figure � A snake that tracks motion in random dot �movies	�

of the approximate position of the square during the �movie	��� The second row shows the
initial snake in the �rst image and the positions of the snake following the sliding square�
The snake is tracking the moving square because the external energy was de�ned such that
the snake feels attracted to boundaries of motion �elds� This external force would shape the
snake into a square
 were it not for the internal energy that makes the snake bulge instead��

The Physics behind Snakes

Phrased in a more technical way
 Snakes are energy�minimizing splines that simulate the
behavior of closed springs rolling downhill on a hilly terrain� This leads us directly to the
continuous model for Snakes�

Consider a ��D curve V parameterized by the arclength s

V �s� � �x�s�� y�s��� for s � ��� ��

We wish to minimize the energy E given by

E �
Z �

�
Eint �Eextds

where Eint and Eext represent the energy associated with the �internal� and �external� forces
that act on the snake� Internal forces are the ones that impose constraints on smoothness

while external forces arise from the data� These terms are usually weighted such that the
emphasis on smoothness is appropriate for the application
 but the weighting factor � is
hidden in one of the two terms and does not appear explicitly�

The external energy also depends on the application but is usually rather straightforward
to model� For example
 we obtain an energy function for the contour �nding snake by
assuming that object contours correspond to sudden intensity changes in the image� How
pronounced such intensity changes are is measured by the magnitude of the intensity gradient�
Therefore
 we can model the external energy as Eext � �jrIj
 which corresponds to a hillside
with valleys at the location of edges� Figure � shows the image of a cat
 the corresponding

�Technically� the images are samples from the series of disparity maps in x direction that were computed

between every pair of successive frames of the random dot movie�
�The snake also would approximate the shape of the square better if it had more nodes�

�

image of the �squared� gradient magnitudes and and edge image resulting from thresholding
the gradient magnitude�

The internal energy is modeled in terms of the derivatives of the curve� A spring�like

Figure � An image of a cat
 the corresponding squared gradient magnitudes �enhanced� and
the edge image�

contracting behavior corresponds to the minimization of �rst derivatives
 while the thin�
plate behavior that avoids sharp bends is modeled as the minimization of second derivatives�
Therefore
 the internal energy is

Eint � � jVs�s�j
� � � jVss�s�j

�

where

Vs �
�

�s
V �s� Vs �

��

�s�
V �s�

The framework of snakes is actually more general
 and would allow us to have coe�cients
��s� and ��s� that are dependent on s� But this is never used in practice and we will not
consider it here any further�

Interpretation of the Parameters

Parameters � and � respectively control the sensitivity with respect to the �rst and the
second derivative
 which physicists call the membrane term
 and the thin plate term
 respec�
tively� We can distinguish the following cases �see Fig� ��

�a� �� � � � �� The internal force is zero
 and the curve does not have to be continuous
�V � C��� In other words
 the snake can even have sharp angles�

�b� �� � �
 � � �� This imposes that Vs be bounded
 and thus that V � C�
 i�e� continuous
and once di�erentiable�

�c� �� � �� This forces Vss to be bounded
 which implies that V � C�
 i�e� � times
di�erentiable and once continuously di�erentiable�

�

(a) (b) (c)

Figure � Examples of �a� discontinuous
 �b� continuous
 and �c� continuously di�erentiable
curves�

Relative values of �� � control the snake	s �sti�ness��

At this point
 we are left with an energy minimization problem

Find V that minimizes
Z �

�
Eint �Eext ds

����� Computing Snakes

In the continuous case
 this minimization problem can be solved using the Calculus of Vari�
ations� The solution has to satisfy the following set of equations

Xt � �A� � I��� �� Xt�� �
�

�x
Eext�old��

Yt � �A� � I��� �� Yt�� �
�

�y
Eext�old��

where � is the step size
 and A is a pentadiagonal matrix formed from �� �� These equations
are solved by an iterative method� However
 this approach for computing Snakes has several
problems
 and today
 Snakes are usually computed using a dynamic programming technique
known as the Viterbi Algorithm� We will start the discussion of this algorithm by a short
introduction to Dynamic Programming in general�

Dynamic Programming

The main idea behind dynamic programming is to compute the solution of a problem by
combining solutions of subproblems� What makes Dynamic Programming di�erent from
Divide�and�Conquer is that many of the subproblems overlap or occur multiple times� The
main speed�up is then gained by computing solutions to these subproblems only once and
reusing them wherever they occur� A very simple example of this is the computation of a
Fibonacci number� Fibonacci numbers are de�ned recursively by

F� � �� F� � �� Fi � Fi�� � Fi��

Obviously
 all subterms F�� 			Fi�� are computed multiple times if Fi is implemented as a
recursive function� However
 if you compute the Fibonacci numbers bottom�up �in the order
i� �
�
���� and store all results in a table�
 no redundant computations are made�

