
CS 378 / CS 395T Computer Vision
Fall 2007
Problem set 4
Due Tuesday Dec 4

Submit both as hardcopy and electronically through the turnin program. If you have multiple files,
tar them together, and use your first initial and last name to name the tar file. Then submit with:

turnin --submit svnaras pset4 <yourfilename>

In your hardcopy, include the code as well as any relevant figures.

Part I. Eigenface recognition (50 points)

For this problem, the goal is to perform face recognition using the Eigenface approach by Turk
and Pentland. We have provided code to compute a face subspace and project face images onto
that subspace, as well as two datasets of face images, one from the Caltech database, and one
from photos contributed by students in the class. The code provided is in eigenfaces_code.m,
and the data are in caltech_face_data.mat and class_face_data.mat.

Be sure to read all the comments in eigenfaces_code.m before starting this problem, and
also run it. This code does not yet perform the final recognition; you will fill this and other
additional steps in below. Note that you will need to choose appropriate values of
‘numTrainPerClass’ and ‘k’ for each dataset, as they contain different numbers of images.

Complete and respond to each of the following. Unless otherwise noted, apply each step to both
of the datasets provided.

a) Use the distances in face space between the novel test inputs and the labeled training
examples to classify each face in the test set according to the person’s identity. Assume
that every test input is indeed a face, and you need to say which one. What is the
accuracy, in terms of the percentage of test images correctly classified? What would the
accuracy of a random guess (chance) be for each dataset?

b) Compute the reconstructions for each the training and testing example according to their

projections onto face space. Given a mean face vector μ , the reconstruction x̂ for an

input x that has the face space projection],,[1 kww K=w is:

μux +⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

k

i
iiw

1

ˆ

Then display and view the results as images (see the use of ‘reshape’ in the given
code to turn a vector representation back into an image). First describe qualitatively how
the reconstructed images of the training vs. testing images compare for a fixed value of k.

Then try a low and high value of k and compare the reconstructed images. Explain why
the results look the way they do and include figures showing some of the reconstructed
images for each case.

c) Now include the face detection task to filter out non-faces. For the test examples in the
Caltech data, there are also some images that are not faces. For each test example x ,

check the distance between it and its reconstruction:
2x̂x −=d . If this value is above

a threshold (θ≥d), then the input is too far from face space to be a face. Otherwise,
say it’s a face and label its identity as above. Perform this step only for
caltech_face_data.mat file, as there are no non-faces in the class_face_data.mat file.

d) An ROC (receiver operating characteristic) curve allows us to see the tradeoff between

false positives and true detections as a threshold in the decision function is changed.

 Ideal ROC Two typical ROCs

Each setting of the threshold will result in particular false positive and true positive rates
on the test data, and thus will generate one point to plot on the curve. In this problem,
the false detection rate is the percentage of non-faces that are labeled as faces, and the
correct detection rate is the percentage of true faces that are labeled as faces.

Generate an ROC curve for the test data in caltech_face_data.mat that shows the
tradeoff as the threshold for face detection θ is varied. Be sure to choose a reasonable
range of thresholds so that you observe the tradeoff occurring. Submit a figure showing
the curve, and explain the result.

e) (Optional, extra credit worth up to 25 points) How can we attempt to visualize what
variation is being captured by the eigenfaces? Design a way to explore the modes of
variation captured in these face subspaces. Explain your approach and interpret the
results. Show figures to illustrate as necessary.

Part II. Image metamorphosis (50 points)

 First image Morph (α=0.5) Second image

To morph between two images is to generate intermediate interpolated images in which the
object in the first image slowly changes into the object in the second. Computing a morph can be
useful for both vision and graphics applications. In general, we have to consider both the shape
and the appearance (texture) of the object we are morphing. Basic image morphing relies on two
primary steps:

1) Warp both images in order to align their shapes.
2) Blend the appearance of the two aligned images.

For this problem, you will use the observed motion between two sequential frames (the optical
flow) to estimate the aligning warp. Then you will blend the warped images by taking a weighted
average of their intensities at each position.

Consider two image frames from some video sequence, 1I and 2I . First, we need to compute

the optical flow from 1I to 2I ; then we get the optical flow from 2I to 1I . (Note: both of these
flow fields are already computed for you. They are the matrices ‘A’ and ‘B’, respectively.) Given
these flow fields, we want to compute two reverse-warped images 1W and 2W as follows:

),(),()12()12(
11

→→ ++= dyydxxIyxW αα , and

))1(,)1((),()21()21(
22

→→ −+−+= dyydxxIyxW αα ,

where α is a weight specifying how much of the flow to add, and the values)(jidx → and

)(jidy → correspond to the flow amounts from image i to image j. (So, the displacements come
from ‘B’ in the first equation, and from ‘A’ in the second equation. Both ‘A’ and ‘B’ are n x m x 2
matrices, which give the x and y flow displacements at each of the pixels for the n x m images.
A(:,:,1) and B(:,:,1) are the flow values in the x-dimension, while A(:,:,2) and B(:,:,2) are the flow
values in the y-dimension.)

It may help to first imagine computing these warped images with 5.0=α , which would generate
two warped images that both estimate the midpoint shape between the two input frames. Note
that if 0=α , 1W will simply yield the first image; if 1=α , 1W will yield the second image
(assuming perfect flow).

The optical flow fields are at sub-pixel precision, so the positions required for the warped images
may be non-integer as well. In order to compute the intensity of an image at a sub-pixel
coordinate, use the ‘interp2’ function. The parameters to interp2 are the 2d image data,
and the list of x and y positions you want to sample it at. For example, say samplex and
sampley are h x w matrices listing the positions we want to sample from for each (x,y) in an h x
w image im1. Then to get the values of im1 at the positions listed in samplex and sampley:

sampled = interp2(double(im1), samplex, sampley);

The result is another h x w matrix. Watch out for any NaN’s generated by ‘interp2’; you can
find them with the function ‘isnan’.

Having computed these two warped images for some value of]1,0[∈α , we are now ready to
blend their appearance. Compute the blended image B as the weighted average of the shape-
aligned images 1W and 2W :

),(),()1(),(21 yxWyxWyxB αα +−= .

Note that the weights are opposite what they were above for the warp, relative to the first and
second image. This is the final morph for that particular value of .α

The data for this problem are in the files flow_example_1_data.mat and
flow_example_2_data.mat. Use ‘load’ to load them in. Each file contains the variables ‘A’, ‘B’,
‘im1’, and ‘im2’.

For each of the two data files provided, use the given images and optical flow fields to compute a
smooth morphing between the first and second frame, for a slowly increasing blending parameter,

]1:1.0:0[=α . Display the morphs for every step together in one figure, in order, labeled by
theα value. You can also use the provided function ‘writeMovieFromImageStack’ to write
an avi movie file for each example that shows this transition. The movie you produce should look
like a slow motion interpolation of the motions of the actors in these frames.

Submit two figures showing the smooth morphs (10 images each) for the two examples, as well
as your analysis of the following:

a) Where are their apparent flaws in the optical flow estimates, and why?

b) Why is it important to correct for shape alignment before blending the intensities?

