CS 378/395T Computer Vision
Problem Set 1

Due Tuesday September 25

For this assignment, please submit hardcopy for all parts (including code printouts
and figures), and then also submit your code electronically using the turnin system.
Tar all the files together, and use your first initial and last name to name the tar file.
Then submit with:

turnin --submit svnaras psetl <yourfilename>

Let Sudheendra know if you experience any problems submitting the code via turnin.

Part 1.

1. Color matching. In color matching experiments with cone vision, at least how
many primary lights are necessary to assure good perceptual matches? How
many are needed for rod vision? Why? When multiple primary lights are em-
ployed for a color matching experiment, what property should their spectral com-
positions have in order to offer the most representational power?

2. Moments and invariance. The set S is a collection of (z,y) image coordinates
that define a connected component centered around the origin. The (j, k)-th
central moment of S is defined as

pi= Y (=2’ —-n" 1)

(z,y)€S

where (Z, i) is the centroid for S. The central moment i, is invariant to trans-
lation, meaning that a new shape defined by a given shift of all points in .S will
produce the same value for 151, as S does. Define the normalized (j, k)-th central

moment ugz) as:

)y 1 T—T\j Y — Yk
i =g 2 () @)
(zy)es Y
where 0, =, /45 and similarly o) = /7&?. Show that the normalized central

moments are invariant to scale and translation. Note that for every point (z,y)
in S the scaled and translated point will have coordinates (ax + b, ay + ¢).



Part I1.

1. Chamfer-based shape matching. The shape of a human silhouette gives some
cues about the pose the person is in. For this exercise, you will write a program
for nearest-neighbor Chamfer matching and apply it to some silhouette shapes
of people in different poses. Download the .pgm images provided on the class
webpage. There are 56 database examples and five query examples. For each
query image, the goal will be to retrieve from the database those images that
have the most similar contour shape as measured by the Chamfer distance.

Write a program that reads in all the images and uses distance transforms to com-
pute the symmetric Chamfer distance between every query and every database
example. To make the distances symmetric, add the Chamfer distances be-
tween the query and database image in both directions (D = cham fer(A, B) +
chamfer(B, A)). Then for each query, (1) sort the database images according
to this distance, and (2) display the query image and its top k nearest-neighbor
images from the database.

Analyze the results: how well does this work for comparing 2D silhouettes? For
finding similar examples in terms of the underlying 3d pose? What makes the
different results better or worse? Your submission should include the figures
displaying each query and its nearest k& = 3 neighbors.

(Useful Matlab function: ‘bwdist’.)

2. Edge detection. The Canny edge detector uses hysteresis to attempt to get rid
of local maxima due to noise: a higher threshold is first used to start an edge
chain, and then a lower threshold is used when following it. The higher threshold
determines which next unvisited edge pixel is to be processed, while the lower
threshold determines how strong a connected local maxima must be in order to
be included in the current chain.

Use the built-in Matlab function ‘edge’ to experiment with three parameters to
the Canny edge detector: the Gaussian filter’s standard deviation (o), the ‘low’
threshold, and the ‘high’ threshold. Perform edge detection with the supplied
image named ‘canny_test_image.pgm’. Empirically find a few (3) settings for
each parameter that yield noticeable changes in the resulting edge image. Then
form three figures: for each of the o settings, display in one figure the edge
images resulting from each pair of low/high thresholds. Label the images in the
figure according to the parameter settings so you can tell which is which.

Analyze the impact of each parameter on the algorithm and describe why the
images you have created look the way they do. Briefly summarize your findings,
and also submit the saved figure plots for reference.

(Useful Matlab function: ‘edge’.)
3. Background subtraction and blob tracking. For many video-based vision

systems, the initial processing requires identifying any foreground objects, and
tracking them over time. For example, to analyze data coming from a traffic



surveillance camera, we’d first want to isolate the regions of interest correspond-
ing to cars or pedestrians, and to maintain those foreground “blobs” for as long
as they are present in the scene. When knowledge about the appearance of the
background is available—and particularly when that appearance is fairly static—
background subtraction methods may be used to attempt to extract and segment
the foreground objects.

Write a program to do automatic background subtraction and blob tracking. Use
the images in the provided ‘bg_sub_data/background’ directory to model the
background as described below, and then mask out (subtract) that background
from every frame of the provided test sequence in ‘bg_sub_data/test_sequence’.
There are a total of 11 background images and 201 test sequence frames. For
each component below, submit a single representative frame that displays the
foreground output.!

(a) The simplest way we can describe the background is to represent it with a
single instance of the empty scene, in which no objects present are consid-
ered foreground. Take one random image from the 11 background images
provided. For every test image, compute the squared difference between
the current frame and the selected background image. Choose an appro-
priate threshold on the squared difference values in order to generate a bi-
nary foreground mask, in which only those pixels with intensities differing
greatly from the known background are marked as 1. Apply that mask to
the current frame to display the result. Play with the threshold as needed to
get the best foreground detection.

(b) Now enhance the background model by using multiple background frames.

Estimate the mean and variance of the intensity at every pixel using all
the background images (this should be reminiscent of problem set 0). We
want to use the background’s intensity distributions to take into account the
relative range of fluctuations that occur in each pixel, and penalize devia-
tion from the mean background value accordingly. For every frame in the
test sequence, compute the Mahalanobis distance between the mean back-
ground image and the current frame. For a background pixel with mean
value 2 and variance o2, given a new pixel intensity y, the squared Maha-
lanobis distance will be d(z,y) = 25 (z—y)?. Watch out for any 0-variance
pixels.
Choose an appropriate threshold on these distances to form a foreground
mask. View the results for the entire test sequence. Though a static scene,
the background frames differ. Where is the most variance? Why? Compare
the results to the single-image model used above.

(c) Use morphological operators to improve the foreground masks. Experi-
ment a bit with structuring elements and operators, but then apply the same
dilations and/or erosions to every test sequence frame. Try to make it so

ISingle frame displays are all you need for the assignment, but FYI - Matlab has functions to compile
movies from image frames (see ‘movie’, ‘immovie’, etc.).



that the largest foreground blob will often correspond to the object of inter-
est.

(d) Label the connected components in the binary foreground images. Have
the program identify the largest connected component in each test frame
and treat it as the object of interest. Plot a marker on the centroid of this
blob on top of each test frame, and as it displays the processed sequence,
print to the screen the series of (z, y) locations that are tracked.

Your submission should include an analysis of the output, as well as figures
showing a single processed frame that results when you use (a) the single-frame
background model with squared differences (b) multiple-frame background model
with the Mahalanobis distance, (c) add morphological operators, and (d) plot a
point denoting the centroid of the tracked object.

(Useful Matlab functions: ‘var’, ‘mean’, ‘bwlabel’, ‘regionprops’, ‘hold on’,
‘plot’, ‘pause’, ‘imdilate’, ‘imerode’.)



