
Introduction to Matlab (Code)
intro.m

%%%
% Introduction to Matlab
%%%

% (1) Basics

% The symbol "%" is used to indicate a comment (for the remainder of
% the line).

% When writing a long Matlab statement that becomes to long for a
% single line use "..." at the end of the line to continue on the next
% line. E.g.

A = [1, 2; ...
 3, 4];

% A semicolon at the end of a statement means that Matlab will not
% display the result of the evaluated statement. If the ";" is omitted
% then Matlab will display the result. This is also useful for
% printing the value of variables, e.g.

A

% Matlab's command line is a little like a standard shell:
% - Use the up arrow to recall commands without retyping them (and
% down arrow to go forward in the command history).
% - C-a moves to beginning of line (C-e for end), C-f moves forward a
% character and C-b moves back (equivalent to the left and right
% arrow keys), C-d deletes a character, C-k deletes the rest of the
% line to the right of the cursor, C-p goes back through the
% command history and C-n goes forward (equivalent to up and down
% arrows), Tab tries to complete a command.

% Simple debugging:
% If the command "dbstop if error" is issued before running a script
% or a function that causes a run-time error, the execution will stop
% at the point where the error occurred. Very useful for tracking down
% errors.

%%%

% (2) Basic types in Matlab

%%%
% (A) The basic types in Matlab are scalars (usually double-precision
% floating point), vectors, and matrices:

A = [1 2; 3 4]; % Creates a 2x2 matrix
B = [1,2; 3,4]; % The simplest way to create a matrix is
 % to list its entries in square brackets.
 % The ";" symbol separates rows;
 % the (optional) "," separates columns.

N = 5 % A scalar
v = [1 0 0] % A row vector
v = [1; 2; 3] % A column vector
v = v' % Transpose a vector (row to column or
 % column to row)
v = 1:.5:3 % A vector filled in a specified range:
v = pi*[-4:4]/4 % [start:stepsize:end]

 % (brackets are optional)
v = [] % Empty vector

%%%
% (B) Creating special matrices: 1ST parameter is ROWS,
% 2ND parameter is COLS

m = zeros(2, 3) % Creates a 2x3 matrix of zeros
v = ones(1, 3) % Creates a 1x3 matrix (row vector) of ones
m = eye(3) % Identity matrix (3x3)
v = rand(3, 1) % Randomly filled 3x1 matrix (column
 % vector); see also randn

 % But watch out:
m = zeros(3) % Creates a 3x3 matrix (!) of zeros

%%%
% (C) Indexing vectors and matrices.
% Warning: Indices always start at 1 and *NOT* at 0!

v = [1 2 3];
v(3) % Access a vector element

m = [1 2 3 4; 5 7 8 8; 9 10 11 12; 13 14 15 16]
m(1, 3) % Access a matrix element
 % matrix(ROW #, COLUMN #)
m(2, :) % Access a whole matrix row (2nd row)
m(:, 1) % Access a whole matrix column (1st column)

m(1, 1:3) % Access elements 1 through 3 of the 1st row
m(2:3, 2) % Access elements 2 through 3 of the
 % 2nd column
m(2:end, 3) % Keyword "end" accesses the remainder of a
 % column or row

m = [1 2 3; 4 5 6]
size(m) % Returns the size of a matrix
size(m, 1) % Number of rows
size(m, 2) % Number of columns

m1 = zeros(size(m)) % Create a new matrix with the size of m

who % List variables in workspace
whos % List variables w/ info about size, type, etc.

%%%
% (3) Simple operations on vectors and matrices

%%
% (A) Element-wise operations:

% These operations are done "element by element". If two
% vectors/matrices are to be added, subtracted, or element-wise
% multiplied or divided, they must have the same size.

a = [1 2 3 4]'; % A column vector
2 * a % Scalar multiplication
a / 4 % Scalar division
b = [5 6 7 8]'; % Another column vector
a + b % Vector addition
a - b % Vector subtraction
a .^ 2 % Element-wise squaring (note the ".")
a .* b % Element-wise multiplication (note the ".")

a ./ b % Element-wise division (note the ".")

log([1 2 3 4]) % Element-wise logarithm
round([1.5 2; 2.2 3.1]) % Element-wise rounding to nearest integer

% Other element-wise arithmetic operations include e.g. :
% floor, ceil, ...

%%%
% (B) Vector Operations
% Built-in Matlab functions that operate on vectors

a = [1 4 6 3] % A row vector
sum(a) % Sum of vector elements
mean(a) % Mean of vector elements
var(a) % Variance of elements
std(a) % Standard deviation
max(a) % Maximum
min(a) % Minimum

% If a matrix is given, then these functions will operate on each column
% of the matrix and return a row vector as result
a = [1 2 3; 4 5 6] % A matrix
mean(a) % Mean of each column
max(a) % Max of each column
max(max(a)) % Obtaining the max of a matrix
mean(a, 2) % Mean of each row (second argument specifies
 % dimension along which operation is taken)

[1 2 3] * [4 5 6]' % 1x3 row vector times a 3x1 column vector
 % results in a scalar. Known as dot product
 % or inner product. Note the absence of "."

[1 2 3]' * [4 5 6] % 3x1 column vector times a 1x3 row vector
 % results in a 3x3 matrix. Known as outer
 % product. Note the absence of "."

%%%
% (C) Matrix Operations:

a = rand(3,2) % A 3x2 matrix
b = rand(2,4) % A 2x4 matrix
c = a * b % Matrix product results in a 3x4 matrix

a = [1 2; 3 4; 5 6]; % A 3x2 matrix
b = [5 6 7]; % A 1x3 row vector
b * a % Vector-matrix product results in
 % a 1x2 row vector
c = [8; 9]; % A 2x1 column vector
a * c % Matrix-vector product results in
 % a 3x1 column vector

a = [1 3 2; 6 5 4; 7 8 9]; % A 3x3 matrix
inv(a) % Matrix inverse of a
eig(a) % Vector of eigenvalues of a
[V, D] = eig(a) % D matrix with eigenvalues on diagonal;
 % V matrix of eigenvectors
 % Example for multiple return values!
[U, S, V] = svd(a) % Singular value decomposition of a.
 % a = U * S * V', singular values are
 % stored in S

% Other matrix operations: det, norm, rank, ...

%%%

% (D) Reshaping and assembling matrices:

a = [1 2; 3 4; 5 6]; % A 3x2 matrix
b = a(:) % Make 6x1 column vector by stacking
 % up columns of a
sum(a(:)) % Useful: sum of all elements

a = reshape(b, 2, 3) % Make 2x3 matrix out of vector
 % elements (column-wise)

a = [1 2]; b = [3 4]; % Two row vectors
c = [a b] % Horizontal concatenation (see horzcat)

a = [1; 2; 3]; % Column vector
c = [a; 4] % Vertical concatenation (see vertcat)

a = [eye(3) rand(3)] % Concatenation for matrices
b = [eye(3); ones(1, 3)]

b = repmat(5, 3, 2) % Create a 3x2 matrix of fives
b = repmat([1 2; 3 4], 1, 2) % Replicate the 2x2 matrix twice in
 % column direction; makes 2x4 matrix
b = diag([1 2 3]) % Create 3x3 diagonal matrix with given
 % diagonal elements

%%%
% (4) Control statements & vectorization

% Syntax of control flow statements:
%
% for VARIABLE = EXPR
% STATEMENT
% ...
% STATEMENT
% end
%
% EXPR is a vector here, e.g. 1:10 or -1:0.5:1 or [1 4 7]
%
%
% while EXPRESSION
% STATEMENTS
% end
%
% if EXPRESSION
% STATEMENTS
% elseif EXPRESSION
% STATEMENTS
% else
% STATEMENTS
% end
%
% (elseif and else clauses are optional, the "end" is required)
%
% EXPRESSIONs are usually made of relational clauses, e.g. a < b
% The operators are <, >, <=, >=, ==, ~= (almost like in C(++))

% Warning:
% Loops run very slowly in Matlab, because of interpretation overhead.
% This has gotten somewhat better in version 6.5, but you should
% nevertheless try to avoid them by "vectorizing" the computation,
% i.e. by rewriting the code in form of matrix operations. This is
% illustrated in some examples below.

% Examples:
for i=1:2:7 % Loop from 1 to 7 in steps of 2
 i % Print i
end

for i=[5 13 -1] % Loop over given vector
 if (i > 10) % Sample if statement
 disp('Larger than 10') % Print given string
 elseif i < 0 % Parentheses are optional
 disp('Negative value')
 else
 disp('Something else')
 end
end

% Here is another example: given an mxn matrix A and a 1xn
% vector v, we want to subtract v from every row of A.

m = 50; n = 10; A = ones(m, n); v = 2 * rand(1, n);
%
% Implementation using loops:
for i=1:m
 A(i,:) = A(i,:) - v;
end

% We can compute the same thing using only matrix operations
A = ones(m, n) - repmat(v, m, 1); % This version of the code runs
 % much faster!!!

% We can vectorize the computation even when loops contain
% conditional statements.
%
% Example: given an mxn matrix A, create a matrix B of the same size
% containing all zeros, and then copy into B the elements of A that
% are greater than zero.

% Implementation using loops:
B = zeros(m,n);
for i=1:m
 for j=1:n
 if A(i,j)>0
 B(i,j) = A(i,j);
 end
 end
end

% All this can be computed w/o any loop!
B = zeros(m,n);
ind = find(A > 0); % Find indices of positive elements of A
 % (see "help find" for more info)
B(ind) = A(ind); % Copies into B only the elements of A
 % that are > 0

%%%
%(5) Saving your work

save myfile % Saves all workspace variables into
 % file myfile.mat
save myfile a b % Saves only variables a and b

clear a b % Removes variables a and b from the
 % workspace
clear % Clears the entire workspace

load myfile % Loads variable(s) from myfile.mat

%%%
%(6) Creating scripts or functions using m-files:
%

% Matlab scripts are files with ".m" extension containing Matlab
% commands. Variables in a script file are global and will change the
% value of variables of the same name in the environment of the current
% Matlab session. A script with name "script1.m" can be invoked by
% typing "script1" in the command window.

% Functions are also m-files. The first line in a function file must be
% of this form:
% function [outarg_1, ..., outarg_m] = myfunction(inarg_1, ..., inarg_n)
%
% The function name should be the same as that of the file
% (i.e. function "myfunction" should be saved in file "myfunction.m").
% Have a look at myfunction.m and myotherfunction.m for examples.
%
% Functions are executed using local workspaces: there is no risk of
% conflicts with the variables in the main workspace. At the end of a
% function execution only the output arguments will be visible in the
% main workspace.

a = [1 2 3 4]; % Global variable a
b = myfunction(2 * a) % Call myfunction which has local
 % variable a
a % Global variable a is unchanged

[c, d] = ...
 myotherfunction(a, b) % Call myotherfunction with two return
 % values

%%%
%(7) Plotting

x = [0 1 2 3 4]; % Basic plotting
plot(x); % Plot x versus its index values
pause % Wait for key press
plot(x, 2*x); % Plot 2*x versus x
axis([0 8 0 8]); % Adjust visible rectangle

figure; % Open new figure
x = pi*[-24:24]/24;
plot(x, sin(x));
xlabel('radians'); % Assign label for x-axis
ylabel('sin value'); % Assign label for y-axis
title('dummy'); % Assign plot title

figure;
subplot(1, 2, 1); % Multiple functions in separate graphs
plot(x, sin(x)); % (see "help subplot")
axis square; % Make visible area square
subplot(1, 2, 2);
plot(x, 2*cos(x));
axis square;

figure;
plot(x, sin(x));
hold on; % Multiple functions in single graph
plot(x, 2*cos(x), '--'); % '--' chooses different line pattern
legend('sin', 'cos'); % Assigns names to each plot
hold off; % Stop putting multiple figures in current
 % graph

figure; % Matrices vs. images
m = rand(64,64);
imagesc(m) % Plot matrix as image
colormap gray; % Choose gray level colormap
axis image; % Show pixel coordinates as axes
axis off; % Remove axes

%%%
%(8) Working with (gray level) images

I = imread('cit.png'); % Read a PNG image

figure
imagesc(I) % Display it as gray level image
colormap gray;

colorbar % Turn on color bar on the side
pixval % Display pixel values interactively
truesize % Display at resolution of one screen
 % pixel per image pixel
truesize(2*size(I)) % Display at resolution of two screen
 % pixels per image pixel

I2 = imresize(I, 0.5, 'bil'); % Resize to 50% using bilinear
 % interpolation
I3 = imrotate(I2, 45, ... % Rotate 45 degrees and crop to
 'bil', 'crop'); % original size

I3 = double(I2); % Convert from uint8 to double, to allow
 % math operations
imagesc(I3.^2) % Display squared image (pixel-wise)
imagesc(log(I3)) % Display log of image (pixel-wise)
I3 = uint8(I3); % Convert back to uint8 for writing
imwrite(I3, 'test.png') % Save image as PNG

%%%

myfunction.m

function y = myfunction(x)
% Function of one argument with one return value

a = [-2 -1 0 1]; % Have a global variable of the same name
y = a + x;

myotherfunction.m

function [y, z] = myotherfunction(a, b)
% Function of two arguments with two return values

y = a + b;
z = a - b;

Tutorial by Stefan
Roth

	Local Disk
	Introduction to Matlab (Code)