�In this particular example� you only need to remember the last two values� but for other problems� you

usually have to store a whole table of values�

�

Usually
 dynamic programming is applied to complex optimization problems� We will
demonstrate the power of dynamic programming with the example of graph coloring� If you
do not have background in Graph Theory
 you may not understand some of the expressions

but the basic idea should come across anyway�

Solving the Graph Coloring Problem with Dynamic Programming

The particular variant of the Graph Coloring Problem that we are considering here asks in
how many ways a given graph can be ��colored� The general problem is NP�hard and the
computation of its solution takes O��n�� More formally

Let G�N�E� a graph with node set N and edge set E � N � N � How many ��colorings
C N � fRed�Gree�Blue� Y ellowg exist such that ��n�� n�� � E C�n�� �� C�n���

In the general case
 you cannot do much better than enumerating all combinations of color
assignments for all nodes and to count the number of combinations for which no two neigh�
bored nodes have the same color� However
 there are some special cases for which the
complexity of the computation can be reduced considerably� An example of such a graph
is shown in �gure �� The key observation here is that the nodes � and � form the only

531 7 9 11

2 4 6 8 10 12

Figure � An example graph�

connection between the subgraph on the left and the subgraph on the right� This allows us
to reduce the problem to the solution of the problem for the left subgraph and for the right
subgraph as follows

Y ellowX
C�n���Red

Y ellowX
C�n���Red

j�colorings of n�� 		n	�j � j�colorings of n
� 		n���j

That is
 for each of the �� di�erent ways to color node � and �
 we compute the number of
possibilities to color the graph by computing the number of ways to color each subgraph

multiplying these two numbers and adding up the results for all �� di�erent colorings�

In order to appreciate the complexity reduction
 we can look at the problem in terms of
a search tree� In order to solve the general problem
 we would have to enumerate all possible
color combinations in a systematic manner� This leads to a search tree of the following form
�see Fig� ��� The tree has n levels
 and at expansion level k
 the graph nodes ���k�� are
colored� Now assume we have expanded the tree until level �
 which means that nodes ���
are already colored� At level �
 there are �� search nodes and in brute force search
 we would
have to expand each of these nodes into the complete tree of all di�erent combinations of

�

C(n1)=R C(n1)=G C(n1)=B C(n1)=Y

R BG Y

R BG Y

C(n1)=GC(n1)=G C(n1)=G C(n1)=G

C(n2)=R C(n2)=G C(n2)=B C(n2)=Y

Level 1

Level 2

Level 3

Figure � The search graph for the ��coloring problem of the above graph�

ways to color the nodes ����� However
 we have already noticed that the colorings of the
nodes ���� depends only on the colors of nodes � and �� This means that we can put the ��

nodes into �� equivalence classes and expand only �� search trees for the subgraph on the
right instead of more than �����

We have chosen this rather complicated example from graph theory because it is actually
quite similar to the Viterbi algorithm� The Viterbi algorithm operates on discretized Snakes

i�e� we chop the snake into small pieces and regard the positions where we cut the Snake as
nodes� The Snake pieces between the nodes are then approximated by simple functions like
polynoms� This approximation of a function by a chain of short pieces of simple functions
is called a spline� For all nodes of the spline holds that their contribution to the overall
energy of the Snake only depends on their position relative to their immediate predecessor
and successor nodes in the chain� This is similar to the graph coloring problem where the
color of each node was constrained by the color of its immediate neighbors and we can apply
a similar trick� The following paragraph will clarify how the Viterbi algorithm works�

����� Viterbi algorithm

We already mentioned that we have to discretize the Snake before we can apply the Viterbi
algorithm� A discretized Snake is a spline with vertex positions V � v�� v�� 			vn� We also
have to discretize the energy terms associated with a particular snake� The discretization of
the external energy depends on the particular energy term
 but the internal energy is always
the same and can be discretized as follows

Eint�vi� � � jvi � vi��j
� � � jvi�� � � vi � vi��j

�

where vi denotes the position of the ith vertex of the snake� Our problem reduces to �nding
the set of vertex positions V that minimizes

X
vi�V

Eint�vi� � Eext�vi�

�

In order to make the presentation of the algorithm easier
 we will now make the assumption
that the snake is open and that � � �� We will relax these two assumptions later on� We
also assume that the snake vertex can only move to m nearby locations in order to make the
minimization problem tractable�

First
 observe that since the internal energy is a local property of neighboring vertices

we can decompose it into a sum of local terms

E�v�� 	 	 	 � vn� � E��v�� v�� �E��v�� v�� � 	 	 	� En���vn��� vn�

where Ei�vi��� vi� � Eext�vi��Eint�vi��� vi�� In particular
 this means that each vertex posi�
tion vi in�uences the total energy only through the terms Ei�� and Ei� The Viterbi algorithm
capitalizes on the property that the in�uence of the vertex positions is so decoupled�

Now
 we introduce the intermediate variables si �i����n� de�ned by

s��v�� � min
v�

E��v�� v��

s��v�� � min
v�

�s��v�� �E��v�� v���

s��v�� � min
v�

�s��v�� �E��v�� v���

���

sn�vn� � min
vn��

�sn���vn��� �En���vn��� vn��

Each sk�vk� contains the lowest total energy for the �rst k�� vertices of the snake for a given
value of vk� Thus
 the minimum energy E of the whole snake is equal to minvn�sn�vn���

The globally best position for the snake is therefore computed by �rst computing all the
sk
 which means that we determine at each node the optimal position of its predecessor for
each possible location of the node under consideration� When we have computed sn
 we
can �nd the optimal position for vn by minimizing the expression sn�vn�� Once we now the
position of the last node
 we look up the optimal position for the second last node
 and so
on until we have determined the optimal position for all the nodes�

To further improve the e�ciency
 we consider typically only m � � possible positions for
each vertex when searching for the local minimum �see Fig� ��� In order to allow the snake
to move more than � pixel per vertex
 we iterate the above procedure using the previous
result as the new starting position
 until the snake has converged to a quasi�globally optimal
position� Snakes are not performing a truly global optimization
 but they �nd the optimal
position of the snake within the search window and the search window is repositioned after
each iteration�

Relaxing the assumptions

If � � �
 then the decomposition of the energy function into local terms becomes

E�v�� 	 	 	 � vn� � E��v�� v�� v�� �E��v�� v�� v�� � 	 	 	�En���vn��� vn��� vn�

�

Current Position

Possible Location For Next Iteration

Snake

Figure � Minimization within a ��pixel window�

Therefore
 we compute the optimal position of the predecessing node for all possible positions
of the node under consideration and the following node

s��v�� v�� � min
v�

E��v�� v�� v��

s��v�� v�� � min
v�

�s��v�� v�� �E��v�� v�� v���

���

sn���vn��� vn� � min
vn��

�sn���vn��� vn��� �En���vn��� vn��� vn��

where Ei���vi��� vi� vi��� � Eext�vi� � Eint�vi��� vi� vi���� Note that we have to compute a
table of m� values at each node instead of only m values per node for the simpler snakes
with � � ��
The adaptation of the algorithm to a closed snake is part of the homework assignment�

����� Advantages and Disadvantages of Snakes

The most salient advantage of Snakes besides their highly intuitive behavior is their e�ciency�
Snakes are are fast for three reasons

�� Snakes are ��dimensional which means that we can reduce ��dimensional optimization
problems to ��dimensional optimization problems�

�� Snakes optimize locally�

�� It is possible to apply dynamic programming techniques
 which reduces the complexity
from O�mn� for naive search to O�m� � n� for Snakes with � � � and to O�m� � n� for
Snakes with � � ��

In the original paper
 Kass and Terzopolous also mention that snakes make the combination
of low�level and high�level reasoning processes easy
 because they can be implemented as an
interactive technique where the user �or a high�level reasoning system� can provide feedback
during the optimization process by adding additional energy terms� In this respect
 Snakes

�

have not quite lived up to their promises� However
 it is a real advantage of the dynamic
programming formulation of Snakes that it is easy to impose hard constraints like �the snake
must not have knots	 or �vertices cannot come closer than distance d	
 which would be
impossible in the Calculus of Variations framework�

The only disadvantage of Snakes is that the Viterbi algorithm trades space for time and
that it can be quite space consuming�

����	 Applications and Extensions

We have already seen in the introduction that Snakes can be used to �nd contours� Kass
and Terzopolous show in their paper how they used contour �nding snakes to track lips�
This is especially impressive because the lips do not only move but also change their shape�
Motion algorithms that rely on correspondence have often di�culties with deformations�
Edge�attracted snakes can even be used to locate illusory contours as shown in Figure ��
They are also widely used in bio�medical applications for outlining organs or tumors in

Figure � A snake for perception of illusory contours

X�rays and magnetic resonance tomograms �MRTs��
When snakes are applied in technical domains
 e�g� locating planes and houses on satellite

imagery
 it is desirable that the snakes can form corners� One could set � to zero
 but then
the snakes cannot delineate curved objects adequately anymore� A better solution is to use
other types of splines instead of the simple quadratic splines�

Another variation of the basic idea are balloons which are more or less the ��dimensional
equivalent of snakes and are used to locate the �D surface of objects
 for example from range
data�

�

