Lecture 12: Multi-view
geometry / Stereo Il

Tuesday, Oct 23

CS 378/395T
Prof. Kristen Grauman

Outline

* Last lecture:
— stereo reconstruction with calibrated cameras
— non-geometric correspondence constraints

» Homogeneous coordinates, projection matrices
» Camera calibration
» Weak calibration/self-calibration

— Fundamental matrix

— 8-point algorithm

Review: stereo with calibrated cameras
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Camera-centered coordinate systems are related by known
rotation R and translation T.

Review: the essential matrix

p-[Tx(Rp)]=0 R
p-[TxJRp’ =0
e E=[TR S e

E is the essential matrix, which relates corresponding
image points in both cameras, given the rotation and
translation between their coordinate systems.

Review: stereo with calibrated cameras

* Image pair
» Detect some features
* Compute EffomRand T

» Match features using the
epipolar and other
constraints

 Triangulate for 3d structure

Review: disparity/depth maps

image I(x.y) Disparity map D(x,y) image I'(X',y")

(X.y)=(x+D(x.y).y)




Review: correspondence problem
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Figure from Gee & Cipolla 1999

Review: correspondence problem

 To find matches in the image pair, assume
— Most scene points visible from both views
— Image regions for the matches are similar in
appearance
» Dense or sparse matches

 Additional (non-epipolar) constraints:
— Similarity
— Uniqueness
— Ordering
— Figural continuity
— Disparity gradient

Review: correspondence error sources

« Low-contrast /textureless image regions
¢ Occlusions

« Camera calibration errors

* Poor image resolution

« Violations of brightness constancy (specular
reflections)

¢ Large motions

Homogeneous coordinates

» Extend Euclidean space: add an extra coordinate
» Points are represented by equivalence classes

e Why? This will allow us to write process of
perspective projection as a matrix

2d: (X1 y)’ > (X1 Y, 1)' Mapping to
homogeneous

3d: (X, ¥,2) > XY,z 1) coordinates

2d: (X’ Y, W)’ > (X/W- y/W)’ Mapping back from
homogeneous

3d: (X, Y, z, w)' 2> (X/w, y/w, z/w)’ | coordinates

Homogeneous coordinates

*Equivalence relation:
(X, ¥, z, w) is the same as (kx, ky, kz, kw)

Homogeneous coordinates are only defined
up to a scale

Perspective projection equations

. Focal :
length -

- » |

vl Optical
Camera gxis
frame

D)= (20

Scene point —» Image coordinates




Projection matrix for perspective projection
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Projection matrix for perspective projection
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Projection matrix for orthographic projection
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Camera parameters

» Extrinsic: location and orientation of camera
frame with respect to reference frame

« Intrinsic: how to map pixel coordinates to
image plane coordinates

Reference
i senend) frame
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frame

Rigid transformations

Combinations of rotations and translation
» Translation: add values to coordinates
* Rotation: matrix multiplication

Rotation about coordinate axes in 3d

1 0 0

) Express 3d rotation as
Rx)=|0 cose -sina

series of rotations
around coordinate
axes by angles &, 3,

0 sine cosi
[ cosf 0 sinf
R ()= 0 10

|- s 0 cosh Overall rotation is
|- sinf i product of these
cosy ~-siny 0 elementary rotations:
R=R,R,R,

R.(y)=|siny cosy 0
0 0 1




Extrinsic camera parameters

P.=R(P,-T)

I

Point in camera poimTin world
reference frame

PC :(X 1Y ’ Z)

Camera parameters

» Extrinsic: location and orientation of camera
frame with respect to reference frame

* Intrinsic: how to map pixel coordinates
to image plane coordinates

Reference
) frame
A

e

‘ I Camera 1
frame

Intrinsic camera parameters

* Ignoring any geometric distortions from
optics, we can describe them by:

X= _(Xim - 0x)sx
y = _(yim _Oy)sy

R NG

Coordinates of Coordinates of Coordinates of  Effective size of 4
projected point in image point in image center in pixel (mm)
camera reference pixel units pixel units

frame

Camera parameters
¢ We know that in terms of camera reference frame:
o Af I Y
=N > y= fZ

¢ Substituting previous eqns describing intrinsic and
extrinsic parameters, can relate pixels coordinates
to world points:

T
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Linear version of perspective
projection equations

point in camera
coordinates

* This can be rewritten X, Xu
as a matrix product Xy | = M Moy | Yo
using homogeneous Xs Z,
coordinates: 1
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Calibrating a camera

» Compute intrinsic and extrinsic
parameters using observed
camera data

Main idea

* Place “calibration object” with
known geometry in the scene

 Get correspondences

 Solve for mapping from scene
to image: estimate M=M;, Mgy, meopsicar catbemsion Taret imsee




Linear version of perspective
projection equations

Pw in homog|
4
* This can be rewritten X Xu
as a matrix product Xy| = Min Meye | Yu
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Estimating the projection matrix
For a given feature point:

0=(M, —x,M,)-P,

0=(M,-yiMs)-P,

In matrix form:

T T T
PW 0 - Xim PW k/l/ll _{0}
T T T 2170
0 I:)w = Yim F)w M,
*_ Stack rows
of matrix M

Estimating the projection matrix

This is true for every feature point, so we can stack up n
observed image features and their associated 3d points
in single equation: Pm=0
P m
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Solve for my’s (the calibration information)
with least squares. [F&P Section 3.1]

Estimating the projection matrix

M, -P, %O:(Ml_ximM3)'Pw

P,
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Estimating the projection matrix
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Summary: camera calibration

 Associate image points with scene points
on object with known geometry

» Use together with perspective projection
relationship to estimate projection matrix

 (Can also solve for explicit parameters
themselves)




When would we calibrate this way?

» Makes sense when geometry of system is
not going to change over time

 ...When would it change?

— Archival videos

Self-calibration

» Want to estimate world geometry without
requiring calibrated cameras

— Photos from multiple unrelated users
— Dynamic camera system

» We can still reconstruct 3d structure, up to
certain ambiguities, if we can find
correspondences between points...

Uncalibrated case
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So:
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Uncalibrated case:
fundamental matrix

p(right)TEp(lefr) =0

From before, the
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Fundamental matrix

Fundamental matrix

 Relates pixel coordinates in the two views

» More general form than essential matrix:
we remove need to know intrinsic
parameters

« If we estimate fundamental matrix from
correspondences in pixel coordinates, can
reconstruct epipolar geometry without
intrinsic or extrinsic parameters

Computing F from correspondences

F=(M;1EM:

right left

)

ﬁljl;ght I:ﬁleft = O

» Cameras are uncalibrated: we don’t know
E or left or right M, matrices

 Estimate F from 8+ point correspondences.




Computing F from correspondences
Each point Eljl;ght Fﬁleﬁ — O

correspondence
generates one
constraint on F
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Robust computation

 Find corners

+ Unguided matching — local search, cross-
correlation to get some seed matches

« Compute F and epipolar geometry: find F that is
consistent with many of the seed matches

* Now guide matching: using F to restrict search
to epipolar lines

RANSAC application: robust computation

Interest points (Harris

- | corners) in left and right
images

Les about 500 pts / image
640x480 resolution
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correspondences Outliers (}17)
(268) (t=1.25 pixel; 43

(Best iterations)
match,SSD<20)

Final inliers (262)
Inliers (151)

Hartley & Zisserman p. 126

oty o/ aray
camein 4 ", AN CaTeta

— g
Compute € fom R ana T

. omespondences
— -
L .
Mt cormens usng eppla

ﬁ
e ot e ot
Trangus s

ke rms n
m fr—— pararmaers K

B D ~ evewer s B
Mot 30 skucnes Pecgeenve wncrre ) LR R

 Deconpom £ ria T,

Trnguate
-

(,_maemc 30
Figure by Gee and Cipolla, 1999 e o

Need for multi-view geometry and
3d reconstruction

Applications including:

¢ 3d tracking

« Depth-based grouping

< Image rendering and generating interpolated or
“virtual” viewpoints

« Interactive video

Z-keying for virtual reality

» Merge synthetic and real images given
depth maps

Figure 1 A sthama of the 2 key methad

Kanade et al., CMU, 1995




Z-keying for virtual reality Virtualized Reality™

Capture 3d shape from multiple views, texture from images

Use them to generate new views on demand

Kanade et al, CMU
http://www.cs.cmu.edu/afs/cs/project/stereo-machine/www/z-key.html

http://www.cs.cmu.edu/~virtualized-reality/3manbball_new.html

. : . Virtual viewpoint video
Virtual viewpoint video

Massive Arabesque

C. Zitnick et al, High-quality video view interpolation using a layered representation,
SIGGRAPH 2004.

http://research.microsoft.com/IVM/VVV/

Microsoft
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Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism:
Exploring photo collections in 3D," ACM Transactions on Graphics
(SIGGRAPH Proceedings), 25(3), 2006, 835-846.

http://phototour.cs.washington.edu/, http:/labs.live.com/photosynth/




Coming up

» Tuesday: Local invariant features
— Read Lowe paper on SIFT

« Problem set 3 out next Tuesday, due
11/13

» Graduate students: remember paper
reviews and extensions, due 12/6




